MODIS Data Product Status Numbers 19, 23, \& 26

Dennis K Clark July 2002

MOBY
 Five Year Time-Series 7/20/97 to 7/20/02

-NIST Radiometric Scale \& Overview
-NIST Stray Light Characterizations
-Sensor Spectral Band Matching

- Ocean Color Sensors
-Japan's OCTS
-SeaWiFS
-MODIS Terra and Aqua
-Japan's GLI (Fall 2002)

MODIS Terra/Aqua-Products

Product 19

- Parameter 13 - CZCS_pigment
- (Chl $a+$ Phaeo) - Fluorometrically determined
- Parameter 14 - chlor_MODIS
- (Chl a (monovinyl and divinyl), Chl a allomer, Chl a epimer, and chlorophyllide a) - HPLC determined
- Parameter 15 - pigment_c1_total
- (Chl $a+27$ Accessory Pigments) - HPLC determined

Product 23

- Parameter 19 - Total Suspended Matter
- Dry Weight

Product 26 - Parameter 23 - K_490

- SeaWiFS - Downwelled Irradiance Diffuse Attenuation Coefficient

nLw calibrations stabilized Product Impacts

- Problem: Chlor_modis > Total pigment concentration
- In regions with high pigment concentrations
- At high latitudes
- Reason: nLw 443 (b9) retrievals too low and 490 was stabilizing the 3 band total pigment retrievals.
- Problem: MODIS nLw's scaled to MOBY's stray light corrected nLw's were returning higher pigment concentrations in the low concentration regions.
- Reason: The in-water radiometric measurements were not stray light corrected.

Parameter Modifications

- Parameters 14 \& 19 reformulated from 2 band to 3 band ratios (chlor_MODIS \& Total Suspended Matter).
- All products forced through Gordon's radiance ratios for pure water.
- In situ blue water nLw's were corrected for stray light with the NIST nominal characterizations.
- All parameter algorithms were split into two 3rd order polynomials to optimize the high radiance ratio range.

Effect of stray light correction on the chl_MODIS Product

December 2001

July 2002

Effect of Error in Band 9/12 Ratio

Effect of Error in Band 9/12 Ratio

Effect of Error in the Band 09/12 Ratio

Generalized Form for Product Computation

HIGH Lwn Ratio Range Log Product $=\left(\mathbf{A}(\log X) \wedge 3+B(\log X)^{\wedge} 2+C(\log X)+D\right) / E$ LOW Lwn Ratio Range Log Product $=\left(A(\log X) \wedge 3+B(\log X)^{\wedge} 2+C(\log X)+D\right) / E$

Switch Point (SP) is the value of the \log Lwn ratio where : the HIGH range form is replaced with the LOW range form.
-Products 19 and 23
-Two Least Squares Regressions (Log, Log)
-3rd order polynomials
$-R^{2}>0.91 ; S_{y x} \sim .045$
-Product 26
-Least Squares Regression
-Linear
$-\mathrm{R}^{2}=0.94 ; \mathrm{S}_{\mathrm{yx}}=0.167$

Initial MOCE Validations

Ship and MODIS nlw

Ship and MODIS nlw

Ship and MODIS nlw ratios

Ship and MODIS nlw ratios

Ship and MODIS Pigments

\rightarrow HPLC Chl a
\rightarrow Chlor_MODIS

Ship and MODIS Pigments

\rightarrow FL Chl a
\rightarrow - CZCS_pigments

Ship and MODIS pigments

MOCE 7 - MODIS_Chl Ship Track

MOCE 8 - MODIS_Chl Ship Track

MOCE-8 (Day 2001061) Ship to MODIS Chl_a \% Difference

Present Status - Future Validation

- Recent Miami characterizations/calibration results have solved most of the major nLw retrieval problems.
- Present products are computationally validated and initial validation results indicate that the pigment retrievals are within 30%.
- MOBY observations now operational for Aqua.
- July - Two cal/val data sets with Modis Terra,Aqua \&SeaWiFS overpasses.
- MODIS Validation/Initialization cruises scheduled for Sept. and Oct. 2002 in the Chesapeake Bay and Hawaii.

