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Abstract 
In recent years several approaches have been proposed for 
model-based diagnosis of hybrid systems. These approaches 
deal with discrete or parametric faults, and perform 
consistency-based, stochastic or mixed reasoning. The 
major restriction that a diagnosis application designer faces 
is that each technique uses its own modeling paradigm and 
the reasoning algorithms implement a single strategy. 
Diagnosis application designers would like to have the 
flexibility of building models that are suitable for the task 
(e.g., appropriate abstraction level, appropriate details, type 
of modeling paradigm used). They would also like to have 
the flexibility in choosing the strategies used in the 
diagnostic reasoning process. 
 
We propose a general framework for stochastic and hybrid 
model-based diagnosis called Hybrid Diagnosis Engine 
(HyDE) that offers this flexibility to the diagnosis 
application designer.  We list the key steps in stochastic and 
hybrid diagnosis and identify the kinds of models that are 
needed in those steps. The HyDE architecture supports the 
use of multiple modeling paradigms at the component and 
system level. Several alternative algorithms are available for 
the various steps in diagnostic reasoning. This approach is 
extensible, with support for the addition of new modeling 
paradigms as well as diagnostic reasoning algorithms for 
existing or new modeling paradigms. We discuss the current 
status of HyDE and its application in diagnosis of real and 
conceptual systems. 

Introduction 
The traditional approach to building a model-based 
diagnosis system is to select a diagnosis technology, build 
models targeted for the selected technology, and test the 
reasoning algorithms on the models using real or simulated 
data to refine the models and fine tune the performance of 
the algorithms. This approach works well when the 
diagnosis application designer is familiar with the 
diagnosis technology and the modeling paradigm it uses 
and has a good idea of how to design the models to achieve 
a specific goal, such as the diagnosis of a specific set of 
pre-selected faults. In many cases, however, the diagnosis 
problem is not so well defined and the diagnosis designer 
would like to have the flexibility to experiment with 
different kinds of models (e.g., multiple paradigms and 
abstraction levels) as well as different strategies for 

diagnosis reasoning (e.g., pure consistency-based, purely 
stochastic and different kinds of search algorithms). 
 
In this paper we present the Hybrid Diagnostic Engine 
(HyDE), a general framework for stochastic and hybrid 
model-based diagnosis of discrete faults, that is, 
spontaneous changes in operating modes of components. 
HyDE combines ideas from consistency-based [Hamscher, 
et al., 1992; De Kleer and Williams, 1987] and stochastic 
[Hofbaur and Williams, 2002; Dearden and Clancy, 2002] 
approaches to model-based diagnosis using discrete 
[Williams and Nayak, 1996; Kurien and Nayak, 2000], 
continuous [Gertler, 1988; Mosterman and Biswas, 1999] 
and hybrid  [Narasimhan and Biswas, 2003; Hofbaur and 
Williams, 2002; Dearden and Clancy, 2002] models to 
create a flexible and extensible architecture for stochastic 
and hybrid diagnosis. HyDE supports the use of multiple 
paradigms and is extensible to support new paradigms. 
HyDE offers the application designer a wide variety of 
options in selecting the diagnosis reasoning strategy. The 
key features of HyDE are: 

• Diagnosis of multiple discrete faults. 
• Support for hybrid models, including autonomous 

and commanded discrete switching. 
• Support for stochastic models and stochastic 

reasoning. 
• Capability for handling time delay in the 

propagation of fault effects. 
Some preliminary work related to HyDE has been 
presented in [Narasimhan, et al., 2003; Narasimhan, et al., 
2004]. 
 
The following sections first present the kinds of models 
used in HyDE, each of which includes a generic transition 
model and a modeling-paradigm-specific behavior model. 
Then we describe the kinds of faults HyDE can diagnose 
and how they are represented in the models.  Next we 
discuss the HyDE reasoning architecture and how it 
supports the use of diverse algorithms, enabling various 
diagnosis strategies. We then identify the features currently 
implemented and finally describe some applications that 
use HyDE for diagnosis.  



HyDE Models 
HyDE models have two parts. The first, which is common 
to all supported modeling paradigms, describes the 
transition behavior of the system. The second is the 
behavior model, which is specific to each modeling 
paradigm.  
The transition model describes the following elements of 
the system: 

1. The set L of operating modes li of the system, 1 ≤ i 
≤ |L|, called Locations. 

2. The set T of allowed transitions ti, 1 ≤ i ≤ m, 
between the locations of the system, where ti = lj → 
lk indicates a transition from location lj to lk. 

 
The behavior model specifies the behavior evolution and 
has three parts: propagation model, integration model and 
dependency model. Each kind of model part is used for a 
different step in the diagnosis reasoning process. The 
information in the propagation model allows the estimation 
of unknown variable values from known variable values. 
The dependency model captures information about the 
dependencies between variables, models and components. 
The integration model describes how the variables’ values 
are propagated across time steps. Depending on the 
modeling paradigm used, the same model may serve all 
three roles or it may be necessary to specify each model 
independently. The integration model is necessary only if 
there are variables that have state, i.e., if values at one time 
step depend on values at previous time steps. The 
dependency model is optional, since a fully-connected 
graph may be used as a trivial dependency model, but 
Candidate Generation can be optimized if a dependency 
model is specified. The behavior model is expressed as: 

1. The set V of variables vi in the system, 1 ≤ i ≤ |V|. 
2. The set of D domains di, 1 ≤ i ≤ |V|, specifying the 

allowed values (data types) for the variables, where 
di represents the domain for variable vi. 

3. The set G of transition guards gi, 1 ≤ i ≤ |T|, 
representing the conditions for system transitions, 
where gi is a condition predicate for transition ti. 

4. The propagation model PM specifies the behavior 
of the system within a time step1 as relations over 
variables. This includes 

a. Global model PMg = Rg(V), where Rg is 
the set of relations constraining values of  
variables expressed in one of the supported 
modeling paradigms. 

b. Local models PM(li) = Rli(V) for each li Є 
L, where Rli is the set of relations 
constraining values of  variables expressed 
in one of the supported modeling 
paradigms.  

                                                 
1 Variables are assumed to take one or more values from 
their domains at each time step in the reasoning process 
described later. 

5. The integration model IM specifies the evolution of 
values each variable across time steps. IM(vi) = 
Rt(vi(tk), δvi(tk), vi(tk-1), δvi(tk-1),…, vi(tk-n), δvi(tk-n)), 
where Rt is a relation, vi(tk) is the instance of 
variable vi at time tk, δvi(tk) is the instance of the 
derivative of vi at time tk.  

6. The dependency model DM specifies dependencies 
among variables in V, relations Rg and Rli 
associated with the propagation model and relations 
Rt associated with the integration model. 

 
For the sake of modularity, composability and hierarchy, 
HyDE supports the use of component models as well as 
system models. Component models specify the system 
model in terms of the transition and behavior models of the 
individual components and the interconnections among 
components. Diagnostic reasoning may be performed 
directly on component models in some cases, but in most 
cases the component models have to be composed to a 
higher-level system model before use. Users can choose to 
build system models directly. The system model is 
composed from the component model as follows: 
• The transitional model for the system is a synchronous 

composition of the transitional models of the 
components and is derived as follows: 

o SL = L1 x L2 … x Ln where 1, 2 … n are the 
indices of the components making up the 
system. A system location sl1 would be (l1i, 
l2j, …, lnk), where the first subscript indexes 
the component and the second subscript 
indexes a location in that component.  

o The system transitions Ts are derived as 
follows: For each transition for component c 
lca → lcb, corresponding transitions are 
created from every location in the system that 
includes lca in the label to the location that 
contains the label lcb, with the remaining label 
being the same. 

• The composition of the behavior model is a specialized 
algorithm that depends on the type of modeling 
paradigm used for the system model. The system 
behavior model is derived as follows: 

o Vs = Vg U V1 U V2 … U Vn, where 1, 2 … n 
are the indices corresponding to the 
components making up the system and Vg 
represents the set of variables that do not 
belong to any component. 

o The transition guards remain the same for 
corresponding transitions.  

o For each location ls = {l1i l2j … lnk}. Ms = Mg 
U Mconnection U M1i U M2j … U Mnk where the 
union operation U depends on the modeling 
paradigm used for component and system 
models. Mconnection is the component 
connection model that specifies how 
components interact with each other. M 
represents propagation, integration and 
dependency models. 



HyDE also supports multiple behavior model paradigms at 
the component and system level. Component models may 
be specified in one paradigm and then transformed to 
another form before composition to system model form; or 
the component models may be transformed to a system 
model in one paradigm, which can then be transformed to a 
system model in another paradigm. Figure 1 illustrates the 
interaction between component and system models. The 
following convention is used in Figures 1 through 5.  

 Both the transformation and composition may be 
performed in either order when needed, rather than pre-
compiling system models in all possible system locations.  

HyDE Faults 
HyDE can deal with discrete faults, that is, those that 
correspond to an abrupt change in the configuration of the 
system. HyDE models represent discrete faults as 
transitions without guards (called unguarded transitions). 
The absence of guards signifies that the occurrence of 
these transitions cannot be directly observed, and hence 
must be determined by reasoning about symptom 
observations. Examples of such faults are valve stuck open, 
motor stalled and circuit breaker tripped. Unexpected 
behavior not explicitly modeled can be handled as an 
unguarded transition to a unique “unknown” location that 
has no model associated with it, assuring that it will be 
consistent with all observations. It is also possible to model 
parametric faults (abrupt changes in the values of system 
parameters) if the new values for the parameters are 
known. For example, we can model resistive faults as an 
n% change in resistance for several pre-specified values of 
n. It is not possible to model the general case in which n is 
not known and has to be inferred by reasoning.  
 
The use of unguarded transitions allows HyDE to infer the 
occurrence of any unobserved event, not just faults. For 
example, a transition that is based on a supervisory 
controller command may be represented as an unguarded 
transition if the issuance of the command is not observed. 

HyDE Reasoning 
HyDE reasoning is the maintenance of a set C of weighted 
candidates (ci, wi), 1 ≤ i ≤ k. A candidate represents the 
hypothesized alternative trajectories of the system inferred 
from the transition and behavior models of the system, 
knowledge of the initial locations of all components and 
initial values of all variables, and the sensor observations 
reported to HyDE. The candidates’ weights are a way of 
ranking them and depend on several factors, including 
prior probabilities of transitions and the degree of fit 
between model predictions and observations. Although 
weights are in the range [0, 1], weight is not a probability 
measure, specifically posterior probability.  

Reasoning operations/steps Models Data/Information

Objects Collection

 
Each candidate contains a possible trajectory of system 
behavior evolution represented in the form of a hybrid 
state (HS) history and transition history. The hybrid state is 
a snapshot of the entire system state at any single instant. It 
associates all components with their current locations and 
all variables with their current values. HS = (SL, VV) 
where SL = {(compi→li) | 1 ≤ i ≤ n}, and VV = 
{(vi→valuei) | 1 ≤ i ≤ m}. Applications run HyDE at 
discrete time steps, typically but not necessarily when 
observations are available. Time steps need not be 
periodic. For each time step that HyDE reasons about, a 
candidate contains two hybrid states, one at the beginning 
of the time step and one at the end, as well as the set of 
transitions taken by the system between the previous and 
current time steps.  

 
Figure 1: Component and System Models 

 
If HyDE has been run for a set of time steps {ti | 1≤ i ≤ 
end}, a candidate will be of the form {(Trans→ti, hsti-, hsti+) 
|  1≤ i ≤ end}, where Trans→ti = {(compi, transi) | 1≤ i ≤ 
end} is a set of ordered transitions (with associated 
component) believed to have been taken by the system 
between time steps ti-1 and ti, hsti- indicates the hybrid state 
at the beginning of time step ti, and hsti+ indicates the 
hybrid state at the end of time step ti. All components that 
do not have an explicit transition in Trans→t are assumed to 
have taken an implicit special guarded transition called 
self-transition transli. This transition is from location li to 
location li. As a result, Trans→t will include an entry for all 
components but may have more than one entry for some 
components if it is believed that more than one transition 
occurred for those components. 
 
At time step 0 (or some user-specified start time step ti) the 
candidate set is initialized with candidate(s) derived from 
the initial hybrid state of the system. If there is some 
uncertainty about the initial hybrid state, it is possible to 
sample from this uncertainty to create a set of initial 
candidates. In the worst case, when the initial hybrid state 
is not known, a set of candidates may be created by 
randomly sampling the locations of the components. 
Trans→0 is set to contain the self transition for all 



components. After initialization a candidate ci would look 
like {(Trans→0, hs0-, hs?)}, where hs? indicates an unknown 
or not yet estimated hybrid state. The weights of the 
candidates may be set to 1; if prior probabilities are 
available for initial hybrid states, those values can be used 
as initial weights. 

 
Once the initial candidate set has been created, HyDE’s 
reasoning process uses the same sequence of operations for 
each time step. The reasoning process can be divided into 
three categories of operations, as illustrated in Figure 3: 
1. Candidate Set Management maintains the candidate set, 

including pruning unlikely candidates and adding new 
candidates when necessary. 

2. Candidate Testing deals with operations on a single 
candidate, including estimation of the hybrid state, 
updating the weight of candidate and reporting 
inconsistencies.  

3. Candidate Generation creates candidate generators from 
inconsistencies reported by Candidate Testing and 
supplies the next-best potential (untested) candidate to 
Candidate Set Management when requested. 

In the next three sections we will discuss each of these 
categories in more detail. 

Candidate Set Management 
There are four Candidate Set Management operations, 
shown in sequential order in Figure 4.  

Updating weight of all candidates. The Candidate 
Testing operations are called to update the weight of each 

candidate in the candidate set. When candidates are tested, 
additional candidates may be spawned (described in the 
candidate-testing section). Based on user preferences, these 
candidates may be added to the candidate set for testing; 
incorporated into a candidate generator to be re-generated 
when requested (for later testing); or completely ignored.  
Prune candidates. After the candidate weights have been 
updated, candidates with weights below a user-specified 
threshold tw are pruned from the candidate set: C ← { ci | ci  
Є C & wi >= tw}. 

 
Figure 3: Reasoning Architecture 

Add candidates. Additional candidates may be needed to 
fill the candidate set to a user-specified minimum count. 
To re-fill the candidate set, a new potential candidate is 
requested from the bank of candidate generators created as 
a by-product of the candidate-testing operations. The 
candidate generators are responsible for selecting the next 
best candidate based a user-specified ranking function. The 
potential candidate then goes through Candidate Testing 
and may be pruned if its updated weight is not high 
enough. More potential candidates are requested until the 
candidate set has the requisite number of candidates. 
Re-sample weights. As an optional step, candidate 
weights may be normalized by re-sampling from the 
distribution of weights. For the candidate set C = {(ci, wi) | 
1 ≤ i ≤ k}, the sum W = ∑wi, 1 ≤ i ≤ k is determined and 
the candidate set is cleared C = {}. A random real number 
x is sampled between 0 and W. If the value of x is between 
∑wi, 1 ≤ i ≤ j-1 and ∑wi, 1 ≤ i ≤ j, candidate (cj, 1) is added 
to the candidate set. This process is repeated until the 
candidate set has the requisite number of candidates 
(usually k). 

Candidate Testing 
At each time step ti, each candidate cj is tested to find the 
enabled transitions Trans→ti taken between the previous 
time step ti-1 and the current time step ti; to estimate the 
hybrid state at the beginning of the time step hst1-; to 
compose the system propagation model PMti; to estimate 
the hybrid state at end of time step hst1+; update the weight 
wj of the candidate; and to report any inconsistencies Iij. 
These steps are illustrated in Figure 2. 

 
Figure 4: Candidate Management 

Find enabled transitions. First collect the set of all 
possible transitions out of the system location associated 
with hsti-1. The user has the option of including unguarded 
transitions in this list. The guards on the selected 
transitions are evaluated to compute a weight indicating the 

 
Figure 2: Updating Candidate to current time step 



likelihood of the guard being true. The user has to specify a 
policy for handling enabled transitions. The options are to 
consider only the most likely transition with weight > 0.5, 
choosing the self transition if no such transition exists; 
sampling from the distribution of enabled transitions; 
selecting all transitions with weight > 0.5; or selecting all 
enabled transitions irrespective of weight. 

 
Figure 5: Candidate Generation 

Estimate beginning hybrid state. The estimation of the 
hybrid state at the beginning of the time step ti involves 
two operations.  

1. Estimate the new system location: First a new 
Trans→ti is created for each enabled transition in the 
previous step. Trans→ti is applied to SL(hsti-1) to 
determine SL(hsti-). There will be as many new 
SL(hsti-) as there are enabled transitions. As 
mentioned earlier, all but the most likely one are 
reported to Candidate Set Management, which 
decides what will be done with them.  

2. Estimate the new variable values: The integration 
model IMti is applied to VV(hsti-1) to get VV(hsti-). 
Additionally, values for any input variables are set 
to be their sensed values, if reported, at ti. 

Load the propagation model. The possibly-new 
propagation model of the system corresponding to SL(hsti-) 
has to be loaded. If SL(hsti-) has been reached earlier in the 
reasoning process, its propagation model PMti has already 
been cached and can be loaded directly. If SL(hsti-) has not 
been reached, PMti has to be composed from the model 
associated with SL(hsti-), as described in the modeling 
section. The composed model is cached for later re-use. 
Estimate end hybrid state. The next step is to estimate 
hsti+ using PMti. Assuming that all transitions occur 
between successive time steps, we set SL(hsti+) = SL(hsti-). 
VV(hsti+) is estimated by initializing PMti with VV(hsti-) 
and executing PMti by running a simulation or propagation 
algorithm. If the execution fails, an Inconsistency Iti is 
reported to the Candidate Generation system. This 
inconsistency identifies the relation rinconsistent from PMti that 
did not hold. 
Compare against observations. If output variables have 
been reported, HyDE compares these observed values Yn 
to their predicted values Ŷn in hsti+. The comparison step 
for n output variables is expressed as: Rn = CF(Ŷn, Yn, εn), 
where CF is a comparison function, Rn is a vector of n 
residual values in [0, 1] indicating the degree of fit and εn 
are the user-defined noise models for the n sensors 
associated with the output variables.  

Update weight of candidate. An overall degree of fit 
roverall is also computed from Rn. The user may select this to 
be either the minimum weight in Rn, the arithmetic mean of 
Rn or some custom function over (Ŷn, Yn, εn). The weight 
of the candidate is updated by multiplying by roverall. 
Reporting inconsistency. If roverall is less than a user-
specified threshold, an Inconsistency Iti is reported that 
contains all output variables whose degree of fit ri  Є Rn is 
less than the same user-specified threshold. 

Candidate Generation 
The Candidate Generation system is responsible for 
creating a new potential candidate when requested by the 
Candidate Set Management system. Figure 5 illustrates the 
steps in Candidate Generation. The Candidate Generation 
system consists of a set of candidate generators. When a 
candidate is requested, each candidate generator reports its 
next best candidate, where “best” is a user-customizable 
criterion, and the best among these best candidates is 
selected and returned to the Candidate Set Management 
system. 
 
Candidate generators come in two flavors. The first kind, 
based on a candidate, always reports that candidate until 
the candidate is selected for use. These kinds of candidate 
generators handle the situation in which Candidate Testing 
results in the spawning of new candidates and the user 
specifies that these candidates go into the set of candidate 
generators. In such a case each newly-spawned candidate 
becomes the basis for a candidate generator.  
 
The second kind of candidate generator is based on 
conflicts. A conflict is a list of timed transitions which, if 
taken jointly by the system, result in an inconsistency. 
When the propagation or comparison step generates 
inconsistencies, conflicts are generated using the 
dependency model and become part of a new candidate 
generator. The next section describes how a conflict is 
created from inconsistencies and the section following 
describes how the conflict-based candidate generator 
works. 
Conflict generation. When an inconsistency Iti is reported 
at time ti from the propagation or comparison step, HyDE 
creates (or retrieves if already created) the dependency 
model DMti corresponding to SL(hsti). For each component 
encountered, the transitions for that component from 



Trans→ti are added to the conflict set that has time stamp ti. 
The same process is repeated in the dependency model 
DMti-1 for the previous time step ti-1. However, the starting 
points for the back traversals in the dependency model are 
all the variables that depend on Iti. This adds transitions 
with time stamp ti-1 to the conflict set. The same procedure 
is repeated for n previous time steps, where n is a user-
supplied parameter. The user may explicitly specify the 
amount of time to backtrack and the maximum number of 
guarded transitions to consider. When the inconsistency 
contains two or more variables, a conflict is created for 
each variable. A conflict-based candidate generator is then 
created containing an initial hybrid state hsti-n at time step 
ti-n, an initial weight equal to the weight of the candidate 
that generated the inconsistency, and the sets of conflicts 
generated from the inconsistencies. 
 
Generating a candidate from a conflict-based candidate 
generator. When requested for a candidate, the candidate 
generator generates a set Transunguarded of timed unguarded 
transitions {transti | 1 ≤ i ≤ k} that resolve all the conflicts 
in the candidate generator. A conflict is resolved by a 
transition that is a sibling (same source location, different 
destination location) of at least one transition in the 
conflict. A set of transitions resolves a set of conflicts if, 
for each conflict, there is a transition in the set of 
transitions that resolves the conflict. The Candidate 
Generator saves its state so that the next time it is asked it 
can generate the next optimum candidate. The transitions 
are chosen so as to optimize some user-defined criteria. For 
example, the user may be interested in transitions with the 
maximum prior probability or the set of transitions with 
minimum size. Conflict resolution may use a two-step 
hitting-set-based solution (generate a hitting set and 
resolve the hitting set) or conflict-directed search 
[Williams and Ragno, 2003] to generate the transitions 
directly. A candidate is then created with initial hybrid 
state hsti-1, and pre-loaded Trans→t for each t in {ti-n, …, ti). 
Each entry transtk in Transunguarded is added to Trans→tk. 

HyDE Implementation Status 
The HyDE reasoning engine is implemented in C++. 
Complete diagnosis reasoning can be performed although 
not all of the earlier-discussed capabilities have been 
implemented yet. It passes an extensive and demanding 
test suite on Windows, Solaris, Linux and VxWorks 
platforms. A graphical modeling environment is available 
using the GME open-source tool [Ledeczi, et al., 2001]. 
The same environment can also be used to set initial state 
and configuration parameters. Observations can be 
reported to HyDE either through streams (file or otherwise) 
or an API allowing integration with a real-time system.  
 
HyDE model variables can have Boolean, Enumeration, 
Interval or Real domains. For Enumeration domains, the 
domain’s values must be specified. The within-component 
transition model is specified as a finite-state automaton in 

which locations are the states and the transition guards may 
be specified either as commands, some predicate over 
model variables, or a combination of the two. The 
propagation model is specified as constraint predicates 
over model variables. Constraints may be Boolean 
expressions if the variables are Boolean; algebraic and 
ordinary differential equations for interval- and real-valued 
variables, and equality or inequality for all variables. If all 
variables are interval or real, the user can configure HyDE 
to solve the constraints symbolically to transform them into 
state space equations or a Kalman Filter when used for 
propagation. Currently the Euler integration technique is 
the only integration model. The dependency model can 
either be real-time justification (truth maintenance) 
mechanism or a dependency graph that is derived from the 
constraints.  
 
HyDE currently supports only consistency-based 
Candidate Set Management. Candidates are added to the 
candidate set only if consistent and deleted only if 
inconsistent. The maximum number of candidates in the 
candidate set is configurable. In Candidate Testing, only 
identification of the first enabled transition is supported. 
Comparison may use an equality check or thresholding to 
make a binary determination of consistency. Candidate 
Generation uses best-first search with a configurable 
preference for what is considered best. The user can set 
several parameters, including maximum candidate size, 
minimum candidate weight, and time of a candidate’s last-
hypothesized fault transition to guide the search.  

HyDE Applications 
HyDE has been and is being used on several projects. 
These projects exercise very different capabilities of 
HyDE, affirming the need for such a general framework. 
The following three projects have successfully used HyDE 
in demonstrations using real-time telemetry streaming from 
the system being diagnosed. 
1. The Drilling Automation for Mars Environment 
(DAME) project, led by NASA Ames Research Center, is 
aimed at developing a lightweight, low-power drill 
prototype that can be mounted on a Mars Lander and drill 
several meters below the Mars surface for conducting 
geology and astrobiology research. Three kinds of 
diagnosis technologies were used on this project, HyDE for 

 
Figure 6: HyDE on DAME 



model-based diagnosis, a rule-based diagnosis system, and 
a neural-network diagnosis system. The drill and the 
diagnostic application using HyDE are illustrated in Figure 
6.  HyDE was to model only the two major components of 
the drill, the bit and the auger (top level model shown in 
Figure 7). Nevertheless the model was complex, requiring 
73 variables and 162 differential and algebraic constraints. 
The model had nominal (nominal, idle), faulty (jamming, 
inclusion unknownFault), and unobserved (HardMaterial) 
locations. The bit model is shown in Figure 8.  
There were four rounds of testing over a period of two 
years. In 2005, laboratory experiments were run at 
Honeybee Robotics, the company that constructed the drill. 
Later in 2005, field tests were performed at Houghton 
Crater on Devon Island, in the Canadian arctic, chosen to 
approximate the Martian terrain and climate. Based on the 
results, laboratory tests were performed at NASA Ames 
Research Center in 2006 to improve the models for better 
diagnosis. Finally, there was a second field test at the 
Houghton Crater. [Balaban, et al., 2007] summarize 
HyDE’s final performance: 

All of the modeled fault modes were encountered in 
the field; some, such as choking, binding, and hard 
material, numerous times.  The model-based 
diagnostic system was able to successfully identify 
the faults in roughly 85% of the cases.  The rate of 
false positive diagnoses was approximately 5%. 

 
2. The Advanced Diagnostic and Prognostic Test-bed 
(ADAPT) was developed at NASA Ames Research Center 
with the goal to test, measure, evaluate, and mature 
diagnostic and prognostic health-management 
technologies. The test-bed hardware for generates, stores, 
distributes, and monitors electrical power. The initial test-
bed configuration is functionally representative of an 
exploration vehicle’s Electrical Power System. HyDE was 
used to build an 86-component enumeration constraint 
model of the test-bed components. The ADAPT is in stark 
contrast to the DAME model in that it contains a lot of 
components but very few variables and constraints in the 
components. Diagnosis was purely consistency-based. In 
addition, modeling used a special feature of HyDE that 
allows observations to be made input variables, enabling 
the modelers to build consistency models instead of 
predictive models. HyDE passed all the acceptance tests, 

which included a set of pre-defined fault scenarios and 
acceptance bounds on the time to diagnosis. Additional 
tests were run on other fault scenarios (not included in 
acceptance tests) and HyDE was able to diagnose all but 
one of these scenarios (resulting from inadequate 
information in the model). More details of HyDE on 
ADAPT are presented in [Scott Poll, et. al., 2007]. 

 
Figure 8: HyDE model of  Drill Bit 

 
Figure 7: Top Level HyDE model of DAME 

 
3. The Autonomous Lander Demonstrator project 
(ALDER) demonstrated autonomy capabilities relevant to 
a small spacecraft mission on traditional flight hardware 
integrated with traditional flight software. Diagnosis 
systems, including HyDE, were ported to VxWorks and 
executed on the Aitech S950 processor, interoperating with 
autonomy technologies for planning, diagnosis, computer 
vision and adaptive control. A HyDE component model of 
a simple propulsion system (tanks, valves, regulators, 
attitude control system and main engine) detected common 
faults such as stuck valves and regulator failures.  
 
Several other projects are using HyDE for offline diagnosis 
using simulated data. The International Space Station (ISS) 
Electrical Power System (EPS) recovery procedure 
automation project at NASA Ames Research Center uses 
HyDE to supply current hybrid state to an execution 
system that will attempt to partially automate recovery 
procedures based on this information. The Aircraft 
Landing Gear Diagnosis project at NASA Langley 
Research Center is using HyDE to model the landing gear 
and wheels of an aircraft in an effort to diagnose faults 
during landing. The Spacecraft Engine Diagnosis project at 
NASA Marshall Space Flight Center uses HyDE to model 
components of the J2X engine, which is expected to power 
the upper stage of the NASA Crew Launch Vehicle (CLV). 
HyDE was also integrated with the CLARAty (Coupled 
Layer Architecture for Robotic Autonomy) architecture at 
NASA Jet Propulsion Laboratories. 

Conclusions and Future Work 
We presented the Hybrid Diagnosis Engine (HyDE), a 
general framework for stochastic and hybrid model-based 
diagnosis. HyDE supports multiple modeling paradigms 
and multiple strategies for the steps in the diagnosis 
reasoning. HyDE is extensible by adding new modeling 



paradigms and user-defined algorithms for diagnosis 
reasoning steps. HyDE is being used on several projects 
that span the spectrum from consistency-based reasoning 
to stochastic reasoning and discrete models to hybrid 
models.  
 
HyDE is still a work in progress and we expect to keep 
adding to the capabilities to HyDE through addition of new 
modeling paradigms and algorithms. We have identified 
several major areas for future work. We would like provide 
mechanisms for validation and verification (V&V) of  
models and algorithms, which would be prerequisite for 
deployment on real systems. We would like to add support 
for parametric faults. This would require support for 
modeling of parameters representing such faults,  
additional algorithms for parameter estimation and 
modifications to existing algorithms for detection and 
isolation of such faults. We would also like to use the 
existing models and algorithms for suggesting recovery 
sequences. Livingstone 2 [Kurien and Nayak, 2000] 
demonstrated how this can be done for finite-domain 
models. We would like to extend this to HyDE models and 
algorithms. 
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