<u>Suzaku Observations of</u> <u>Thermal and Nonthermal</u> <u>X-Ray Emission from the</u> <u>Middle-Aged SNR G156.2+5.7</u>

S. Katsuda^{1,2}, R. Petre¹, U. Hwang¹, H. Yamaguchi³, K. Mori⁴, and H. Tsunemi² (1: NASA/GSFC, 2: Osaka U., 3: RIKEN, 4: Miyazaki U.) 9/10 @ Johns Hopkins University

Submitted to PASJ (Suzaku 3rd Special Issue)

Suzaku Observations of G156

G156.2+5.7 (ROSAT PSPC)

XIS Images and Spectral Extraction Regions

(b) Northwest

NW2

NW3

(c) Center

Center FOV

NW4

NWFOV

XIS images (NXB-subtracted vignetting-corrected).

<u>NW Rim</u>

Model = wabs x (vnei + power-law)

Abundances in the E and NW rims

Sub solar abundances are derived => ISM origin for these plasma

N_H, kT_e, n_et in the E and NW rims

N_H~0.3-0.4x10²² cm⁻² =>consistent with ASCA results

 kT_e decreases toward the shock front to ~0.3keV. The forward shock velocity is estimated to be ~500 (kTe/0.3 keV)^{0.5} km/sec.

NEI condition everywhere. It decreases from the edge $(\sim 10^{11})$ toward the center (0.3×10^{11}) .

<u>Center</u>

Model = wabs x (vnei(ISM) + power-law + vnei(ejecta))

Ejecta Abundances: Comparison with Nucleosynthetic Models

Origin of the Hard-tail Emission

- Comparison with the radio morphology: The distribution of the X-ray hard-tail emission matches that of the radio emission.

- Spectral features:
- The SRCUT model well fits our data and the radio data.

=>Support the non-thermal origin for the hard-tail emission.

Non-thermal X-ray emission from a slow forward shock of ~500 km/sec.

<u>Summary</u>

- We have observed the NW rim, the center, and the east rim of SNR G156.2+5.7 with Suzaku.
- In the NW rim and the center, we confirm that the X-ray spectra consists of soft and hard-tail emission, while in the E rim we find no significant hard-tail emission. The soft emission in the NW and E rims is the ISM plasma. In the center, the soft emission is ISM+ejecta plasma.
- The relative abundances in the ejecta component suggest that G156.2+5.7 is a remnant from a core-collapse SN explosion whose progenitor mass is less than 15 solar masses.
- The origin of the hard-tail emission is highly likely non-thermal synchrotron emission from relativistic electrons accelerated by the forward shocks. The relativistic electrons seem to be accelerated by a forward shock with a slow velocity of ~500 km/sec.

HXD PIN Spectra

P23

Consistent with the CXB.

Point Source 1 (NW)

NH: $\sim 0.75 \times 10^{22}$ cm⁻² Γ : ~ 2.4 Observed Flux: 3.4×10^{-13} erg cm⁻² sec⁻¹ Luminosity: 7.0×10^{31} erg sec⁻¹ at a distance of 1.3 kpc

TABLE 1. List of the seven "confirmed" CCOs and of their basic X-ray properties. Flux is in the 0.5-8 keV energy range; the bolometric luminosity is computed for a purely thermal model (either single or double blackbody). The possible variability reported for the CCO in Cas A refers to indirect evidence for a large flare occurred around A.D. 1953. See text for details and references.

SNR	Age (ky)	Distance (kpc)	Observed flux $10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$	Luminosity 10^{33} erg s ⁻¹	Variability	Period	Pulsed fraction
RCW103	2	3.3	0.8-60	1.1-80	factor 100	6.67 hour	12-50%
G296.5+10.0	7	2.2	2.	1.2	< 5%	424 ms	$\sim 10\%$
Kes 79	7	7.1	0.2	3	< 15%	105 ms	$\sim 80\%$
Cas A	0.3	3.4	2.	2	Flares?		< 13%
Puppis A	3.7	2.2	4.8	5	< 5%		5%? (<7%)
G347.3-0.5	2	1.3	3.	0.6	< 5%		< 7%
VelaJr.	1	1	1.3	0.25	< 5%		< 7%

De Luca (2008)

Point Source 2 (Center)

NH: fixed at 0.5×10^{22} cm⁻² Γ : ~2.0 Observed Flux: 3.4×10^{-13} erg cm⁻² sec⁻¹ Luminosity: 1.9×10^{31} erg sec⁻¹ at a distance of 1.3 kpc

<u>EM profile:</u> Comparison with Sedov Model

