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Themes of This Talk

• Learn within uncertain environments

Deal with uncertainty using probability

Model dependence of the things we care about on

the things we can measure

Gererally emphasize modeling...

...sometimes, we can and do avoid models

• Today’s plan: Visit families of useful models

More complex linkages =⇒ more complex models

Unlinked item-by-item decisions: baseline case

One-dimensional linkage: state-based models

Two dimensions and up: Various random fields

Ad hoc linkages: Stochastic grammars
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Ends Justify the Means

• Algorithms

Learn explanations by maximizing posterior

probability.

Fit models to data using general iterative

methods.

Common toolbox:

...optimization, sampling, simulated annealing

...applied math, statistical physics, signal

processing

• Applications

Solar object identification, geophysical time series,

volcano classification, cyclone classification

Where does your data fit in?

Introduction
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Machine Learning in Science

• Automation

Cope with growing data volume

Generate results faster

Data center operations often underfunded

• Repeatability

Well-defined algorithm produces results

Uniformity among distributed investigators

Crucial for charged subjects like climate change

• Consensus

Ubiquitous algorithms factor out squabbles

Develop cross-domain solutions

Exchange models and algorithms as well as data

Introduction
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Machine Learning in Science

• Falsifiability

Quantitative models make checkable assertions

Popper: Falsifiability characterizes science

• Quality

– Gauss found Ceres’ orbit by least squares, 1801

– Earth’s size and oblateness: Laplace, Legendre

– Kalman filters guided Apollo (onboard!)

– Viterbi decoder increased Galileo bandwidth

Optimal inference gives better results

• Comprehensiveness

Data fusion

Integrate more data into an interpretation

Achieve total spatial/temporal coverage

Introduction
A-4(5)



Pixel Classification: Applications

• Solar Physics

Reliably identify solar magnetic structures

photosphere: sunspots, faculae

chromosphere: plage

Irradiance changes: weather, climate

Tracers for flow measurement

Space weather: δ-spots cause flares

Models for Unlinked Data
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Solar Data

Many observatories, many images.

Below: SoHO/MDI, 1997 Sept. 7 at 17:58 UTC

Preprocessed Magnetogram: Detail

Preprocessed Photogram: Detail
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Pixel Classification: Applications

• Mars Geology

Soils: dust, sand, pebbles

Rocks: sedimentary/igneous, weathering

Models for Unlinked Data
B-3(8)



Pixel Classification: Applications

• Earth Remote Sensing

Cloud/ice; ocean/ice boundaries

Land usage in multispectral imagery

• Review two applications

• Solar: Unsupervised clustering

• Volcano: Supervised classification

Models for Unlinked Data
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Feature Vector Outlook

Observe vector data x1, . . . , xN , xi ∈ Rd

Goal: tag each xi with a label yi ∈ {1, . . . , K}

• Learning and Clustering

Supervised: Use training data (x, y) supplied by an

oracle (e.g., expert)
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Unsupervised: cluster nearby points: uncover

latent structure

• Ground truth

Hard to find trustworthy experts with time on

their hands

Models for Unlinked Data
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Learning Classes of Pixel Data

Cloud of points x ∈ Rd (d moderate: 2–50)

E.g., pooled data from SoHO/MDI:

Feature Vectors Feature Vectors (zoomed)
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• Learning classes

Partition data into clusters

Associate each vector x with a class k ∈ {1 · · · K}

• Non-pixel examples

Sky objects in survey database

Rock composition and shape

Spectral signatures

Models for Unlinked Data
B-6(11)



Clustering with Normal Mixtures

Gaussian bump = a cluster with a given shape

Gaussian mixture = weighted sum of K bumps

Cluster membership is the identity of the

generating bump
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• Clustering = find cluster centers, shapes, and

weights to fit data
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Clustering Algorithm

From data X = [�x1 · · · �xn], find a mixture p(�x; θ̂)

Find parameters by maximum-likelihood:

θ̂ = argmax
θ

logP(X; θ)

EM algorithm updates parameter estimates and

cluster assignments until fixed point

Unlabeled Input EM Solution
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Unsupervised mode: The mixture partitions X

into clusters on its own

Partial information: Use partial cluster

assignments of sample x’s to guide solution

Models for Unlinked Data
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Learned Clusters: SoHO/MDI

Quiet Model Model Fit
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Object Detection

• Known object

Volcanoes on Venus in Magellan SAR

• Known object family

E.g., craters

— scale variation

— overlap

• Unknown objects

Detect local variations in a background

Supervised Classification: Finding Objects
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Scheme for Finding Objects

Due to M. Burl (formerly JPL) and collaborators

Train with scientist-supplied ‘chips’:

Category 1:

Category 2:

Category 3:

Category 4:

First: Focus of attention via “matched filter,” the

average of all volcanoes:
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This filter sweeps whole image, identifying

possible volcano sites which are extracted as

square ‘chips’

Supervised Classification: Finding Objects
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Phase Two: Classify Candidate Chips

Label query chip (152 pixels) as V or NV

Q =
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• K-Nearest Neighbors

Find closest K training chips to the query chip

Majority class (V/NV) among them wins

Neighbors via weighted Euclidean (x − y)TR(x − y)

where R emphasizes pixels near chip center

Accuracy ≈ human experts in homogeneous data;

degrades markedly in heterogeneous regions

K-NN alternatives: QDA, SVM, etc.

Supervised Classification: Finding Objects
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When Are Decisions Linked?

(halfway point)

One of the most important problems in the

philosophy of the natural sciences is...to make

precise the premises which would make it possible

to regard any given real events as independent.

This question, however, is beyond the scope of

this book.

– Kolmogorov, Grundbegriffe, 1933

• Unlinked decisions not always justified

Pixels, or pixel-groups, in a bag

Unsupervised: cluster pixels (solar feature vectors)

Supervised: classify pixel-groups (volcano chips)

Simplicity is powerful but limits applications

• Science data typically linked by time or space:

Deduced labels are not interchangeagble; they

have continuity or smoothness

Use these links to our advantage to learn better

Models Linked in Time
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Probabilistic Sequence Models

At t, one of K physical processes yt is dominant.

Observables �xt arise depending on this dominant

process.

y1 y2 y3 · · · yt �x1 �x2 �x3 · · · �xt

Labels y Data x

P (y) P (x |y)

�

�

Synthesis

Analysis

�Observer

Generation of data adds uncertainty (noise) to

the underlying dominant process.

• Statistical model: distributions P(y) and P(x |y)

Incidentally, unlinked decisions model is:

y �x

Label y Data x

P (y) P (x | y)

�

�

Synthesis

Analysis

�Observer

Models Linked in Time
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Linking the Labels in Time

Let yt+1 depend on yt. Locality is key: next state

depends only on current state.

• Frog on lily pad

H.avivoca courtesy
M. Pingleton, UIUC

Destination depends only

on current position

Need K × K matrix Φ of transition probabilities

Φk,l = P(yt+1 = l | yt = k)

— Expected staying time in a state

— Which states are likely to follow a state
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• Example State Sequences

Independent yt Dependent yt

(Φk,l = 1/K)

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

Models Linked in Time
D-3(20)



Observations Come from Labels

• Generating Observables with P(x | y)
Need K distributions, one for each event class

-3 -2 -1 0 1 2 3

Can learn these from data, or use scientist-labeled
series and prior knowledge to constrain them

Linked labels will inform about “gray areas” above

• Example Output Sequence

Dependent yt Observed Data xt

(µk = k,Σk = 0.22)
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Learning Labels and Models

• Learning Labels

Choose the most likely “interpretation”

ŷ = argmax
y

P(y |x)

Price paid for linking the labels:
there are now KT interpretations to consider

Viterbi algorithm:
Recursively update the likeliest path to each state
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• Learning model parameters

Done using a variant of the iterative EM
algorithm described for independent data

Find likeliest y, use it to estimate Φ, re-compute y
Iterate to convergence: maximizes likelihood

Models Linked in Time
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Classifications: Seismicity

SCEC catalog, 1960–1999, M > 4

K = 17 labels. Inputs: position, M , time to next,
time since prior. (R. Granat, A. Donnellan)

Blue lines: coastlines; black: major faults
Circles for earthquakes; circle size for magnitude.
Transverse Range events HMQ & Landers
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Classifications: Geodesy

SCIGN GPS signal, Claremont, CA: R. Granat

Inputs: Daily station displacement (mm accuracy)

The HMM finds different modes of the signal:

Dip 1998 from local ground water pumping

The 1999.8 Hector Mine earthquake
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Continuous Models

Kalman filter models for SCIGN station AOA1
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Two overlaid motion patterns:
High-frequency, Brownian-type process
Slower months–years trend

Residuals (N, bottom left; E, bottom right) show
two deviations from Gaussianity at times 530
and 645 (circled).
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Probabilistic Image Models

Two-dimensional version of time-series models

Labels y Data x

P (y) P (x |y)

�

�

Synthesis

Analysis

�Observer

Need two distributions: P(y) and P(x |y)

• Solar data: Already know P(x |y)

Mixture models from first part show how to

translate labels to data

Quiet Model Active Model
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Drawing Random Images

• Quantifying Spatial Smoothness with P(y)

Charge β for each disagreement of nearby pixels

to enforce spatial coherence of labelings

Typically β ≥ 0 controls smoothness in the prior

P(y) =
1

Z
exp

(
−β

∑
s∼s′

1(ys �= ys′)
)

where s ∼ s′ when site s within one pixel of site s′

At β = 0, penalty and spatial constraint vanish

Sample realizations from P(y)

Models for Images
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Labelings

From SoHO/MDI, 1998 January 15–20
Labeling: 1998/01/15 11:11 UTC + 0,1,2,3,4,5 days
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Complex Objects

As pattern theory develops in the future it will be

imperative to include more and more detailed

subject matter knowledge into the regular

structures — this is a form of mathematical

knowledge engineering.

– U. Grenander, 1993

• Structured index sets are natural arenas for

general-purpose models

• Objects with complex links require detailed

domain-specific modeling

Models with Complex Links
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Full-Sequence Classification

• Cyclone trajectories

Left: Pacific sea-level pressure (δt = 48H)

Right: trajectories from (quantized) observations

Data from P. Smyth, UC Irvine

• Sunspot trajectories from 1996 Aug.–Nov.

Varying lengths =⇒ no common feature vector

Models with Complex Links
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Expressive Temporal Models

• Sequence Classification

Overall mode variable controls whole model

Approach...

estimate model parameters automatically

compare learned models statistically

• Related variants

Temporally evolving mode variable

Account for mode switches mid-sequence

Geodetic applications

Non-gaussian state representations

Coarse-scale ambiguity in data

Bifurcations in phase space

Models with Complex Links
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More on Complex Models

• Computational Geology

Forward stochastic model for rock deposits using

impact ejection physics

Run in reverse to learn geological process history

from rock observations

• Languages for diverse models

Based on Bayes networks or stochastic grammars

Encode model in neutral language

160nm

220nm
160 nm

220
nm

Extract model

<model name="Picard_v1" level="inst">
  <variable name="quiet_sun_var" level="inst">
    <dist level="inst">
      <type> discrete </type>
      <val>
        <dist level="inst">
          <type> normal </type>
          <mean> [-0.127333 1.00198 ] </mean>
          <covar> [ [ 0.143135 0.000446326 ]
            [ 0.000446326 0.000279107 ]
            ] </covar>
        </dist>
      </val>
      <prob> 0.600002 </prob>

. . . etc . . .
    </dist>
  </variable>
</model>

Reusable XML
encoded model

from image sets

Hand model and data to computational engine to

learn hidden variables

Models with Complex Links
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