Mechanisms of U(VI) Reduction and Sediment Growth in *Desulfovibrio*

Lee Krumholz

Department of Botany and Microbiology

Goals

- Identify mechanisms of survival of sediment bacteria in U(VI) contaminated sediments.
 - This was further refined to
 - Identification of mechanisms of dealing with U(VI)
 - 2. Identification of mechanisms of survival in Anoxic sediments.

Desulfovibrio G20

- Isolated from an oil producing reservoir.
- 4.1 Mb, 3598 candidate genes
- Doubling time is ~4.6 hours

Identification of Genes involved in U(VI) Response

Innoculate STM mutants to 96-well plate

10 mutants

Potential Functions of mutated genes in U(VI) Sensitive Mutants

- DNA repair
- rRNA methylation
- Protein Renaturation

Washed Cell U(VI) reduction test by 24 mutants

Growth Experiment with B11E9

The Region surrounding the mutation in B11E9

Mechanism of As(VI) Reduction

QuickTime[™] and a None decompressor are needed to see this picture.

Loss of As(V) Tolerance.

• B11E9 also lost As(V) resistance when grown in lactate sulfate media with 20mM As(V)

Growth and U(VI) reduction of G20 with Cd

Mechanism of U(VI) Reduction

QuickTime[™] and a None decompressor are needed to see this picture.

U(VI) Reduction by *E. coli* transformant

Signature Tagged Mutagenesis

- First developed to identify virulence genes in pathogens.
- Use the technique to identify functions involved in sediment growth. Different from functions needed for lab growth.

Growth of potential non-survival mutants of *Desulfovibrio* in sediment

Screened ~5000 mutants for each bacterium by STM and identified 100 mutants in G20 and 46 mutants in MR-1

Recurring Themes

DNA repair Transcriptional regulators Phage-related proteins Transport proteins (multidrug efflux) Conserved and hypothetical proteins

DNA repair

<i>In situ</i> CI	In vitro CI	Gene	Product
0.11±0.002	0.571	recG	ATP-dependent DNA helicase RecG
0.39±0.05	ND		helicase (SO0368)
0.4±0.42	ND		conserved hypothetical (SO1652)
0.85±0.38	ND		helicase (SO2744)

•sediment conditions may be mutagenic

•these genes may correct DNA defects resulting from sediment mutagens (e.g., organic acid fermentation products)

Response to mutagens

- One mutant B12(pF11) belongs to **UmuC** family.
- It has 53.83% similarity to *D. vulgaris* umuC protein.

Protection from a Severe Mutagenic Event The SOS response

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Cited from: Genetics 148: 1599–1610 (April, 1998)

STM mutants in MR-1 with potential role in drug efflux

<i>In situ</i> CI	In vitro CI	Gene	Product	COG
0.28±0.06	1.3±0.26	mexF	RND multidrug efflux transporter MexF	Cation/Multidrug efflux pump
0.59±0.07	1.3±0.54		HlyD family secretion protein	Multidrug resistance efflux pump
0.43±0.14	ND		toxin secretion, membrane fusion protein	Multidrug resistance efflux pump
0.3	1.3±0.78		transcriptional regulator, TetR family	Transcriptional regulator

mexF deletion cannot grow in the presence of 5 μ g/ml chloramphenicol

Other environmental bacteria proteins similar to MR-1 MexF from NCBI pblast; Gaps range from 0-3%

organism	size (aa)	identity	similarity
B. japonicum USDA 110	1062	600/1035 (57%)	745/1035 (71%)
Magnetococcus MC-1	1041	362/1058 (34%)	555/1058 (52%)
M. magnetotacticum MS-1	1059	461/1037 (44%)	642/1037 (61%)
Mesorhizobium	1067	475/1039 (45%)	637/1039 (61%)
loti MAFF303099	1061	415/1044 (39%)	608/1044 (58%)
	1055	380/1040 (36%)	584/1040 (56%)
Rhodopseudomonas	1049	370/1035 (35%)	563/1035 (54%)
palustris CGA009	1050	366/1036 (35%)	581/1036 (56%)
	1046	381/1048 (36%)	597/1048 (56%)
	1050	358/1044 (34%)	553/1044 (52%)
	1043	365/1045 (34%)	564/1045 (53%)
	1055	354/1041 (34%)	551/1041 (52%)
Rhodospirillum rubrum	1052	611/1041 (58%)	752/1041 (72%)
	1052	364/1051 (34%)	557/1051 (52%)
	1059	375/1044 (35%)	567/1044 (54%)
	1050	376/1054 (35%)	576/1054 (54%)
Silicibacter	1042	411/1050 (39%)	620/1050 (59%)
pomeroyi DSS-3	1042	411/1050 (39%)	620/1050 (59%)
Sinorhizobium	1058	474/1042 (45%)	654/1042 (62%)
<i>meliloti</i> 1021	1058	402/1033 (38%)	611/1033 (59%)
	1048	382/1048 (36%)	570/1048 (54%)
	1077	399/1036 (38%)	592/1036 (57%)
Azoarcus sp. EbN1	1053	379/1053 (35%)	585/1053 (55%)
Dechloromonas	1062	592/1037 (57%)	734/1037 (70%)
aromatica RCB	1040	406/1048 (38%))	601/1048 (57%)
Methylobacillus	1062	589/1042 (56%)	729/1042 (69%)
flagellatus KT	1037	409/1039 (39%)	598/1039 (57%)
	1037	358/1037 (34%)	547/1037 (52%)
Nitrosomonas	1048	492/1037 (47%)	665/1037 (64%)
europaea ATCC 19718	1064	400/1050 (38%)	597/1050 (56%)
Polaromonas JS666	1065	612/1025 (59%)	740/1025 (72%)
Ralstonia	1057	390/1046 (37%)	589/1046 (56%)
eutropha JMP134	1051	375/1045 (35%)	560/1045 (53%)
	1050	363/1053 (34%)	560/1053 (53%)
Ralstonia	1063	637/1049 (60%)	767/1049 (73%)
metallidurans CH34	1063	388/1046 (37%)	590/1046 (56%)
	1050	383/1045 (36%)	569/1045 (54%)
	1048	375/1054 (35%)	564/1054 (53%)
R. solanacearum GMI1000	1069	621/1042 (59%)	750/1042 (71%)
Rubrivivax	1080	623/1036 (60%)	754/1036 (72%)
gelatinosus PM1	1073	573/1054 (54%)	737/1054 (69%)
T. denitrificans ATCC 25259	1054	380/1049 (36%)	579/1049 (55%)

organism	size (aa)	identity	similarity
Acinetobacter ADP1	1059	348/1048 (33%)	559/1048 (53%)
Idiomarina loihiensisL2TR	1033	383/1035 (37%)	583/1035 (56%)
M. capsulatus str.Bath	1055	545/1042 (52%)	715/1042 (68%)
Photobacterium	1051	401/1055 (38%)	606/1055 (57%)
profundum SS9	1044	580/1040 (55%)	755/1040 (72%)
Pseudomonas	1032	379/1046 (36%)	579/1046 (55%)
fluorescens PfO-1	1043	370/1049 (35%)	564/1049 (53%)
	1054	367/1057 (34%)	558/1057 (52%)
Psychrobacter 273-4	1075	358/1039 (34%)	568/1039 (54%)
S. oneidensis MR-1	1044	375/1048 (35%)	562/1048 (53%)
V. fischeri	1037	398/1038 (38%)	597/1038 (57%)
Xylella fastidiosa 9a5c	1055	363/1042 (34%)	557/1042 (53%)
Xylella fastidiosa Ann-1	1055	361/1042 (34%)	562/1042 (53%)
X. fastidiosa Temecula1	1055	362/1042 (34%)	558/1042 (53%)
D. psychrophila LSv54	1047	370/1058 (34%)	566/1058 (53%)
Desulfovibrio strain G20	1055	386/1053 (36%)	583/1053 (55%)
D. vulgaris	1046	426/1045 (40%)	616/1045 (58%)
Hildenborough	1047	412/1037 (39%)	605/1037 (58%)
	1070	371/1044 (35%)	563/1044 (53%)
Geobacter	1044	392/1054 (37%)	606/1054 (57%)
metallireducens GS-15	1053	366/1057 (34%)	566/1057 (53%)
G. sulfurreducens PCA	1052	371/1056 (35%)	571/1056 (54%)
Wolinella succinogenes	1030	412/1031 (39%)	593/1031 (57%)
DSM 1740	1044	362/1034 (35%)	67/1034 (54%)
unculturedAcidobacteria	1040	385/1035 (37%)	572/1035 (55%)
Chlorobium tepidum TLS	1063	354/1032 (34%)	574/1032 (55%)
Bacteroides	1048	406/1042 (38%)	590/1042 (56%)
thetaiotaomicronVPI-5482	1034	383/1042 (36%)	578/1042 (55%)
Rhodopirellula	1072	458/1039 (44%)	662/1039 (63%)
baltica SH 1	1037	431/1035 (41%)	612/1035 (59%)
Anabaena variabilis	1057	410/1040 (39%)	603/1040 (57%)
C. watsonii WH8501	1041	363/1032 (35%)	578/1032 (56%)
G. violaceus PCC 7421	1050	402/1038 (38%)	576/1038 (55%)

 α -proteobacteria

γ-proteobacteria

Other

 δ/ϵ -proteobacteria

β-proteobacteria

What have we learned from STM

- Identified a number of genes and cell functions that are required for life in the real world but not needed for growth in culture.
- Demonstrated for the first time the importance of specific genes as cells are growing in natural environments.
- Raised many questions regarding function of specific genes. Regulatory genes. Protection from toxins. DNA repair, etc.

Acknowledgments

- Funding from DOE ERSP program.
- Qingwei Luo, Jennifer Groh, Xiangkai Li and Nydia Castaneda.
- EMSL