GVRYPLTFGWCYKLVPVEPD

QUERY

CONSENSUS_A A.FR.HIV232956 A.FR.HIV232957 A. KE.Q23-CXC-CG A. SE.SE659 A.SE.SE7253 A. SE.SE7535 A.SE.SE8131 A.SE.SE8538 A.SE.SE8891 A.UG.U455

CONSENSUS_B B. -.E90NEF B.-.HIV232997 B.--HIV233009 .--.HIV233009 B.-.HIV233016 B.-.HIV233023 B.-.HIV233029 B. - HIV233030 B. -. HIV233032 B.--.HIV2333037 B.--.HIV2333038 B.-..HIV2333043 B.-.HIV233043 B.-. HIV233046 B. AU. $1062-1-$ NEF B.AU. $93 \mathrm{JW}-3$ B.AU. $93 \mathrm{JW}-3$
B.AU. $93 \mathrm{LW}-3$ B.AU.AF064660 B.AU.AFO 064667 B.AU.AFO 64676 B.AU.MBC200 B.AU.MBC925 B.CN.AF033570 B.CN.AF033572 B.CN. PRC8 B. CN.RL42 B.DE.D31 B. DE. HAN B.DE.HEI28CS B.DE.HEI3BL B.DE.HEI4BL B.DE.HIVU52491 B. DE. NEFCC B. DE. NEFCG B.DE.NH53 .ES.89SP061 B.ES.AF082355 B.ES.AF082357

GVRYPLTFGWCYKLVPVEPD

B.ES.AF082358	-T-F-------F-----D
B.ES.AF082359	-I--------------L-QE
B.ES.AF082363	C----F-------G
B.ES.AF082364	-I-----L---F-----D-E
B.ES.AF082366	-I---------F-----D-G
B.ES.AF082368	-T-F
B.ES.AF082370	-T-F-------F-------E
B.ES.AF082375	-I---------F
B.ES.AF082376	-T----------F-----D--
B.ES.AF082377	-I---------F-----D-E
B.ES.AF082378	-I---------F-----D
B.ES.AF082380	-T-F-------F-----K-E
B.ES.AF082383	F-----D-E
B.ES.AF082386	---F--------
B.FR.HIV232961	---F-------F-----K-N
B.FR.HIV232962	-I---------F------QE
B.FR.HIV232963	-T-F-------F-----D-
B.FR.HIV232964	-T-F-------F-------E
B.FR.HIV232965	-T----C----F-----D
B.FR.HXB2	
B.FR.NE100	-I-W---L---F-------E
B.FR.SWB884	-I-W---P---F-------E
B.GA.OYI	-I----C----F----MD--
B.GB.001GH-93(1)	-I---------F-------E
B.GB.002EM-93(1)	-H-------F-----DQE
B.GB.003PW-93(1)	F------TE
B.GB.005PF1-93(1)	-I-F---S---F-------E
B.GB.006DC-93(1)	- - A
B.GB.010JW-93(1)	-T-F-------F-------E
B.GB.011JR-93(4)	F-------E
B.GB.012WM-93(1)	-
B.GB.013PP-94(2)	-T-F---Y---F
B.GB.016GB-93(1)	TT--------F-------E
B.GB.023PA-93(1)	SE
B.GB.025JN-93(1)	F-------E
B.GB.027SL-93(1)	-I---------F-------E
B.GB.028JH-94(1)	-I----------F
B.GB.030JG-93(1)	-I----------F-------E
B.GB.031DA-93(1)	-I----------F-------E
B.GB.032AN-93(1)	-
B.GB.037BS-94(2)	-D-E
B.GB.039NM-94 (1)	E
B.GB.044C1-94(2)	-I----------F---------
B.GB.046JM-94(1)	-I---------F---------
B.GB.048AD-94(1)	-T---------F-------E
B.GB.056RP-94B (1)	-I---------F-----D-E
B.GB.057DR-94(1)	-I---------F------SE
B.GB.065RK-94 (1)	-T
B.GB.067MM-94(2)	E
B.GB.068JB-94 (1)	F-------E
B.GB.098MS-94(1)	-I-----Y---F-------E
B.GB.103CD-94(1)	-I----------F--------
B.GB.104RT-94(1)	E
B.GB.105AS-94(1)	-
B.GB.112CR-94(2)	-I
B.GB.117CH-94(2)	-I
B.GB.122PS-95(1)	F-------F-----D-E
B.GB.124PD-95(1)	-F-I

B. GB. 127RG-96(1) B.GB. $130 \mathrm{WDC}-95(1)$ B. GB. 131MVS-95 (1) B.GB. 143PL-95 (1) B. GB. 151DH-95 (1) B.GB. 157GT-95 (1) B. GB. 160KO-95 (1) B.GB. $161 \mathrm{KC}-95(1)$ B. GB. $162 \mathrm{BB}-95$ (1) B. GB. $163 \mathrm{NG}-95(1)$ B.GB. $164 \mathrm{SZ}-95(1)$ B.GB. $165 \mathrm{DH}-95(1)$ B.GB.166PW-95(1) B.GB.167RW-95(1) B.GB. 168 MB B.GB.CAMI . GB. MANC .GB.MANC B.GB.NEF2 .GB.NEF B.GB.NEF 35 B. IT AF01147 B.IT.AF011474 B.IT.AF011477 B.IT.AF011478 B. IT AF011480 B. IT AF011482 B. IT. AF011483 B. IT. AF011486 B. IT. AF011488 B.IT.AF011492 B.IT.AF047080 B.IT.AF047081 B.IT.B.IT-L1 B.IT.B.IT-L2 B.IT.B.IT-L3 B.IT.B.IT-L4 B.IT.B.IT-L5 B.IT.B.IT-R1 B.IT.B.IT-R2 B.IT.B.IT-R3 B.IT.B.IT-R4 B.IT.B.IT-R5 B.KR.AF06391 B.KR.AF063916 B.KR.AF063919 B.KR.AF063921 B.KR.AF06392 B.KR.AFO63927 .KR.AFIV3931 .KR.HIVZ98019 B.KR.HIVZ98022 B.KR.HIVZ98022 B.KR.HIVZ9802 B.KR.HIVZ9802
B.KR.HIVZ98030

B. KR.HIVZ98032
B.KR.HIVZ98034
B. NL. 3202A21
B. NL. NEFA
B.NL.NEFD
B. NL. NEFE
B. SE.AF047082
B.SE.AF047083
B.SE.AF04708
B. TH.28-19
B.TH.AF082838
.TH.AF082839
B. TH.AF0828
B. TW. LM49
.US.HIV1U03375
.US.005PF-96(1)
B.US.AD-93 (1)
.US BC
.US.BC
B.US.BJ-93(1
B. US. BO1
.US.B01
B.US.BT-94 (1)
B.US.CD1
B.US.CD1
B.US.DH1
B.US.DH1
B.US.DH123
B.US.DJ-9
B.US.E1
B.US.E81NEF
B.US.E88NEF
B.US.EP-94(1)
B.US.FA-93(1)
B.US.HIV1U16893
B.US.HIV1U24455
B.US.HIV1U26074
B.US.HIVIU26074 B.US.HIV1U26112 B.US.HIV1U26119 B.US.HIV1U2614 B.US.HIVU44444 B.US.HIVU44450 B.US.HIVU44456 B.US.HIVU44465 B.US.HIVU44468 B.US.HP87B1
B.US.HS-93(1
B.US.JRCSF
B.US.JRFI
B.US.LM1
B.US.LT-87-1(1)
B.US.MB-94(1)
B.US.MNCG
B.US.NC7
.US.NEF164B
B.US.NEF166E

B.US.NEF179C	-
B.US.NEF226B	-I---------F-------E
B. US.P102A13	-I---------F-------E
B.US.P233A17	-I---------F-------E
B.US.P248A01	-I
B.US.P357A01	-I--------RF-----D
B.US.P896	-
B.US.PC-93(1)	-T-----L---F------TE
B.US.PRISO(1)	--F----A--G
B.US.RF	-T
B.US.RP12	-T-F-------F------QE
B.US.RR1	-I---------F-------E
B.US.SC	-I----C----F-----K-E
B.US.SF2	-I---------F-------E
B.US.U16917	-I---------F-----D-E
B.US.WEAU160	-T----C----F-------E
B.US.WR27	-T---------F----L
B.US.YU2	-T-W-------F-------E
CONSENSUS_C	---f-----D-r
C.BR.92BR025	-F-------F-----D-R
C.BW.96BW01B21	F-----D-R
C.BW.96BW0402	-K
C.BW.96BW0502	K--------F-----D-G
C.BW.96BW1104	-F-----D-G
C.BW.96BW1210	-F-----D-G
C. BW. 96BW15B03	-D-R
C.BW.96BW16B01	-V-----F-----D-R
C.BW.96BW17A09	- - R
C.ET.ETH2220	F-----D-S
C.FR.HIV232966	-F-----D-K
C.FR.HIV232967	-T---------F-----D-G
C.FR.HIV232968	-D-G
C.FR.HIV232969	---F-----D-S
C.FR.HIV232970	F-------F-----D-R
C.FR.HIV232971	-PF-----D-R
C.FR.HIV232972	-PF-----D-R
C.FR.HIV232973	F-----D-R
C.FR.HIV232976	F-----D-E
C.FR.HIV232977	-F-------F-----D-G
C.FR.HIV232978	--V--L--D-R
C.FR.HIV232979	LF-----D-S
C.FR.HIV232980	- - R
C.FR.HIV232996	-H-I----LF-----D-K
C.IN. 21068	F-----D-R
C.IN. 301904	F-----D-R
C.IN. 301999	---F-------F-----D-R
C.IN. 94 IN11246	-T-F-------F-----D-R
C.IN.HIVY15117	---F-------F-----D-K
C.IN.HIVY17884	-T-F-------F-----D-R
C.IN.HIVY17891	-D-R
C.IN.HIVY17892	-T-F-------F-----D-R
CONSENSUS_D	-I---------fe----d-q
D.CD.84ZR085	-I---------FE----D-E
D.CD.ELI	-I----------E----D-Q
D. CD. NDK	-I---------FQ----D-Q
D.UG.94UG1141	-I---------FE---M--K

CONSENSUS_F F.CM.HIV232985 F.CM.HIV232986 F.FR.HIV232987 CONSENSUS_F1 F1.BE.VI850 F1.BR.93BR020.1 F1.FI.FIN9363
F1.FR.MP411
CONSENSUS_F2
F2.CM.MP255
F2.CM.MP257
CONSENSUS_G
G.BE.DRCBL
G. ML HIV23299
G.NL. 92NG083
. NG. HIV2329
G.NG.HIV232991
G. SE SE6165

CONSENSUS_H
H.BE.VI991
H.BE.VI997
H.CD.HIV232994
H. CD. HIV232995
H.CF. 90 CF 056

CONSENSUS_J
J.SE.SE9173
J.SE.SE9173

CONSENSUS_K
K.CD.EQTB11C
K.CM.MP535
N.CM. YBF30

CONSENSUS_O
. CM. Ant70C
O.CM.MVP5180

CRF01_AE.CF.90CF402
CRF01_AE.FR. 232982
CRF01_AE.FR. 232983 CRF01_AE.FR. 232984 CRF01_AE.TH.1-2
CRF01_AE.TH.1-3 CRF01_AE.TH.11-25 CRF01_AE.TH.11-31 CRF01_AE.TH.122-21 CRF01_AE.TH.18-47 CRF01_AE.TH.235-3 CRF01_AE.TH.235-32 CRF01_AE.TH.24-54 CRF01_AE.TH.240-12
-i-f-------F-----D-e -I-----L---F-----D -P-F--------F-----D-E -i----------F-----d-e

 -?-?---?---F-----D-E -I-----L---F-----D-E $-t-f-------F----m d-a$ -T-V-------F----M--S $-T-F-------F--E--D-A$
$-T-F------F---M D-A$ $-\mathrm{T}-\mathrm{F}-------\mathrm{F}----\mathrm{MD}-\mathrm{A}$
-T-L------- $\mathrm{F}---\mathrm{MD}-\mathrm{A}$ $-\mathrm{T}-\mathrm{L}-------\mathrm{F}----\mathrm{MD}-\mathrm{A}$
-I-F------- $\mathrm{F}---\mathrm{LD}-\mathrm{T}$ -I-F-------F----LD-T $-\mathrm{T}-\mathrm{F}-------\mathrm{F}----\mathrm{MD}-\mathrm{A}$ -e-----------F------ $\mathrm{d}-\mathrm{q}$ -EG--------F--I--D-Q -E-F--------- F-------N-N
-??---------?------D-S -Tx---------F-----D-S
\qquad
-I-------------------D-R
-I---V-----F----LSAE
-?-F------LF-----S?E -P-F------LF-----SAE -------C----F------D-R $-\mathrm{I}-\mathrm{F}--\mathrm{C}----\mathrm{F}-----\mathrm{D}-\mathrm{R}$ $-\mathrm{I}----\mathrm{C}----\mathrm{F}-----\mathrm{D}-\mathrm{G}$ -I----C----F-----D -I-F--C----F------D-$-I-F--C----F-----D-G$
$-I---C---F---D-R$ $-I----C----F-----D-R$
$-I---C----F----D-R$ -I----C-----F-----D-R -I----C----F-----D-R
$-\mathrm{I}-\mathrm{F}--\mathrm{C}----\mathrm{F}-----\mathrm{DQR}$

CRF01_AE.TH.26-3
CRF01_AE.TH.35-6
CRF01_AE.TH.6-9
CRF01_AE.TH. 73-44
CRF01_AE.TH.74-26
CRFO1_AE.TH.89-30
CRFO1_AE.TH.9-3
CRF01_AE.TH. 93 TH 253
CRF01_AE.TH.98-4
CRF01_AE.TH.CM240 CRF01_AE.TH. CHO 22 CRFO1_AE.TH. CRFO2_AG.FR.DJ263 RFO_AG.FR.DJ26 CRF02_AG.NG.IBNG
CRFO4-ABx Cy 94CYO3 RF04-cpx. GR 97PVCH RRF04-cpx.GR. 97PVMY C. TN. 21301 C. RW 92 RW00

AC.RW. 92RW00
AC. ZM ZAM184 ACD SE SE8603
AD. SE SE6954
AD.SE.SE7108 DHU NO NOGII 3 ADU. CD MAL ADU. CD. MAL AF.GA.HIV232981
AG.NG.G3
AG.SE.SE7812 AGHU.GA.VI354 AGJ.AU. BFP 90 AGJ.ML. 95ML8 AGU.CD. Z321. 93 BR029. BF.BR. 93 BRO 29. DF.BE.VI961 GH. GA. HIV232993 U.CD.VI1126 U.CM.HIV232988 U.FR.HIV232958 U.FR.HIV232960

CONSENSUS_CPZ PPZ.GA.CPZGAB CPZ.US.CPZUS

Study Subject ID:00RCH96

Study Subject Clone:
Study Subject HLA:A23,A30,B27,B35,Cw2,Cw4
Sequence: Known reactive 20Mer0: GVRYPLTFGWCYKLVPVEPD $\operatorname{Nef}(132-151)$
Possible HLA
A23 A*2301

A30 A*3001,A*3002,A*3003,A*3004
B27 $B * 27, B * 2701, B * 2702, B * 2703, B * 2704, B * 2705, B * 2706, B * 2707, B * 2709, B * 2710, B * 2711, B * 2713$
B35 B*35,B*1522,B*3501,B*3502,B*3503,B*3504,B*3505,B*3506,B*3507,B*3508,B*3509,B*3511,B*3512,B*3513,B*3514,B*3515,B*3517,B*3518,B*3519,B*352(
Cw2 Cw*0202
Cw4 C4,Cw*0401,C*0401,Cw*0402

Possible Epitopes based on anchor residues

$(2-10)$	VRYPLTFGW	B27
$(2-9)$	VRYPLTFG	B27
$(2-11)$	VRYPLTFGWC	B27
$(2-10)$	VRYPLTFGW	$\mathrm{B} * 2702$
$(4-12)$	YPLTFGWCY	$\mathrm{B} * 35$
$(4-12)$	YPLTFGWCY	$\mathrm{B} * 3501$
$(7-14)$	TFGWCYKL	$\mathrm{Cw} * 0401$

Anchor Residues Searched
B27 X[R]XXXXXXX
B27 X[R]XXXXXX
B27 X[R]XXXXXXXX
B*2702 X[R]XXXXXX[FYILW]
B*2702 X[R]XXXXX[FYILW]
B*2702 X[R]XXXXXXX[FYILW]
B*2705 X[R]XXXXXX[LF]
B*2705 X[R]XXXXX[LF]
B*2705 X[R]XXXXXXX[LF]
B*35 X[P]XXXXXX[YFMLI]
B*35 X[P]XXXXX[YFMLI]
B*35 X[P]XXXXXXX[YFMLI]
B*3501 X[P]XXXXXX[YFMLI]
B*3501 X[P]XXXXX[YFMLI]
B*3501 X[P]XXXXXXX[YFMLI]
B*3503 X[P]XXXXXX[M]
B*3503 X[P]XXXXX[M]
B*3503 X[P]XXXXXXX[M]

Cw*0401 X[YPF]XXXXXX[LF]
Cw*0401 X[YPF]XXXXX[LF]
Cw*0401 X[YPF]XXXXXXX[LF]

This table lists epitopes that are experimentally observed to be presented by a HLA type carried by the patient, but the defned epitope has substitutions relative to the peptides from your reference strains and so might be missed by your reagents: in HXB2 for Gag, Pol; MN for Env; BRU for Nef, relative to most B clade Sequences in the database:

Protein	Epitope in Database	Epitope in Ref. strain	Epitope in Consensus B	HLA	Notes
p17(124-132)	NSSKVSQNY	HSNQVSQNY	NSSQVSQNY	B*3501	
p17(124-132)	NSSKVSQNY	HSNQVSQNY	NSSQVSQNY	B35	
p24(122-130)	PPIPVGDIY	PPIPVGEIY	PPIPVGEIY	$\mathrm{B}^{* 3501}$	
p24(122-130)	NPVPVGNIY	PPIPVGEIY	PPIPVGEIY	$\mathrm{B}^{* 3501}$	
p24(122-130)	PPIPVGDIY	PPIPVGEIY	PPIPVGEIY	B35	
p24(122-130)	PPIPVGDIY	PPIPVGEIY	PPIPVGEIY	B35	
p24(131-139)	KRWIILG-NK	KRWIILGLNK	KRWIILGLNK	B27	
p24(131-140)	KRWIILLGLNK	KRWIIL-GLNK	KRWIIL-GLNK	B*27	
p24(131-140)	RRWIQLGLQK	KRWIILGLNK	KRWIILGLNK	B*2703	
p24(131-140)	KRWIILGGLNK	KRWIILG-LNK	KRWIILG-LNK	B*2705	
p24(131-140)	RRWIQLGLQK	KRWIILGLNK	KRWIILGLNK	B27	
p24(131-140)	KRWIIMGLNK	KRWIILGLNK	KRWIILGLNK	B27	
p24(131-140)	KRWIIMG-NK	KRWIILGLNK	KRWIILGLNK	B27	
p24(131-140)	KRWIIMGLNK	KRWIILGLNK	KRWIILGLNK	B27	
RT(118-127)	VPLDKDFRKY	VPLDEDFRKY	VPLDKDFRKY	B*3501	
RT(118-127)	VPLDKDFRKY	VPLDEDFRKY	VPLDKDFRKY	B35	
RT(175-183)	HPDIVIYQY	NPDIVIYQY	NPDIVIYQY	B*3501	
RT(175-183)	HPDIVIYQY	NPDIVIYQY	NPDIVIYQY	B35	
RT(175-183)	HPDIVIYQY	NPDIVIYQY	NPDIVIYQY	B35	
RT(175-183)	HPDIVIYQY	NPDIVIYQY	NPDIVIYQY	B35	
gp160(78-86)	DPNPQEVVL	DPNPQEVEL	DPNPQEVVL	B*3501	
gp160(78-86)	DPNPQEVVL	DPNPQEVEL	DPNPQEVVL	B35	
gp160(78-86)	DPNPQEVVL	DPNPQEVEL	DPNPQEVVL	B35, B51	
gp160(252-260)	RPIVSTQLL	RPVVSTQLL	RPVVSTQLL	B*3501	
gp160(252-260)	RPIVSTQLL	RPVVSTQLL	RPVVSTQLL	B35	
gp160(314-322)	GRAFVTIGK	GRAFYTTKN	GRAFYTTGE	B27	
gp160(606-614)	TAVPWNASW	TTVPWNASW	TAVPWNASW	B*3501	
gp160(606-614)	TAVPWNASW	TTVPWNASW	TAVPWNASW	B35	
gp160(704-712)	IVNRNRQGY	IVNRVRQGY	IVNRVRQGY	A*3002	
gp160(786-794)	GRRGWEALK	GRRGWEVLK	GRRGWEALK	B27	
gp160(786-795)	GRRGWEALKY	GRRGWEVLKY	GRRGWEALKY	B*2705	
gp160(786-795)	GRRGWEALKY	GRRGWEVLKY	GRRGWEALKY	B27	
gp160(794-802)	KYCWNLLQY	KYWWNLLQY	KYWWNLLQY	A*3002	
				DE	
				DEC 2000	

$\operatorname{Nef}(68-76)$	FPVRPQVPL	FPVTPQVPL	FPVRPQVPL	B*3501
Nef(68-76)	FPVRPQVPL	FPVTPQVPL	FPVRPQVPL	B35
Nef(69-79)	RPQVPLRPMTY	TPQVPLRPMTY	RPQVPLRPMTY	B35
Nef(71-81)	RPQVPLRPMTY	TPQVPLRPMTY	RPQVPLRPMTY	B*3501
Nef(71-81)	RPQVPLRPMTY	TPQVPLRPMTY	RPQVPLRPMTY	B35
Nef(73-82)	SVPLRPMTYK	QVPLRPMTYK	QVPLRPMTYK	B35 or C4
Nef(135-143)	YPLTFGWCF	YPLTFGWCY	YPLTFGWCF	B35

Table 1: $\mathbf{p 1 7}$

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
p17(124-132)	p17(124-132 LAI)	NSSKVSQNY	HIV-1 or -2 infection	human(B*3501)	[Brander \& Goulder(2001)]
	- Noted by Brander to be B*3501 epitope				
p17(124-132)	p17(124-132 LAI)	NSSKVSQNY	HIV-1 infection	human(B35)	 Review of HIV CTL epitopes

Table 2: $\mathbf{p} 24$

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
p24(122-130)	p24(260-268 LAI) - C. Brander notes this is	PPIPVGDIY a B*3501 epitope	HIV-1 or -2 infection	human($\mathrm{B}^{*} 3501$)	[Brander \& Goulder(2001)]
p24(122-130)	p24(245-253 HIV-2)	NPVPVGNIY	HIV-1 infection	human(B*350	[Rowland-Jones (1995)]
p24(122-130)	p24(260-268 LAI) - Defned as minimal pe	PPIPVGDIY tide by titration cu	HIV-1 or -2 infection nd HIV-2 form NP	human(B35) GNIY are also recog	[Rowland-Jones (1995)]
p24(122-130)	p24() - CTL responses in sero had no delta 32 deletio - In Gambia there is expo and the B35 allele see - HIV-2 version of this are cross-reactive, see	PPIPVGDIY negative highly HIV in CCR5 sure to both HIV-1 ss to be protective pitope is not conse also [Rowland-Jone	male sex workers ponses to B35 epito , but the CTLs ar	human(B35) ambia and Nairobi exposed, uninfec s-reactive - one of	[Rowland-Jones (1999)] tudied - these women en are cross-reactive, 35 CTL epitopes that
p24(131-139)	- Cross-clade CTL response was studied by determining the CTL activity in seven patients from Bangui, (6 A subtype, and 1 AG recombinant infections) and one A subtype infection from a person living in France originally from Togo, to different antigens expressed in vaccinia - Pol reactivity: $8 / 8$ had CTL to A subtype, and $7 / 8$ to B subtype, and HIV-2 Pol was not tested - Gag reactivity: 7/8 reacted with A or B subtype gag, $3 / 8$ with HIV-2 Gag - Nef reactivity: 7/8 reacted with A subtype, and 5/8 with B subtype, none with HIV-2 Nef - Env reactivity: $3 / 8$ reacted with A subtype, $1 / 8$ with B subtype, none with HIV-2 Env - One of the patients was shown to react to this epitope: KRWIILGNK				
p24(131-140)	- The single cell ELISPOT assay was optimized and highly specifc, and found to work well even after the primary cells had been frozen and thawed - Increases in gamma interferon producing cells were observed in response to anti-retroviral therapy using single cell IFN-gammaproduction ELISPOT - In $3 / 3$ HLA $A^{*} 02, \mathrm{~B}^{*} 27$ individuals, the dominant response in gag measured by both gamma IFN production and T cell lysis was to the B27 epitope, KRWIILLGLNK, not the A2 SLYNTVATL epitope				

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
p24(131-140)	- C. Brander notes this is a B*2703 epitope				
p24(131-140)	- Three individuals with highly focused HIV-specifc CTL responses were studied during acute infection using tetramers - high frequencies of HIV-1-specifc CD8+ T cells were found prior to seroconversion, and there was a close temporal relationship between the number of circulating HIV-specifc T cells and viral load was also found - All three patients were $\mathrm{B} * 2705$, with HLA alleles: A1, A30/31, B*2705, B35; A1, A*0301, B7, B2705; and A*0201, A*0301, B2705, B39 - Tetramers with peptide variants KRWIILGGLNK and KRWIIMGGLNK were used - CTL from most B27 donors recognize both variants, although one of the three subjects recognized only KRWIILGGLNK - ELISPOT was used to test a panel of CTL epitopes that had been defned earlier and were appropriate for the HLA haplotypes of the study subjects $-3 / 3$ subjects showed a dominant response to the $\mathrm{B}^{*} 2705$ epitope KRWIILGGLNK - The subject with $\mathrm{A} * 0201$ had a moderatly strong strong response to SLYNTVATL - Weak responses were observed to A*301-RLRPGGKKK, A*301-QVPLRPMTYK, and B7-TPGPGVRYPL in the subject who was HLA A1, A*0301, B7, B*2705 - No acute response was detected to the following epitopes: A*201-ILKEPVHGV, A*301-KIRLRPGGK, A*301-AIFQSSMTK, A*301-TVYYGVPVWK, B35-EPIVGAETF, B35-HPDIVIYQY, B35-PPIPVGEIY, B35-NSSKVSQNY, B35-VPLRPMTY, B35DPNPQEVVL				
p24(131-140)	p24(260-269 HIV-2) - HIV-2, HLA-B*2703	RRWIQLGLQK		human(B27)	[Brander \& Walker(1996)]
- Naturally occurring variant KRWIILGLNK may act as antagonist					[Klenerman (1994)]
p24(131-140)	p24(263-272)	KRWIIMGNK CTL response and i	HIV-1 infection form KRWIILGN	human(B27) as also found, and	[Nowak (1995)] orms stimulate CTL
p24(131-140)	p24(263-272) - Six HLA-B27 donors - In 4/6 cases, this was - Two of the cases had asymptomatic period - The arginine to lysine molecule - [Goulder (1997a)] is	KRWIIMGLNK tudied make a stron he immunodominan an epitope switch switch is in an anc review of immune	HIV-1 infection epitope onse IMGLNK during ults in immune es izes this study in	human(B27) iod of rapid decli due to severely di ntext of CTL escap	[Goulder (1997b), Goulder (1997a)] IDS, following their d binding to the B27 xation

Table 3: RT

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
RT(175-183)	Pol()	HPDIVIYQY	human(B35)	[Rowland-Jones (1999)]	

- CTL responses in seronegative highly HIV-exposed African female sex workers in Gambia and Nairobi were studied - these women had no delta 32 deletion in CCR5
- In Gambia there is exposure to both HIV-1 and HIV-2, CTL responses to B35 epitopes in exposed, uninfected women are cross-reactive, and the B35 allele seems to be protective
- HIV-2 version of this epitope is not conserved: NPDVILIQY, but the CTLs are cross-reactive - one of £ve B35 CTL epitopes that are cross-reactive, see also [Rowland-Jones (1995)]

Table 4: gp160

$\left.\begin{array}{llllll}\text { HXB2 Location } & \text { Author Location } & \text { Sequence } & \text { Immunogen } & \text { Species(HLA) } & \text { References } \\ \hline \text { gp160(786-794) } & \text { gp41(791-799 LAI) } & \text { GRRGWEALK } & \text { HIV-1 infection } & \text { human(B27) } & \begin{array}{c}\text { [McMichael \& } \\ \text { - Review of HIV CTL epitopes }\end{array} \\ & \bullet \text { Also: J. Liebermann 1992 and pers. comm. J. Liebermann }\end{array}\right]$

Table 5: Nef

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
Nef(68-76)	- A CTL clone responsive to this epitope was obtained - 3/7 B35-positive individuals had a CTL response to this epitope - An R to T substitution at position 4 abrogates specifc lysis, but not binding to B*3501				
Nef(68-76)	Nef(72-80 SF2) - Binds HLA-B*3501	FPVRPQVPL	HIV-1 infection	human(B35)	[Shiga (1996)]
Nef(69-79)	- HLA B35 is associated with rapid disease progression - The sequences of 9 previously described HIV-1 B35 CTL epitopes were obtained in 10 HLA B35+ and 19 HLA B35- individuals - 3/9 CTL epitopes had substitutions that were more common in B35+ individuals than in B35-individuals - only one of these reduced the binding of the peptide to B35 and was shown to be an escape mutation - --F was found in $9 / 10$ of the B35+ individuals, none of the B35- individuals - the Y $->\mathrm{F}$ substituted peptide had a similar binding af£nity with B35 and was recognized by a CTL clone equally with wildtype				
$\operatorname{Nef}(71-81)$	- A CTL clone responsive to this epitope was obtained - 4/7 B35-positive individuals had a strong CTL response to this epitope - An R to T substitution at position 1 abrogates specifc lysis, but not binding to $\mathrm{B} * 3501$ - An R to H substitution at position 7 did not alter reactivity				
$\operatorname{Nef}(71-81)$	$\operatorname{Nef}(75-85$ SF2) - Binds HLA-B*3501	RPQVPLRPMTY	HIV-1 infection	human(B35)	[Shiga (1996)]
$\operatorname{Nef}(73-82)$	- Vertical transmission of HIV ranges from 13% to 39% - Primary assays showed cytotoxic activity against at least one HIV protein was detected in 70% of infected children - Epitopes recognized in £ve children were mapped using synthetic peptides and secondary cultures - Patient EM13, who had a CTL response to three epitopes in Nef, was infected via blood transfusion after birth and went from CDC stage P2A to P2E during the study				
Nef(135-143)	Nef(139-147 SF2) - Binds HLA-B*3501	YPLTFGWCF	HIV-1 infection	human(B35)	[Shiga (1996)]

Table 6: All De£ned Epitopes within the 20mer, regardless of HLA type

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
Nef(132-147)	Nef(132-147 BRU) - HIV-1 specifc CTLs	GVRYPLTFGWCYKLVP detected in lymphoid organs	HIV-1 infection	human(A1, B8)	[Hadida (1992)]
Nef(132-147)	Nef(132-147 BRU) - Nef CTL clones from	GVRYPLTFGWCYKLVP HIV+ donors	HIV-1 infection	human(B18)	[Culmann (1991)]
- P. Goulder, pers. comm.					[Brander \& Walker(1996)]
Nef(134-141)	Nef(138-147 LAI) - C. Brander notes th	RYPLTFGW is an A*2402 epitope	HIV-1 infection	human(A*2402)	[Brander \& Goulder(2001)]
Nef(134-141)	Nef(134-141 LAI) - Optimal peptide def	RYPLTFGW ed by titration		human(B27)	[Culmann(1998)]
Nef(134-143)	Nef(138-147 SF2) - Defned using reverse proteins (Tyr at 2, an - This peptide induced - RYPLTFGWCF boun clones were obtained	RYPLTFGWCF immunogenetics - 59 HLAPhe, Leu or Ile at the C term CTL in 3/4 HIV-1+ people te nd to A*2402 strongly, the ep	HIV-1 infection nding peptides we the 59 peptides bo be processed in a	human(A*2402) dicted by searching *2402 ia construct and pr	[Ikeda-Moore (1997)] *2402 anchors in HIV d - two specifc CTL
Nef(134-144)	- Mutational variation in HIV epitopes in individuals with appropriate HLA types can result in evasion of CTL response - [Goulder (1997a)] is a review of immune escape that summarizes this study				[Couillin (1994), Goulder (1997a)] response
Nef(135-143)	Nef(135-143 LAI) - C. Brander notes this	YPLTFGWCY is a $\mathrm{B}^{*} 1801$ epitope	HIV-1 exposure	human(B*1801)	[Brander \& Goulder(2001)]

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)	References
Nef(135-143)	- 11/16 heavily HIV exposed but persistently seronegative sex-workers in Nairobi had HIV-specifc CD8 gamma-IFN responses in the cervix - systemic CD8+ T cell responses tended to be to the same epitopes but at generally lower levels than cervical CD8+ T cell responses - Low risk individuals did not have such CD8+ cells - CD8+ epitopes T cell DTVLEDINL (3 individuals), SLYNVATL (4 individuals), LSPRTLNAW (3 individuals) and YPLTFGWCF (4 individuals) were most commonly recognized by the HIV-resistant women				
Nef(135-143)	Nef(135-143 LAI) - Nef CTL clones fron	YPLTFGWCY HIV+ donors	HIV-1 exposure	human(B18)	[Culmann (1991), CulmannPenciolelli (1994)]
Nef(135-143)	Nef(139-147 SF2) - Binds HLA-B*3501	YPLTFGWCF	HIV-1 infection	human(B35)	[Shiga (1996)]
Nef(135-143)	- A CTL response was found in exposed but uninfected prostitutes from Nairobi using previously-defned B clade epitopes that tended to be conserved in A and D clades - such cross-reactivity could protect against both A and D and confer protection in Nairobi where both subtypes are circulating - The A subtype consensus is identical to the B clade epitope - The D subtype consensus is YPLTFGWCf				
Nef(135-143)	- HIV-specifc CTL were found in exposed seronegative prostitutes from Nairobi - these CTL may confer protection - Seroprevalence in this cohort is $90-95 \%$ and their HIV-1 exposure is among the highest in the world - Most isolated HIV strains are clade A in Nairobi, although clades C and D are also found - B clade epitopes are often cross-reactive, however stronger responses are frequently observed using A or D clade versions of epitopes - This epitope is conserved among A and B clade viruses - The Clade D version of the epitope, YPLTFGWCF, was preferentially recognized by CTL				

HXB2 Location	Author Location	Sequence	Immunogen	Species(HLA)

p17 CTL Map

MGARASVLSGGELDRWEKIRLRPGGKKKYKLKHIVWASRELERFAVNPGL
1
10
20
30
40
50

p24 CTL Map

$\stackrel{21}{\text { DEC } 2000}$

p2p7p1p6 CTL Map

AEAMSQVTNSATIMMQRGNFRNQRKIVKCFNCGKEGHTARNCRAPRKKGC

\qquad
RSGVETTTPPQKQEPIDKELYPLTSLRSLFGNDPSSQ
$\begin{array}{ccc}\text { I } & \text { I } & 1 \\ 110 & 120 & 130\end{array}$
p6 end ->

Protease CTL Map

RT CTL Map

Integrase CTL Map

Rev CTL Map

QILVESPTVLESGTKE
110

gp160 CTL Map

1
60
70
80
90
100

KGEIKNCSFNISTSIRGKVQKEYAFFYKLDIIPIDNDTTSYKLTSCNTSV
160170
180
190
200

1	1	1	1	1
210	220	230	240	250

$\underset{\substack{\text { B } 3501}}{\substack{\text { B3 }}}$

$\overrightarrow{\text { NNTRKRIRIQRGPGRAFVTIGKI }}$
310
320
330
340
 360 350

STEGSNNTEGSDTITLPCRIKQI INMWQKVGKAMYAPP ISGQIRCSSNIT,
$\begin{array}{ccccc}10 & 420 & 430 & 440 & 450\end{array}$

GLLLTRDGGNSNNESEIFRPGGGDMRDNWRSELYKYKVVKIEPLGVAPTK 460

470
480
490
500

A2
AKRRVVQREKRAVGIGALFLGFLGAAGSTMGAASMTLTVQARQLLSGIVQ $510 \quad 520$

530
540
550
gp120 end <> gp41 start

Nef CTL Map

[Brander \& Goulder(2001)] C. Brander \& P. Goulder. The evolving feld of HIV CTL epitope mapping: New approaches to the identifcation of novel epitopes. HIV Molecular Immunology Database pages IV-1, 2001. Notes: This review article in the annual HIV Molecular Immunology Compendium presents the table of Optimal CTL Epitopes that has been curated by Brander and others for several years.
[Brander \& Walker(1996)] C. Brander \& B. Walker. The HLA-class I restricted CTL response in HIV-1 Infection: Systematic identifcation of optimal epitopes. HIV Molecular Immunology Database pages IV-50 to IV-60, 1996.
[Buseyne (1993)] F. Buseyne, S. Blanche, D. Schmitt, C. Griscelli and, \& Y. Riviere. Detection of HIV-speci£c cell-mediated cytotoxicity in the peripheral blood from infected children. J. Immunol. 150:3569-3581, 1993. (Medline: 93224764).
[Couillin (1994)] I. Couillin, B. Culmann-Penciolelli, E. Gomard, J. Choppin, J. P Levy, J. G. Guillet, \& S. Sarasgosti. Impaired cytotoxic T lymphocyte recognition due to genetic variations in the main immunogenic region of the human immunodefciency virus 1 NEF protein. J Exp Med 180:1129-34, 1994. (Medline: 94342829) Notes: HIV-1 HLA-A11 and -B18 restricted epitopes were sequenced from donors who do and do not express the HLA-A11 and B18 molecule. Selective variations were only detected in virus isolated from individuals expressing the appropriate HLA type. Variant peptides with single substitutions within the minimal epitope did not always completely abrogate HLA binding, suggesting that multiple alterations within a particular epitope may need to accumulate during disease progression to allow viral escape.
[Culmann(1998)] B. Culmann. 1998. Notes: Personal communication.
[Culmann (1991)] B. Culmann, E. Gomard, M.-P. Kieny, B. Guy, F. Dreyfus, A.-D. Saimot, D. Sereni, D. Sicard, \& J.-P. Levy. Six epitopes with human cytotoxic CD8+ cells in the central region of the HIV-1 Nef protein. J Imтипоl 146:1560-1565, 1991. (Medline: 91132023) Notes: Nef-specifc CTL were generated from six seropositive donors. Six epitopes were defned, all localized to two regions in the central part of Nef. Some epitopes could be recognized in the contexts of several HLA class I molecules. Peptides were based on BRU epitopes: QVPLRPMTYK, HLA A3, A11, B35; AAVDLSHFLKEK, HLA A11; HTQGYFPQWQ, HLA B17;TQGYFPQWQNYT, HLA B17, B37, NYTPGPGVRYPLT, HLA B7; and GVRYPLTFGWCYK LVP, HLA B18).
[Culmann-Penciolelli (1994)] B
Culmann-Penciolelli,
S. Lamhamedi-Cherradi, I. Couillin, N. Guegan, J. P. Levy, J. G. Guillet, \& E. Gomard. Identifcation of multirestricted immunodominant regions recognized by cytolytic T lymphocytes in the human immunodefciency virus type 1 Nef protein (See comments in J Virol 1995 Jan;69(1):618). J Virol 68:7336-43, 1994. (Medline: 95018646).
[Durali (1998)] D. Durali, J. Morvan, F. Letourneur, D. Schmitt, N. Guegan, M. Dalod, S. Saragosti, D. Sicard, J. P. Levy, \& E. Gomard. Cross-reactions between the cytotoxic T-lymphocyte responses of human immunodefciency virus-infected African and European patients. J Virol 72:3547-53, 1998. (Medline: 98216712).
[Dyer (1999)] W. B. Dyer, G. S. Ogg, M. A. Demoitie, X. Jin, A. F. Geczy, S. L. Rowland-Jones, A. J. McMichael, D. F. Nixon, \& J. S. Sullivan. Strong human immunodefciency virus (HIV)-specifc cytotoxic T- lymphocyte activity in Sydney Blood Bank Cohort patients infected with nef-defective HIV type 1. J Virol 73:436-43, 1999. (Medline: 99102602).
[Goulder (2001)] P. Goulder, M. Addo, M. Altfeld, \& et al. Rapid defnition of £ve novel HLA-A*3002 restricted HIV specifc CTL epitopes by intracellular cytokine staining and Elispot assays. J. Virol 75(3):1339-1347, 2001. (Medline: 11152507).
[Goulder (1997a)] P. Goulder, D. Price, M. Nowak, S. Rowland-Jones, R. Phillips, \& A. McMichael. Co-evolution of human immunodefciency virus and cytotoxic T-lymphocyte responses. Immunol Rev 159:17-29, 1997a. (Medline: 98078460).
[Goulder (1997b)] P. J. R. Goulder, R. E. Phillips, R. A. Colbert, S. McAdam, G. Ogg, M. A. Nowak, P. Giangrande, G. Luzzi, B. Morgan, A. Edwards, A. McMichael, \& S. Rowland-Jones. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature Med 3:212-216, 1997b. (Medline: 97170968) Notes: The CTL response was studied in six HIV+ individuals who make a strong immunodominat response to the same B27 epitope. In two donors an escape mutation arose after close to 10 years of epitope stability, around the time of progression to AIDS.
[Hadida (1992)] F. Hadida, A. Parrot, M. P. Kieny, B. Sadat-Sowti, C. Mayaud, \& P. Debre. Carboxyl-terminal and central regions of human immunodefciency virus-1 NEF recognized by cytotoxic T lymphocytes from lymphoid organs. An in vitro limiting dilution analysis. J Clin Invest 89:53-60, 1992. (Medline: 92105407) Notes: HIV-1-specifc CTL can be detected in lymph nodes and spleens. The carboxyl-terminal domain of Nef is recognized by CTL in association with HLA-A1 and B8, with clonal frequencies of one CTL per 10^{-5} to 10^{-6} splenic lymphocytes.
[Huang (2000)] X. L. Huang, Z. Fan, C. Kalinyak, J. W. Mellors, \& C. R. Rinaldo. CD8(+) T cell gamma interferon production specifc for human immunodefciency virus type 1 (HIV-1) in HIV-1-infected subjects. Clin Diagn Lab Immunol 7:279-87, 2000. (Medline: 20169431)
[Ikeda-Moore (1997)] Y. Ikeda-Moore, H. Tomiyama, K. Miwa, S. Oka, A. Iwamoto, Y. Kaneko, \& M. Takiguchi. Identifcation and characterization of multiple HLA-A24-restricted HIV-1 CTL epitopes: strong epitopes are
derived from V regions of HIV-1. J Immunology 159:6242-6252, 1997. (Medline: 98209798).
[Jardetzky (1991)] T. S. Jardetzky, W. S. Lane, R. A. Robinson, D. R. Madden, \& D. C. Wiley. Identifcation of self peptides bound to purifed HLAB27. Nature 353:326-9, 1991. (Medline: 92018188) Notes: A pool of endogenous peptides bound to the human class I MHC molecule, HLA-B27, has been isolated. Microsequence analysis of the pool and of 11 HPLCpurifed peptides provides information on the binding specifcity of the HLA-B27 molecule. The peptides all seem to be nonamers, seven of which match to protein sequences in a database search. These self peptides derive from abundant cytosolic or nuclear proteins, such as histone, ribosomal proteins, and members of the 90 K heat-shock protein family.
[Johnson (1994)] R. P. Johnson, S. A. Hammond, A. Trocha, R. F. Siliciano, \& B. D. Walker. Induction of a major histocompatibility complex class I-restricted cytotoxic T-lymphocyte response to a highly conserved region of human immunodefciency virus type 1 (HIV-1) gp120 in seronegative humans immunized with a candidate HIV-1 vaccine. JVirol 68:3145-3153, 1994. (Medline: 94202302) Notes: In two volunteers, immunization with a single strain of HIV-1 induced CD4+ and CD8+ CTL that are specifc for multiple conserved regions of HIV-1 and would be expected to recognize a broad range of viral isolates. The immunodominant gp120 epitope, gp120 TVYYGVPVWK, elicited CD8+ HLA-A3.1 restricted CTL, and this epitope is highly conserved. CTL specifc for this epitope could lyse target cells sensitized with all known natural sequence variants. Additionally, CD8+ HLA-B35 and CD8+ HLA-B18 restricted epitopes were de£ned as well as two CD4+ cytotoxic T-cell gp120 epitopes: ITQACPKVSFEPIPHYCAPAGFAI and NNTLKQIDSKLREQFG.
[Kaul (2000)] R. Kaul, F. A. Plummer, J. Kimani, T. Dong, P. Kiama, T. Rostron, E. Njagi, K. S. MacDonald, J. J. Bwayo, A. J. McMichael, \& S. L. Rowland-Jones. HIV-1-specifc mucosal CD8+ lymphocyte responses in the cervix of HIV-1- resistant prostitutes in Nairobi. J Immunol 164:1602-11, 2000. (Medline: 20109119).
[Kawana (1999)] A. Kawana, H. Tomiyama, M. Takiguchi, T. Shioda, T. Nakamura, \& A. Iwamoto. Accumulation of speci£c amino acid substitutions in HLA-B35-restricted human immunodefciency virus type 1 cytotoxic T lymphocyte epitopes. AIDS Res Hum Retroviruses 15:1099-107, 1999. (Medline: 99388926).
[Klenerman (1994)] P. Klenerman, S. Rowland-Jones, S. McAdam, J. Edwards, S. Daenke, D. Lalloo, B. Koppe, W. Rosenberg, D. Boyd, A. Edwards, P. Giangrande, R. E. Phillips, \& A. J. McMichael. Cytotoxic T cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature 369:403-407, 1994. (Medline: 94255016) Notes: This paper documents that naturally occurring peptide variants can serve as antagonists, that is they can inhibit normal lysis of cells presenting the original epitope. The
variants studied could serve as antagonists when they were processed from recombinant vaccinia, replicated HIV, or when they were synthetic peptides. Both agonist and antagonist sequences were found in the study subjects from whom the CTL clones were derived.
[Lalvani (1997)] A. Lalvani, T. Dong, G. Ogg, A. A. Patham, H. Newell, A. V. Hill, A. J. McMichael, \& S. Rowland-Jones. Optimization of a peptidebased protocol employing IL-7 for in vitro restimulation of human cytotoxic T lymphocyte precursors. J Immunol Methods 210:65-77, 1997. (Medline: 98161691).
[Lieberman(1998)] J. Lieberman. Personal communication 1998. Notes: Personal communication.
[McMichael \& Walker(1994)] A. J. McMichael \& B. D. Walker. Cytotoxic T lymphocytes epitopes: implications for HIV vaccine. AIDS 8S:S155S173, 1994. Notes: Comprehensive review summarizing CTL epitopes that have known HLA type and are £ne mapped to indicate epitope boundaries. Anchor residues are indicated when known for different HLA restricted epitopes. Includes a summary of the published literature, as well as much work that was in press or submitted for publication.
[Menendez-Arias (1998)] L. Menendez-Arias, A. Mas, \& E. Domingo. Cytotoxic T-lymphocyte responses to HIV-1 reverse transcriptase (review). Viral Imтипоl 11:167-81, 1998. (Medline: 99203068).
[Nowak (1995)] M. A. Nowak, R. M. May, R. E. Phillips, S. Rowland-Jones, D. G. Lalloo, S. McAdam, P. Klenerman, B. Koppe, K. Sigmund, C. R. M. Bangham, \& A. J. McMichael. Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature 375:606-611, 1995. (Medline: 95312083) Notes: This paper presents longitudinal studies of epitope variation and corresponding CTL responses in two patients. A mathematical model was created to provide a framework to explain the observed shifts in epitope and CTLp frequencies. For discussion, see also: J. M. Coffn, Nature 375:534-535 (1995).
[Ogg (1998)] G. S. Ogg, X. Jin, S. Bonhoeffer, P. R. Dunbar, M. A. Nowak, S. Monard, J. P. Segal, Y. Cao, S. L. Rowland-Jones, V. Cerundolo, A. Hurley, M. Markowitz, D. D. Ho, D. F. Nixon, \& A. J. McMichael. Quantitation of HIV-1-specifc cytotoxic T lymphocytes and plasma load of viral RNA. Science 279:2103-6, 1998. (Medline: 98182444).
[Rowland-Jones (1998a)] S. Rowland-Jones, T. Dong, P. Krausa, J. Sutton, H. Newell, K. Ariyoshi, F. Gotch, S. Sabally, T. Corrah, J. Kimani, K. MacDonald, F. Plummer, J. Ndinya-Achola, H. Whittle, \& A. McMichael. The role of cytotoxic T cells in HIV infection. Dev Biol Stand 92:209-14, 1998a. (Medline: 98214896) Notes: In this paper CTL response to previously de£ned conserved epitopes was found in exposed but uninfected prostitutes in Nairobi. Subtypes A and D are circulating in this regions, and the reactive epitopes tended to be conserved. Similarly previous studies in the Gambia
showed that exposed but uninfected prostitutes tended to have B35 presented CTL epitopes conserved between HIV-1 and HIV-2. It was suggested that what was special about B35 is simply that it presents epitopes found both in HIV-1 and HIV-2.
[Rowland-Jones (1999)] S. L. Rowland-Jones, T. Dong, L. Dorrell, G. Ogg, P. Hansasuta, P. Krausa, J. Kimani, S. Sabally, K. Ariyoshi, J. Oyugi, K. S. MacDonald, J. Bwayo, H. Whittle, F. A. Plummer, \& A. J. McMichael. Broadly cross-reactive HIV-specifc cytotoxic T lymphocytes in highlyexposed persistently seronegative donors. Immunol Lett 66:9-14, 1999. (Medline: 99217678).
[Rowland-Jones (1998b)] S. L. Rowland-Jones, T. Dong, K. R. Fowke, J. Kimani, P. Krausa, H. Newell, T. Blanchard, K. Ariyoshi, J. Oyugi, E. Ngugi, J. Bwayo, K. S. MacDonald, A. J. McMichael, \& F. A. Plummer. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV- resistant prostitutes in Nairobi [see comments]. J Clin Invest 102:1758-65, 1998b. (Medline: 99021675).
[Rowland-Jones (1995)] S. L. Rowland-Jones, J. Sutton, K. Ariyoshi, T. Dong and, F. Gotch, S. McAdam, D. Whitby, S. Sabally, A. Gallimore, T. Corrah, M. Takiguchi, T. Schultz, A. McMichael, \& H. Whittle. HIV-specifc cytotoxic T cells in HIV-exposed but uninfected Gambian women. Nature Medicine 1:59-64, 1995. (Medline: 96071373) Notes: Four HIV-1 and -2 cross-reactive epitopes that are presented to CTL from HIV-infected Gambians by HLA- 35 were identifed. These peptides could elicit HIV-specifc CTLs from 3 of 6 repeatedly exposed but seronegative sex workers who carry the HLA-B35 allele. Most CTL derived from HIV-2 positive donors also recognized the HIV-2 peptide and the analogous HIV-1 peptide.
[Shiga (1996)] H. Shiga, T. Shioda, H. Tomiyama, Y. Takamiya, S. Oka, S. Kimura, Y. Yamaguchi, T. Gojoubori, H. G. Rammensee, K. Miwa, \& M. Takiguchi. Identifcation of multiple HIV-1 cytotoxic T cell epitopes presented by human leukocyte antigen B35 molecule. AIDS 10:1075-1083, 1996. (Medline: 97028610).
[Tomiyama (1997)] H. Tomiyama, K. Miwa, H. Shiga, Y. I. Moore, S. Oka, A. Iwamoto, Y. Kaneko, \& M. Takiguchi. Evidence of presentation of multiple HIV-1 cytotoxic T lymphocyte epitopes by HLA-B*3501 molecules that are associated with the accelerated progression of AIDS. J Immunol 158:5026-34, 1997. (Medline: 97289618).
[Wilson (1999)] C. C. Wilson, W. C. Olson, T. Tuting, C. R. Rinaldo, M. T. Lotze, \& W. J. Storkus. HIV-1-speci£c CTL responses primed in vitro by blood-derived dendritic cells and Th1-biasing cytokines. J Immunol 162:3070-8, 1999. (Medline: 99172249).
[Wilson (2000)] J. D. Wilson, G. S. Ogg, R. L. Allen, C. Davis, S. Shaunak, J. Downie, W. Dyer, C. Workman, S. Sullivan, A. J. McMichael, \& S. L. Rowland-Jones. Direct visualization of HIV-1-specifc cytotoxic T
lymphocytes during primary infection. AIDS 14:225-33, 2000. (Medline: 20179241).
[Woodberry (1999)] T. Woodberry, J. Gardner, L. Mateo, D. Eisen, J. Medveczky, I. A. Ramshaw, S. A. Thomson, R. A. Ffrench, S. L. Elliott, H. Firat, F. A. Lemonnier, \& A. Suhrbier. Immunogenicity of a human immunode£ciency virus (HIV) polytope vaccine. J Virol 73:5320-5, 1999. (Medline: 99292822).

