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Where did the away side jets go? - Initial state perspective

Kharzeev-Levin-McLerran, Nucl.Phys.A748:627 (hep-ph/040327160) :

as always provocative and as most of the time intriguing

What is partonic content of the wave function of a small perturbative object
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+

What about a ”large” ”saturated” hadron (like maybe nucleus?) - especially at low x.

Well, we might expect that as there are many partons in the wave function, a large

transverse momentum of one of them is balanced by many partons with pT ∼ QS, which

are the most populous dwellers in the wave function.



k~ QS

P

Simple minded picture: scatter this wave function on a target - partonic wavefunctions

decohere and partons go on shell. A saturated projectile produces jets with unbalanced

transverse momentum.

Is this true? Not obvious. A wave function of a saturated projectile is not uniformly

dense - it is only dense on transverse scales larger than Q−1
S . Certainly if you look for

quantum evolution to produce high pT ≫ QS partons in the wave function, they are

produced in the ”dilute” component of the wave function - by quantum emission very close

to emitting color charges. Thus for pT ≫ QS one should still expect strong back-to back

correlations. However for pT = 2 − 5QS one indeed can expect such an effect.

Additionally, when traversing a dense target the partons do not simply decohere, but

also get kicks from the target again of about QS.

All in all one expects back-to-back correlations to be much weaker in the case of

saturated QCD matter at transverse momenta of several QS.



Can we calculate double inclusive cross section?

We would like to calculate the double gluon inclusive cross section: AA→ ggX.

We cannot calculate everything, but we can calculate something.

”AA” is very difficult. (Semi)Analytically intractable for the moment. Strictly speaking

we are even missing the formalizm for such calculations.

Plan B: ”pA”. Here we can only hope to see the ”square root” of the effect - broadening

due to transverse momentum imparted by the target. But the formal framework exists.

• Jalilian-Marian, Kovchegov: Phys.Rev.D70:114017,2004 (hep-ph/0405266) - tour

de force calculation of ”pA → g(y1)g(y2)X” including effects of quantum evolution

(y1 ≫ y2)

• Baier, A.K., Nardi and Wiedemann: Phys.Rev.D72:094013,2005 (hep-ph/0506126)

- double inclusive gluon - no quantum evolution

• Nikolaev and/or Schafer and/or Zakharov and/or Zoller: Phys.Rev.D72:114018,2005

(hep-ph/0508310) plus several other recent papers - variety of double inclusive observables

gg, qg, qq̄ - no quantum evolution



Can we make sense of these formulae?

We have now several VERY LONG EXPRESSIONS for a variety of observables with

and without evolution. Can we understand (have some number+some pictures) the effects

of saturation ?

I wish that my room had a floor,

I don’t care too much for a door,

But this walking around

Without touching the ground

Is getting to be quite a bore

It’s not easy, and especially difficult for double gluon emission.

A much simpler observable of this type is the double inclusive quark-gluon distribution.

Given a simple but reasonable model for the interaction with the target we have analysed

the double inclusive spectrum for qA→ qgX.

I will very briefly outline the setup for calculation of this type of observables in the

saturated environment, and will present some results of numerical evaluation.



Eikonal cross sections

Consider a ”small” projectile with wave function

|Ψin〉 =
{αi,xi}

ψ({αi, xi}) |{αi, xi}〉 .

αi - color indices, xi - transverse coordinates of partons.

This propagates eikonally through the target and emerges with the wave function:

|Ψout〉 = S|Ψin〉 =
{αi,xi}

ψ({αi, xi})
i

W (xi)αiβi |{βi, xi}〉

Here S is the S-matrix, and the W ’s are Wilson lines

W (xi) = P exp{i dz
−
T
a
A

+
a (xi, z

−
)}

with A+ - the gauge field in the target.



This wave function further evolves after the interaction to asymptotic time, and any

observable has to be calculated only allowing for the final state emissions during this

propagation. Perturbatively this is neatly taken into account by the following trick. The

incoming wave function in perturbation theory can be written as

|Ψin〉 = C|Ψ(valence)〉

with the perturbative ”Cloud” operator which dresses the valence degrees of freedom by

the Weizsacker-Williams gluon field

C = P exp i
g

2π3/2
dx dz dξ

zi − xi

(z − x)2
[a
d
i (z, ξ) + a

d†
i (z, ξ)] ρ

d
ξ(x) ,

where P stands for rapidity ordering, and ρdξ(x) denotes the total charge density operator

integrated from the rapidity of the valence components of the projectile to the rapidity of

the Weizsacker-WIlliams gluon ξ. The cloud operator C works like the evolution operator.

Thus the recipe to calculate the expectation value of an oservable O(a, a†) is

〈Ψout|CO(a, a†)C†|Ψout〉



The simplest process to consider is gluon emission off a single quark projectile

q A → q(k) g(p)X

To leading order in αs, the incoming wave function is

|q(x)〉 ∼ |q(x)〉 +
g

2π3/2
d

2
z
(x− z)i

(x− z)2
|q(x), g(z)〉

Direct application of the above formalizm gives for the probability of emitting a gluon

with momentum p and a quark with momentum k

db
dN

dy dk dp
=

αs

π

1

(2π)4
x x̄ z z̄

e
−ik·(x−x̄)−ip·(z−z̄)(zi − xi)(z̄i − x̄i)

(z − x)2(z̄ − x̄)2

× [Q(z, x, x̄, z̄)S(z̄, z) + S(x, x̄) − S(x, z̄)S(z̄, x̄) − S(x, z)S(z, x̄)] .

The entire information about the target nucleus is contained in two target averages of

products of Wilson lines, - dipole and quadrupole cross sections

S(ū, u) = 〈 1

N
Tr W

F †
(ū)W

F
(u) 〉T ,

Q(ū, u, z, z̄) = 〈 1

N
Tr W

F †
(ū)W

F
(u)W

F †
(z)W

F
(z̄) 〉T .



Our aim is to understand the effects of saturation in this expression. We use the (by

now standard) eikonal expressions for the Wilson loop averages

S(ū, u) = exp [−v(ū − u)] ,

Q(ȳ, x, x̄, y) =
v(x − x̄) + v(y − ȳ) − v(x − y) − v(x̄ − ȳ)

v(x − x̄) + v(y − ȳ) − v(x − ȳ) − v(y − x̄)
e

[−v(x−x̄)−v(y−ȳ)]

−v(x − ȳ) + v(y − x̄) − v(x − y) − v(x̄ − ȳ)

v(x − x̄) + v(y − ȳ) − v(x − ȳ) − v(y − x̄)
e

[−v(x−ȳ)−v(y−x̄)]

This is a simple Glauber approximation (also known as McLerran-Venugopalan model)

where v(x) is the cross section of the dipole-nuclean scattering (scaled by the atomic

number).



The function v(x) also has the meaning of the target gluon field correlation function

and is directly proportional to the gluon density in the target, thus it has the logarithmic

dependence on the transverse separation.

v(x) = x
2 Q̃

2
s(x)

8
≡ x

2 Q
2
s,0

8
log

1

x2Λ2
+ a .

We take Λ ≡ ΛQCD = 0.2 GeV and the small regulator a = 1/(x2
c Λ2), xc =

3 GeV−1.

The saturation scale Qs is defined implicitly as

v(Q
−1
s ) ∼ 1; Q

2
s ≡ Q̃

2
s(x

2
= 1/Q

2
s) .

With this definition, Q2
s = 2 GeV2 corresponds to Q2

s,0 ≃ 0.5 GeV2.



Total recoil momentum distribution

For the total momentum transmitted by the target to the qg state K = k + p we

find a typical Cronin like shape
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Target imparts momentum of order Qs very efficiently - very little small K final states.

At K ∼ 2 − 3Qs there is enhancement.

At K ≫ Qs recover perturbative distribution.



Angular correlation - large trigger momentum

Quark trigger
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(b)

k = 4 Qs

The projectile is only one quark and up to one gluon. The total transverse momentum of

the incoming system is zero - q and g are exactly correlated back-to-back. While travelling

through the target, each parton gets a transverse kick mostly ∼ Qs. But with small

probability a parton can scatter off the perturbative high momentum tail of the target field.



• Large p and k final states come from two sources: either large momenta in the

initial state kicked by Qs,

P
L

−L
K

or low k quark that scatters off the hard tail ( ”kicking” a gluon out of the target).

T T

These events are back-to-back correlated (slightly randomized direction).

• Large k with p = Qs only arise due to hard scattering of the quark. The direction

of the hard kick is random and uncorrelated with the direction of momentum of the gluon.

The angular distribution in this regime is almost completely flat.



Gluon trigger
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p = 4 Qs

Qualitatively similar.



Angular correlation - trigger momentum ∼ QS
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The angular correlation is not peaked at φ =

π, but instead at φ = π − δ. The dip at π

disappears for trigger momenta k < 0.6Qs

and k > 1.4Qs.

Coherent scattering effect: soft multiple

scattering of the initial quark-gluon components

of small transverse size. If the pair is smaller

than the transverse correlation length of the

target fields, it scatters as one single object. It

picks up a typical soft momentum Qs,0 which

is shared equally between the quark and the

gluon.



Start with the initial momenta of the quark and the gluon kin, −kin. In the final

state k = kin + δk and p = −kin + δk with |δk| = Qs,0/2 and kin · δk = 0. For

k ≫ Qs,0 the angle between the momenta in the final state

φ = π − Qs,0√
2k
.

For large trigger momenta there is not enough phase space for coherent scattering -

most of such final states are produced by hard scattering of the quark. For small trigger

momentum again there is not enough phase space - most of scattering is incoherent soft -

correlations disappear and so does the dip.



IR cutoff, or poor man’s dipole
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Caution: the numerical integration required

an IR cutoff on the size of the q(x)g(z)

component in the wave function. This is quite

obvious - we start with a coloured projectile -

its radiation is Coulomb and spreads all over

the transverse plane. Without cutoff there is a

logarithmic divergence. We have restricted the

sizes to

(x-z)2 ≤ Λ−2
QCD

What if the projectile is small?

We expect the relative importance of the small

size configurations to increase, and therefore

the weight of final states produced by final

state radiation to be reduced. The range of

trigger momenta which show the dip structure

should increase. E.g. cut at Qs,0 ∼
constituent quark size



Summary

We are developing tools for first principle calculations in the saturated environment.

The two particle correlations in the simplest process we have looked at indeed exhibit

the expected property of angular decorrelation even at fairly high momenta: k = 4Qs,

p = 2Qs there is practically no angular correlation to talk about.

A double hump structure in the angular spectrum for k, p ∼ Qs - the maximum of

the distribution is not back to back, but can be as fas as ∼ π
4 .


