Selection and Treatment of Stripper Gas Wells for Protection Enhancement in the Mid-Continent

Presented by:

Scott Reeves

Advanced Resources International

Houston, Texas

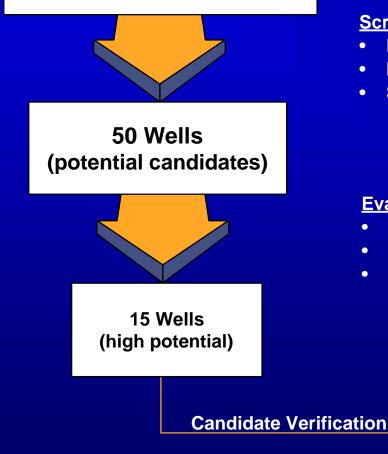
Presented at: "Field-Oriented Research Projects for Independents" October 30, 2001 Jackson, Mississippi

Presentation Outline

Background

Project Description Prior Work Technology **Current Field Work Application Guidelines Future Work**

Project Genesis


- In 1996, GRI (now GTI) began investigating potential for natural gas production enhancement via restimulation. Initial findings were:
 - Significant potential
 - >5 tcf incremental reserves in 5 years
 - Low reserve costs when successful
 - \$0.10 \$0.20/Mcf
 - Critical success factors
 - Candidate selection (85/15 rule)
 - Problem diagnosis
 - Treatment strategy
- Major obstacles are:
 - Industry's (understandable) reluctance to restimulate "good" wells, which frequently are the best candidates
 - Lack of "tools" or methods to cost-efficiently identify candidates and diagnose well performance problems

Subsequent Work

- GRI initiated a subsequent R&D program in 1998 with four primary objectives:
 - Develop cost-effective, reliable methodologies to identify wells with high restimulation potential in tight sands.
 - Identify various mechanisms leading to well underperformance.
 - Develop new restimulation techniques tailored to selected causes of well underperformance.
 - Demonstrate that with improved candidate recognition, problem diagnosis and restimulation methods, restimulation can be a substantial source of low-cost natural gas.

Candidate Selection Concept

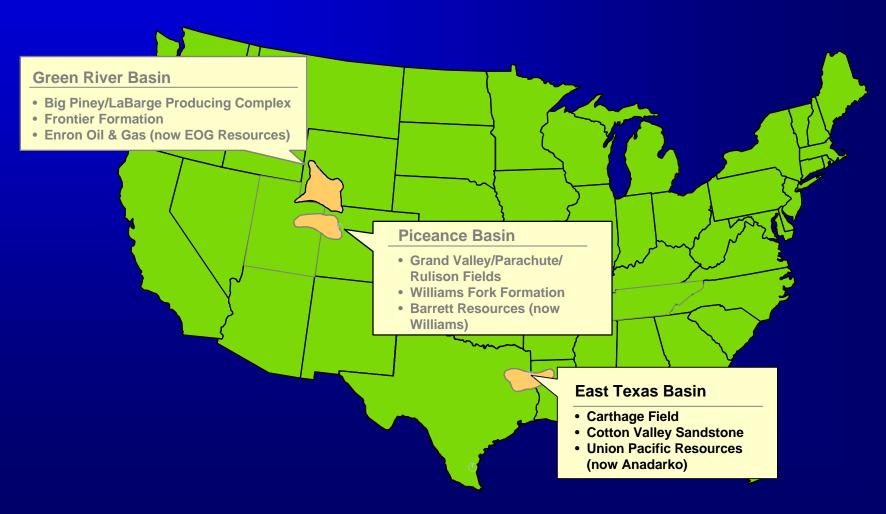
100 Wells (total population)

Screening

Rapid

•

- Not engineering based
- Statistical, Al approaches •


Evaluation

- **Engineering-based** \bullet
- **Problem diagnosis, treatment selection**
- Forecasting, economic ranking \bullet

Sample Outcome

- Well No.
- **Incremental Reserves**
- **Restimulation Economics** \bullet

Location of Restimulation Project Test Sites

Track Record of Success

9 wells restimulated

➢Green River Basin – 4

> Piceance Basin – 2

East Texas Basin – 3

- 7 production improvements, 1 no change, 1 slight decline
- 6 "economic" successes
- Added 2.9 Bcf of reserves at a total reserve cost of \$0.26/Mcf (costs include "failed" restimulations).
- Value of reserves gained by Operators more than offset cost of "R&D" project.

DOE Stripper Well Program

- Initiated in 2000.
- Objective of sustaining/improving production and reserves from stripper gas wells.
- Technologies developed under earlier GTI sponsorship can be modified for stripper well application.

U.S. Stripper Gas Distribution

Rank	State	Number of Stripper Gas Wells		Rank	State	Production from Stripper Wells (Mcf)
1	West Virginia	35,594		1	Texas	221,513,637
2	Ohio	33,430		2	West Virginia	198,500,000
3	Texas	27,368		3	Oklahoma	114,668,483
4	Pennsylvania	26,000*		4	Pennsylvania	100,000,000*
5	Kentucky	14,126		5	Ohio	79,333,000
* Estimated				*Estima	ated	

Presentation Outline

Background

Project Description

Prior Work

Technology

Current Field Work

Application Guidelines

Future Work

PDS102201.ppt

Strategic Objective

 To develop an easy-to-use, lowcost analytic methodology to identify untapped production enhancement potential in stripper gas wells.

Tactical Objectives

- Develop a Candidate Screening & Selection Methodology
- Perform Field Demonstrations of its Application
- Disseminate Results to Industry

Project Scope

- Geographic
 - > Mid-Continent
- Applications ("existing" production)
 > Restimulation
 - > Production Practices (downhole and surface)

Virtual Intelligence

- Artificial Neural Networks (well performance model)
 - Statistical analogy
 - Pattern recognition
 - >No "engineering" or "interpretive" bias
- Genetic Algorithms (best practices, problem identification)
 - Optimized optimization

Type-Curves

 Current Features ≻Two-layer Variable Compressibility Fractured/Unfractured New Features Secondary Curves (e.g., cumulative production) Batch Processing Utility > Differentiate depletion, low permeability, damage, production practices >Quantify upside potential

Candidate Selection Approach

- Combine results of VI and TC analyses to identify candidates.
- Develop a screening/selection routine.

Perform Field Demonstrations

Perform Integrated Field Demonstrations

- Two Sites (+/- 100 wells each)
 - > Tight Gas Formation
 - > High-Permeability/Low-Pressure Formation

Activities

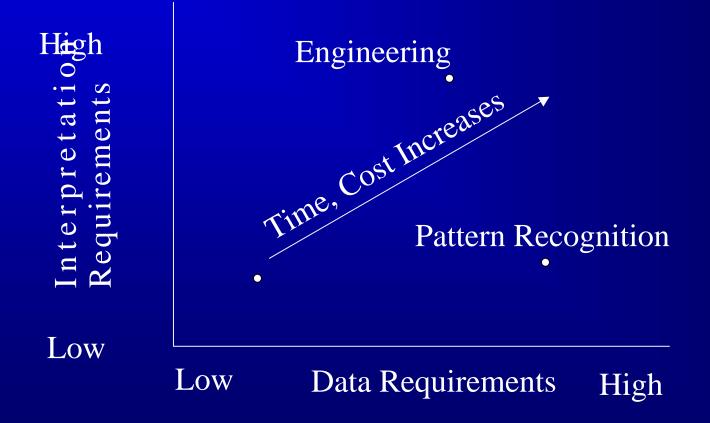
- > Collect Data
- > Perform VI, Type-Curve Analyses
- > Select Candidates, Remediation Methods
- > Perform Treatments/Workovers (1-3 per site)

Current Status

 Performing candidate selection analytics at first test site.

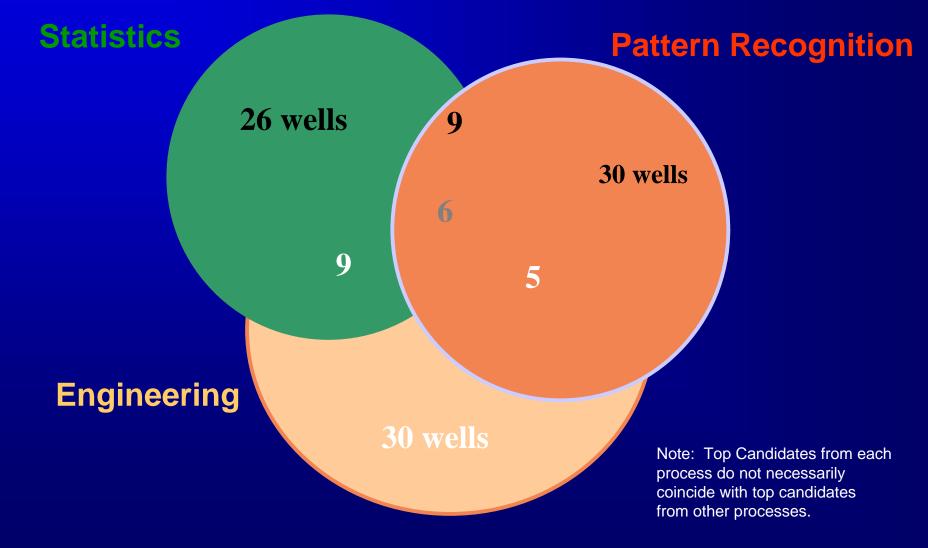
Seeking second test site.

Presentation Outline


Background **Project Description Prior Work Technology Current Field Work Application Guidelines**

Future Work

Candidate Selection Methods


- Statistics
 - Public/Easily-Obtained Data
 - Production Statistics
- Pattern Recognition
 - Geologic, Log, Drilling, Completion, Stimulation, Workover Data
 - Minimum Data Interpretation
 - Virtual Intelligence (Artificial Neural Networks, Genetic Algorithms, Fuzzy Logic)
- Engineering
 - Engineering-Based Approach (Type-Curves, etc.)
 - Ranked by Incremental Production Potential

Data and Interpretation Requirements

PDS102201.ppt

Coincidence Of "Top 50" Candidate Selections, Green River Basin

Benchtop Study

- Create a hypothetical (simulated) field where all reservoir/completion properties are known, and restimulation potential can be readily computed.
- Independently select restimulation candidates with each technique and compare the selections with the known "answer."
- Make the exercise as realistic as possible.

Comparison of Restimulation Candidate Selection Methods

		Efficiency
<u>Approach</u>	Incremental (Bcf)	<u>(Top 18 Wells)</u>
Actual	4.566	100%
Best Pre-Restim Rate	3.896	85.3%
Virtual Intelligence	3.807	83.4%
Type Curves	3.421	74.9%
Best 10-Year Cum.	3.272	71.7%
Random	2.150	47.1%
Production Statistics	1.949	42.7%
Worst 10-Year Cum	0.775	17.0%
Worst Pre-Restim Rate	0.735	16.1%

Reference: SPE 63096-Benchmarking of Restimulation Candidate Selection Techniques in Layered, Tight Gas Sand Formations Using Reservoir Simulation.

Ultimate Conclusions

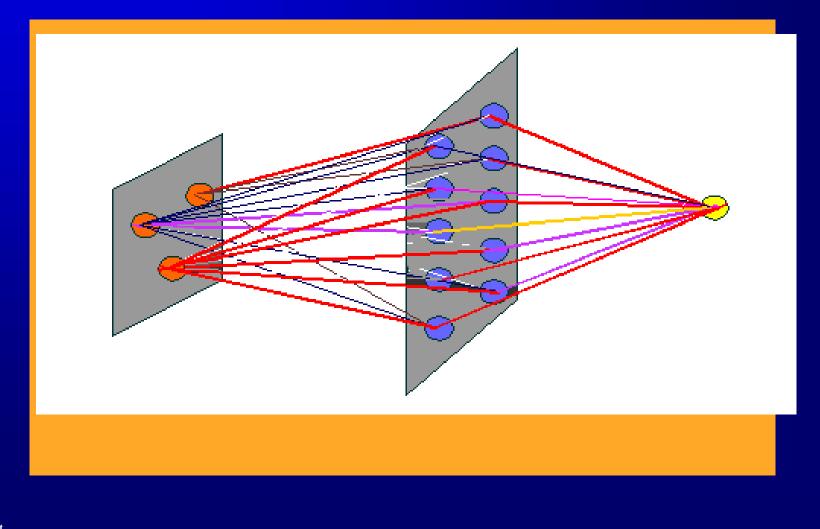
- Better wells make better restimulation candidates.
- Each candidate selection methodology may have specific applicability:
 - Statistics: Reservoir/operating practices broadly uniform.
 - Pattern Recognition: High degree of reservoir heterogeniety & completion/stimulation variation.
 - Engineering: High quality reservoir and production data.

Relevance to Stripper Wells

- Focusing on "best" stripper wells counter-intuitive.
- Adopt an integrated VI & TC approach with a screening criteria to tie them together.

Weighting of one approach vs. the other can be a site-specific variable.

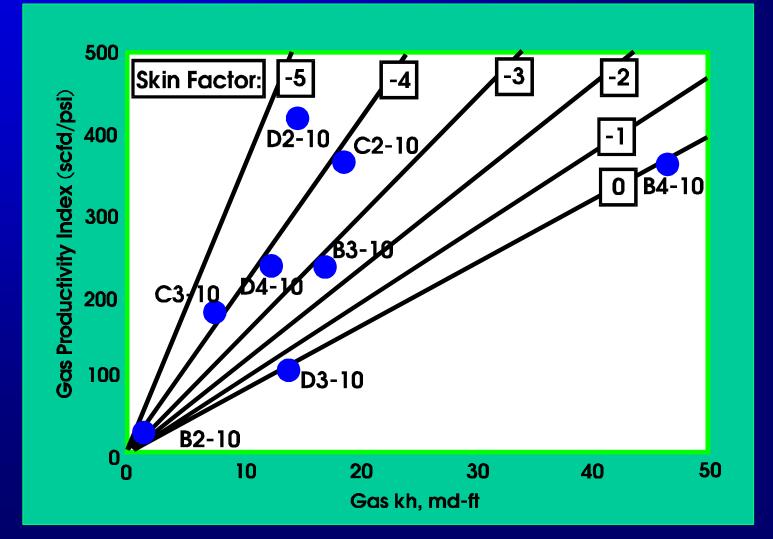
Presentation Outline

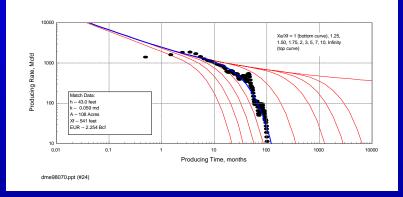

Background Project Description Prior Work Technology

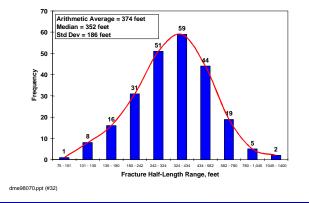
Current Field Work Application Guidelines Future Work

Virtual Intelligence

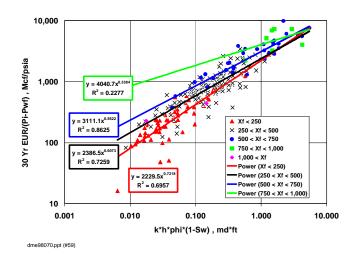
- Uni-variate analysis
 Multi-variate analysis
- Pattern recognition (artificial neural network).

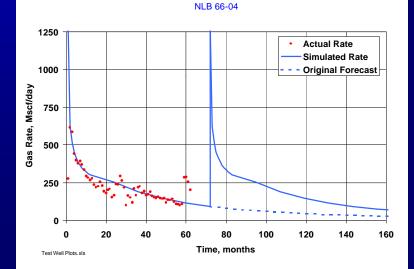

Illustration of ANN Structure


Example Virtual Intelligence Methodology


ARTIFICIAL N	EURAL NET WORK	GENETIC ALGORITHM	
Space: Time: Completion:	X, Y, Z Completion Date No. Perf. Intervals Total Net Thickness	•Total Proppant Volume •Total Fluid Volume •Fluid Type	
	No. Fracs Total Proppant Volume	FUZZY LOGIC	
Reservoir:	Total Fluid Volume Fluid Type Total phi-h Permeability Indicator Drainage Area	•GA Incremental •Current Reservoir Pressure •Current Producing Rate	

Diagnostic Plot for Selecting Restimulation Candidates, Antrim Shale




Type-Curves For Production Enhancement Assessment

Individual Fracture Length Interval Trends

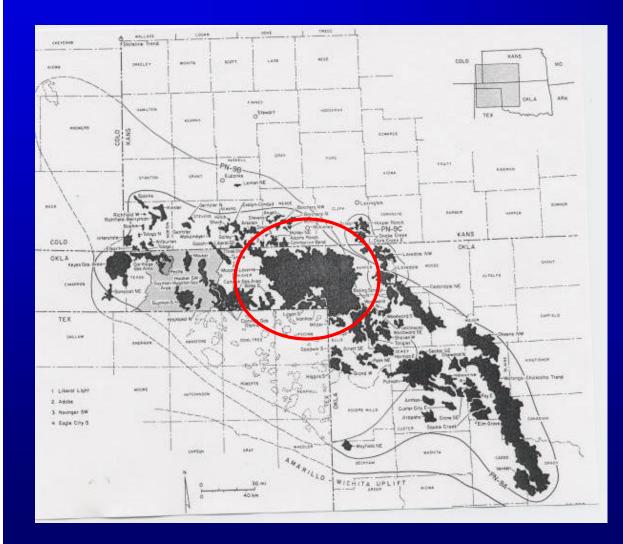
Screening Criteria

Virtual Intelligence

Optimized incremental production
 Stimulation, artificial lift, FWHP

Type Curves

Forecast incremental production
 > Perm, skin, area

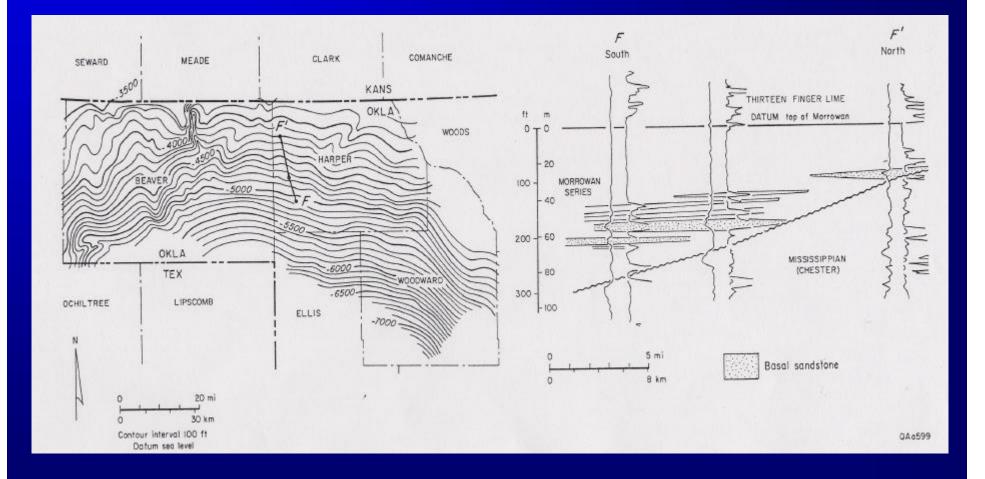

<u>Other</u>

- No. zones per frac treatment
- Current reservoir pressure
- Current producing rates/ratios
- Historical peak rate, time/prod. since then
- Existence of step-change production drops

Presentation Outline

Background **Project Description Prior Work** Technology **Current Field Work Application Guidelines Future Work**

First Test Site, Oklahoma



Mocane-Laverne Gas <u>Area, Oklahoma</u>

 Central Anadarko basin •Beaver/Harper/Ellis Counties •Council Grove, Tonkawa, Morrow, Chester •2nd-largest Midcon gas play (Morrow), after **Hugoton Wolfcamp.** •2nd-largest Morrow field, after Watonga-Chickasha Trend. •+/-100 well study Oneok Resources

Figure reproduced from: Atlas of Major Midcontinent Gas Reservoirs, 1993.


Structure/Stratigraphy*

PDS102201.ppt

*Figure reproduced from Atlas of Major Midcontinent Gas Reservoirs, 1993.

Formation Descriptions

*Atlas of Major Midcontinent Gas Reservoirs, 1993.

Reservoir/Fluid Properties*

	<u>Morrow</u>	<u>Chester</u>
Pay	20 ft	18 ft
Porosity	12%	8%
Water Saturation	38%	30%
Permeability	25 md	1 md
Gas Gravity	0.75	0.64

*Atlas of Major Midcontinent Gas Reservoirs, 1993.

Well Breakdown

Well Omission Summary

	Total*	Well Files On- Hand	Production Streams	Study Streams**	Zone	Inactive	Completion Date	IHS Data	Total
Min	77	49	55	33	8	4	7	3	22
Not Min	59	35	46	25	14	5	0	2	21
Total	136	84	101	58	22***	8	7	5	43

- *Active Wells
- **Study well crieria:
 - •Morrow/Chester completion
 - •Currently active
 - •Completion prior to Jan-00
 - •IHS data available.
- ***Other Zones included:
 - •Tonkawa(10)
 - •Hoover (7)
 - •Other (5)

PDS102201.ppt

General Well Profiles

Parameter	Range	<u>Average</u>
Completion Date	1957-1999	
Depth (ft)	4700-8900	6900
EUR		
–Gas (MMcf)	10-8595	2174
–Oil (Mbbls)	0-47	5
Current Gas* Rate (Mcfd)	0-263	69

Note: About half of study wells currently produce less than 60 Mcfd.

Completion/Production Practices

Completion

- Morrow typically fractured; many different fluids; older treatments were very small.
- Chester typically acidized; occasionally acidfractured.

Production

• Some form of artifical lift typically installed at some point to lift liquids.

"Flat File" Design for VI Analysis

Space & Time

- X (Long)
- Y (Lat)
- Top Morrow perf.
- Top Chester perf.
- Completion date

Completion/Stimulation

- Interval
- Treatment Type
- Fluid Type
- Fluid Volume
- Proppant Volume
- No. Stages

<u>Reservoir</u>

- No. perf. intervals
- Net perf. thickness

Subsequent Events

- Date
- Interval
- Activity

Test Site Status

- Data Collected

 IHS Energy
 In-house production/reserve records
 Well files

 Challenges being encountered

 Diversity of producing intervals which change and are reworked over time.
 Little digital data (except production).
 Little geologic/reservoir data.
 - Status

Manually creating "flat-file" for VI analysis.Performing TC analysis.

Next Steps

- Complete VI & TC analyses.
- Develop screening criteria, select candidates.
- Perform remedial work, observe/document results.

Presentation Outline

Background **Project Description Prior Work** Technology **Current Field Work Application Guidelines Future Work**

Application Guidelines

<u>Why</u>

To boost reserves and economic performance of marginal gas wells.

Where

Almost any setting is a valid target (complexity varies however).

<u>How</u>

Build database
Perform VI & TC analyses
Select candidates
Remediate Wells

<u>When</u>

Now.

<u>Who</u> Operator.

PDS102201.ppt

Observations/Recommendations

- Most costly (analytic) elements are:
 - Data collection/digitization/organization.
 - Reporting (if required)
- Operators should invest in creating a digital database of all available well information (even simple spreadsheets are fine):
 - > Any sophisticated analysis will eventually require this.
 - Cost of manually examining well files will eventually exceed investment in database.
- Each field will possess specific nuances:
 - > Must capture existing field experience.
 - Design of VI application.
 - Screening algorithm
- Larger-scale programs will provide better overall results due to efficiencies of scale.

Presentation Outline

Background **Project Description Prior Work Technology Current Field Work Application Guidelines**

Future Work

Future Work

- Complete analysis of Mocane-Laverne wells, perform/document results of remedial treatments.
- Perform a similar analysis at a second site (sites currently being solicited).
- Technology transfer.
 - Publish results
 - ➤ "How To" manual
 - ➢ Software
- Completion date:
 - ≻ March 31, 2002.

Research Partner Information

Advantages

- Assessment of production enhancement for +/- 100 wells.
- Introduction to VI and TC applications.
- Keep tools for future in-house use.

Requirements

- Operator of +/- 100 stripper gas wells in a single play.
- Data availability (preferably in electronic format)
- Willingness/ability to perform 1-3 remediation treatments/workovers.
- Agree to release results into public domain.

<u>Contact</u>

• Scott Reeves, Advanced Resources International, 713-780-0815