
HyDE – A General Framework for Stochastic and Hybrid Model-based
Diagnosis

Sriram Narasimhan1 and Lee Brownston2

1University of California, Santa Cruz and 2Perot Systems Government Services, Inc.

M/S 269-3, NASA Ames Research Center, Moffett Field, CA-94035
1sriram,2lbrownston@email.arc.nasa.gov

Abstract
In recent years several approaches have been proposed for
model-based diagnosis of hybrid systems. These approaches
deal with discrete or parametric faults, and perform
consistency-based, stochastic or mixed reasoning. The
major restriction that a diagnosis application designer faces
is that each technique uses its own modeling paradigm and
the reasoning algorithms implement a single strategy.
Diagnosis application designers would like to have the
flexibility of building models that are suitable for the task
(e.g., appropriate abstraction level, appropriate details, type
of modeling paradigm used). They would also like to have
the flexibility in choosing the strategies used in the
diagnostic reasoning process.

We propose a general framework for stochastic and hybrid
model-based diagnosis called Hybrid Diagnosis Engine
(HyDE) that offers this flexibility to the diagnosis
application designer. We list the key steps in stochastic and
hybrid diagnosis and identify the kinds of models that are
needed in those steps. The HyDE architecture supports the
use of multiple modeling paradigms at the component and
system level. Several alternative algorithms are available for
the various steps in diagnostic reasoning. This approach is
extensible, with support for the addition of new modeling
paradigms as well as diagnostic reasoning algorithms for
existing or new modeling paradigms. We discuss the current
status of HyDE and its application in diagnosis of real and
conceptual systems.

Introduction
The traditional approach to building a model-based
diagnosis system is to select a diagnosis technology, build
models targeted for the selected technology, and test the
reasoning algorithms on the models using real or simulated
data to refine the models and fine tune the performance of
the algorithms. This approach works well when the
diagnosis application designer is familiar with the
diagnosis technology and the modeling paradigm it uses
and has a good idea of how to design the models to achieve
a specific goal, such as the diagnosis of a specific set of
pre-selected faults. In many cases, however, the diagnosis
problem is not so well defined and the diagnosis designer
would like to have the flexibility to experiment with
different kinds of models (e.g., multiple paradigms and
abstraction levels) as well as different strategies for

diagnosis reasoning (e.g., pure consistency-based, purely
stochastic and different kinds of search algorithms).

In this paper we present the Hybrid Diagnostic Engine
(HyDE), a general framework for stochastic and hybrid
model-based diagnosis of discrete faults, that is,
spontaneous changes in operating modes of components.
HyDE combines ideas from consistency-based [Hamscher,
et al., 1992; De Kleer and Williams, 1987] and stochastic
[Hofbaur and Williams, 2002; Dearden and Clancy, 2002]
approaches to model-based diagnosis using discrete
[Williams and Nayak, 1996; Kurien and Nayak, 2000],
continuous [Gertler, 1988; Mosterman and Biswas, 1999]
and hybrid [Narasimhan and Biswas, 2003; Hofbaur and
Williams, 2002; Dearden and Clancy, 2002] models to
create a flexible and extensible architecture for stochastic
and hybrid diagnosis. HyDE supports the use of multiple
paradigms and is extensible to support new paradigms.
HyDE offers the application designer a wide variety of
options in selecting the diagnosis reasoning strategy. The
key features of HyDE are:

• Diagnosis of multiple discrete faults.
• Support for hybrid models, including autonomous

and commanded discrete switching.
• Support for stochastic models and stochastic

reasoning.
• Capability for handling time delay in the

propagation of fault effects.
Some preliminary work related to HyDE has been
presented in [Narasimhan, et al., 2003; Narasimhan, et al.,
2004].

The following sections first present the kinds of models
used in HyDE, each of which includes a generic transition
model and a modeling-paradigm-specific behavior model.
Then we describe the kinds of faults HyDE can diagnose
and how they are represented in the models. Next we
discuss the HyDE reasoning architecture and how it
supports the use of diverse algorithms, enabling various
diagnosis strategies. We then identify the features currently
implemented and finally describe some applications that
use HyDE for diagnosis.

HyDE Models
HyDE models have two parts. The first, which is common
to all supported modeling paradigms, describes the
transition behavior of the system. The second is the
behavior model, which is specific to each modeling
paradigm.
The transition model describes the following elements of
the system:

1. The set L of operating modes li of the system, 1 ≤ i
≤ |L|, called Locations.

2. The set T of allowed transitions ti, 1 ≤ i ≤ m,
between the locations of the system, where ti = lj →
lk indicates a transition from location lj to lk.

The behavior model specifies the behavior evolution and
has three parts: propagation model, integration model and
dependency model. Each kind of model part is used for a
different step in the diagnosis reasoning process. The
information in the propagation model allows the estimation
of unknown variable values from known variable values.
The dependency model captures information about the
dependencies between variables, models and components.
The integration model describes how the variables’ values
are propagated across time steps. Depending on the
modeling paradigm used, the same model may serve all
three roles or it may be necessary to specify each model
independently. The integration model is necessary only if
there are variables that have state, i.e., if values at one time
step depend on values at previous time steps. The
dependency model is optional, since a fully-connected
graph may be used as a trivial dependency model, but
Candidate Generation can be optimized if a dependency
model is specified. The behavior model is expressed as:

1. The set V of variables vi in the system, 1 ≤ i ≤ |V|.
2. The set of D domains di, 1 ≤ i ≤ |V|, specifying the

allowed values (data types) for the variables, where
di represents the domain for variable vi.

3. The set G of transition guards gi, 1 ≤ i ≤ |T|,
representing the conditions for system transitions,
where gi is a condition predicate for transition ti.

4. The propagation model PM specifies the behavior
of the system within a time step1 as relations over
variables. This includes

a. Global model PMg = Rg(V), where Rg is
the set of relations constraining values of
variables expressed in one of the supported
modeling paradigms.

b. Local models PM(li) = Rli(V) for each li Є
L, where Rli is the set of relations
constraining values of variables expressed
in one of the supported modeling
paradigms.

1 Variables are assumed to take one or more values from
their domains at each time step in the reasoning process
described later.

5. The integration model IM specifies the evolution of
values each variable across time steps. IM(vi) =
Rt(vi(tk), δvi(tk), vi(tk-1), δvi(tk-1),…, vi(tk-n), δvi(tk-n)),
where Rt is a relation, vi(tk) is the instance of
variable vi at time tk, δvi(tk) is the instance of the
derivative of vi at time tk.

6. The dependency model DM specifies dependencies
among variables in V, relations Rg and Rli
associated with the propagation model and relations
Rt associated with the integration model.

For the sake of modularity, composability and hierarchy,
HyDE supports the use of component models as well as
system models. Component models specify the system
model in terms of the transition and behavior models of the
individual components and the interconnections among
components. Diagnostic reasoning may be performed
directly on component models in some cases, but in most
cases the component models have to be composed to a
higher-level system model before use. Users can choose to
build system models directly. The system model is
composed from the component model as follows:
• The transitional model for the system is a synchronous

composition of the transitional models of the
components and is derived as follows:

o SL = L1 x L2 … x Ln where 1, 2 … n are the
indices of the components making up the
system. A system location sl1 would be (l1i,
l2j, …, lnk), where the first subscript indexes
the component and the second subscript
indexes a location in that component.

o The system transitions Ts are derived as
follows: For each transition for component c
lca → lcb, corresponding transitions are
created from every location in the system that
includes lca in the label to the location that
contains the label lcb, with the remaining label
being the same.

• The composition of the behavior model is a specialized
algorithm that depends on the type of modeling
paradigm used for the system model. The system
behavior model is derived as follows:

o Vs = Vg U V1 U V2 … U Vn, where 1, 2 … n
are the indices corresponding to the
components making up the system and Vg
represents the set of variables that do not
belong to any component.

o The transition guards remain the same for
corresponding transitions.

o For each location ls = {l1i l2j … lnk}. Ms = Mg
U Mconnection U M1i U M2j … U Mnk where the
union operation U depends on the modeling
paradigm used for component and system
models. Mconnection is the component
connection model that specifies how
components interact with each other. M
represents propagation, integration and
dependency models.

HyDE also supports multiple behavior model paradigms at
the component and system level. Component models may
be specified in one paradigm and then transformed to
another form before composition to system model form; or
the component models may be transformed to a system
model in one paradigm, which can then be transformed to a
system model in another paradigm. Figure 1 illustrates the
interaction between component and system models. The
following convention is used in Figures 1 through 5.

 Both the transformation and composition may be
performed in either order when needed, rather than pre-
compiling system models in all possible system locations.

HyDE Faults
HyDE can deal with discrete faults, that is, those that
correspond to an abrupt change in the configuration of the
system. HyDE models represent discrete faults as
transitions without guards (called unguarded transitions).
The absence of guards signifies that the occurrence of
these transitions cannot be directly observed, and hence
must be determined by reasoning about symptom
observations. Examples of such faults are valve stuck open,
motor stalled and circuit breaker tripped. Unexpected
behavior not explicitly modeled can be handled as an
unguarded transition to a unique “unknown” location that
has no model associated with it, assuring that it will be
consistent with all observations. It is also possible to model
parametric faults (abrupt changes in the values of system
parameters) if the new values for the parameters are
known. For example, we can model resistive faults as an
n% change in resistance for several pre-specified values of
n. It is not possible to model the general case in which n is
not known and has to be inferred by reasoning.

The use of unguarded transitions allows HyDE to infer the
occurrence of any unobserved event, not just faults. For
example, a transition that is based on a supervisory
controller command may be represented as an unguarded
transition if the issuance of the command is not observed.

HyDE Reasoning
HyDE reasoning is the maintenance of a set C of weighted
candidates (ci, wi), 1 ≤ i ≤ k. A candidate represents the
hypothesized alternative trajectories of the system inferred
from the transition and behavior models of the system,
knowledge of the initial locations of all components and
initial values of all variables, and the sensor observations
reported to HyDE. The candidates’ weights are a way of
ranking them and depend on several factors, including
prior probabilities of transitions and the degree of fit
between model predictions and observations. Although
weights are in the range [0, 1], weight is not a probability
measure, specifically posterior probability.

Reasoning operations/steps Models Data/Information

Objects Collection

Each candidate contains a possible trajectory of system
behavior evolution represented in the form of a hybrid
state (HS) history and transition history. The hybrid state is
a snapshot of the entire system state at any single instant. It
associates all components with their current locations and
all variables with their current values. HS = (SL, VV)
where SL = {(compi→li) | 1 ≤ i ≤ n}, and VV =
{(vi→valuei) | 1 ≤ i ≤ m}. Applications run HyDE at
discrete time steps, typically but not necessarily when
observations are available. Time steps need not be
periodic. For each time step that HyDE reasons about, a
candidate contains two hybrid states, one at the beginning
of the time step and one at the end, as well as the set of
transitions taken by the system between the previous and
current time steps.

Figure 1: Component and System Models

If HyDE has been run for a set of time steps {ti | 1≤ i ≤
end}, a candidate will be of the form {(Trans→ti, hsti-, hsti+)
| 1≤ i ≤ end}, where Trans→ti = {(compi, transi) | 1≤ i ≤
end} is a set of ordered transitions (with associated
component) believed to have been taken by the system
between time steps ti-1 and ti, hsti- indicates the hybrid state
at the beginning of time step ti, and hsti+ indicates the
hybrid state at the end of time step ti. All components that
do not have an explicit transition in Trans→t are assumed to
have taken an implicit special guarded transition called
self-transition transli. This transition is from location li to
location li. As a result, Trans→t will include an entry for all
components but may have more than one entry for some
components if it is believed that more than one transition
occurred for those components.

At time step 0 (or some user-specified start time step ti) the
candidate set is initialized with candidate(s) derived from
the initial hybrid state of the system. If there is some
uncertainty about the initial hybrid state, it is possible to
sample from this uncertainty to create a set of initial
candidates. In the worst case, when the initial hybrid state
is not known, a set of candidates may be created by
randomly sampling the locations of the components.
Trans→0 is set to contain the self transition for all

components. After initialization a candidate ci would look
like {(Trans→0, hs0-, hs?)}, where hs? indicates an unknown
or not yet estimated hybrid state. The weights of the
candidates may be set to 1; if prior probabilities are
available for initial hybrid states, those values can be used
as initial weights.

Once the initial candidate set has been created, HyDE’s
reasoning process uses the same sequence of operations for
each time step. The reasoning process can be divided into
three categories of operations, as illustrated in Figure 3:
1. Candidate Set Management maintains the candidate set,

including pruning unlikely candidates and adding new
candidates when necessary.

2. Candidate Testing deals with operations on a single
candidate, including estimation of the hybrid state,
updating the weight of candidate and reporting
inconsistencies.

3. Candidate Generation creates candidate generators from
inconsistencies reported by Candidate Testing and
supplies the next-best potential (untested) candidate to
Candidate Set Management when requested.

In the next three sections we will discuss each of these
categories in more detail.

Candidate Set Management
There are four Candidate Set Management operations,
shown in sequential order in Figure 4.

Updating weight of all candidates. The Candidate
Testing operations are called to update the weight of each

candidate in the candidate set. When candidates are tested,
additional candidates may be spawned (described in the
candidate-testing section). Based on user preferences, these
candidates may be added to the candidate set for testing;
incorporated into a candidate generator to be re-generated
when requested (for later testing); or completely ignored.
Prune candidates. After the candidate weights have been
updated, candidates with weights below a user-specified
threshold tw are pruned from the candidate set: C ← { ci | ci
Є C & wi >= tw}.

Figure 3: Reasoning Architecture

Add candidates. Additional candidates may be needed to
fill the candidate set to a user-specified minimum count.
To re-fill the candidate set, a new potential candidate is
requested from the bank of candidate generators created as
a by-product of the candidate-testing operations. The
candidate generators are responsible for selecting the next
best candidate based a user-specified ranking function. The
potential candidate then goes through Candidate Testing
and may be pruned if its updated weight is not high
enough. More potential candidates are requested until the
candidate set has the requisite number of candidates.
Re-sample weights. As an optional step, candidate
weights may be normalized by re-sampling from the
distribution of weights. For the candidate set C = {(ci, wi) |
1 ≤ i ≤ k}, the sum W = ∑wi, 1 ≤ i ≤ k is determined and
the candidate set is cleared C = {}. A random real number
x is sampled between 0 and W. If the value of x is between
∑wi, 1 ≤ i ≤ j-1 and ∑wi, 1 ≤ i ≤ j, candidate (cj, 1) is added
to the candidate set. This process is repeated until the
candidate set has the requisite number of candidates
(usually k).

Candidate Testing
At each time step ti, each candidate cj is tested to find the
enabled transitions Trans→ti taken between the previous
time step ti-1 and the current time step ti; to estimate the
hybrid state at the beginning of the time step hst1-; to
compose the system propagation model PMti; to estimate
the hybrid state at end of time step hst1+; update the weight
wj of the candidate; and to report any inconsistencies Iij.
These steps are illustrated in Figure 2.

Figure 4: Candidate Management

Find enabled transitions. First collect the set of all
possible transitions out of the system location associated
with hsti-1. The user has the option of including unguarded
transitions in this list. The guards on the selected
transitions are evaluated to compute a weight indicating the

Figure 2: Updating Candidate to current time step

likelihood of the guard being true. The user has to specify a
policy for handling enabled transitions. The options are to
consider only the most likely transition with weight > 0.5,
choosing the self transition if no such transition exists;
sampling from the distribution of enabled transitions;
selecting all transitions with weight > 0.5; or selecting all
enabled transitions irrespective of weight.

Figure 5: Candidate Generation

Estimate beginning hybrid state. The estimation of the
hybrid state at the beginning of the time step ti involves
two operations.

1. Estimate the new system location: First a new
Trans→ti is created for each enabled transition in the
previous step. Trans→ti is applied to SL(hsti-1) to
determine SL(hsti-). There will be as many new
SL(hsti-) as there are enabled transitions. As
mentioned earlier, all but the most likely one are
reported to Candidate Set Management, which
decides what will be done with them.

2. Estimate the new variable values: The integration
model IMti is applied to VV(hsti-1) to get VV(hsti-).
Additionally, values for any input variables are set
to be their sensed values, if reported, at ti.

Load the propagation model. The possibly-new
propagation model of the system corresponding to SL(hsti-)
has to be loaded. If SL(hsti-) has been reached earlier in the
reasoning process, its propagation model PMti has already
been cached and can be loaded directly. If SL(hsti-) has not
been reached, PMti has to be composed from the model
associated with SL(hsti-), as described in the modeling
section. The composed model is cached for later re-use.
Estimate end hybrid state. The next step is to estimate
hsti+ using PMti. Assuming that all transitions occur
between successive time steps, we set SL(hsti+) = SL(hsti-).
VV(hsti+) is estimated by initializing PMti with VV(hsti-)
and executing PMti by running a simulation or propagation
algorithm. If the execution fails, an Inconsistency Iti is
reported to the Candidate Generation system. This
inconsistency identifies the relation rinconsistent from PMti that
did not hold.
Compare against observations. If output variables have
been reported, HyDE compares these observed values Yn
to their predicted values Ŷn in hsti+. The comparison step
for n output variables is expressed as: Rn = CF(Ŷn, Yn, εn),
where CF is a comparison function, Rn is a vector of n
residual values in [0, 1] indicating the degree of fit and εn
are the user-defined noise models for the n sensors
associated with the output variables.

Update weight of candidate. An overall degree of fit
roverall is also computed from Rn. The user may select this to
be either the minimum weight in Rn, the arithmetic mean of
Rn or some custom function over (Ŷn, Yn, εn). The weight
of the candidate is updated by multiplying by roverall.
Reporting inconsistency. If roverall is less than a user-
specified threshold, an Inconsistency Iti is reported that
contains all output variables whose degree of fit ri Є Rn is
less than the same user-specified threshold.

Candidate Generation
The Candidate Generation system is responsible for
creating a new potential candidate when requested by the
Candidate Set Management system. Figure 5 illustrates the
steps in Candidate Generation. The Candidate Generation
system consists of a set of candidate generators. When a
candidate is requested, each candidate generator reports its
next best candidate, where “best” is a user-customizable
criterion, and the best among these best candidates is
selected and returned to the Candidate Set Management
system.

Candidate generators come in two flavors. The first kind,
based on a candidate, always reports that candidate until
the candidate is selected for use. These kinds of candidate
generators handle the situation in which Candidate Testing
results in the spawning of new candidates and the user
specifies that these candidates go into the set of candidate
generators. In such a case each newly-spawned candidate
becomes the basis for a candidate generator.

The second kind of candidate generator is based on
conflicts. A conflict is a list of timed transitions which, if
taken jointly by the system, result in an inconsistency.
When the propagation or comparison step generates
inconsistencies, conflicts are generated using the
dependency model and become part of a new candidate
generator. The next section describes how a conflict is
created from inconsistencies and the section following
describes how the conflict-based candidate generator
works.
Conflict generation. When an inconsistency Iti is reported
at time ti from the propagation or comparison step, HyDE
creates (or retrieves if already created) the dependency
model DMti corresponding to SL(hsti). For each component
encountered, the transitions for that component from

Trans→ti are added to the conflict set that has time stamp ti.
The same process is repeated in the dependency model
DMti-1 for the previous time step ti-1. However, the starting
points for the back traversals in the dependency model are
all the variables that depend on Iti. This adds transitions
with time stamp ti-1 to the conflict set. The same procedure
is repeated for n previous time steps, where n is a user-
supplied parameter. The user may explicitly specify the
amount of time to backtrack and the maximum number of
guarded transitions to consider. When the inconsistency
contains two or more variables, a conflict is created for
each variable. A conflict-based candidate generator is then
created containing an initial hybrid state hsti-n at time step
ti-n, an initial weight equal to the weight of the candidate
that generated the inconsistency, and the sets of conflicts
generated from the inconsistencies.

Generating a candidate from a conflict-based candidate
generator. When requested for a candidate, the candidate
generator generates a set Transunguarded of timed unguarded
transitions {transti | 1 ≤ i ≤ k} that resolve all the conflicts
in the candidate generator. A conflict is resolved by a
transition that is a sibling (same source location, different
destination location) of at least one transition in the
conflict. A set of transitions resolves a set of conflicts if,
for each conflict, there is a transition in the set of
transitions that resolves the conflict. The Candidate
Generator saves its state so that the next time it is asked it
can generate the next optimum candidate. The transitions
are chosen so as to optimize some user-defined criteria. For
example, the user may be interested in transitions with the
maximum prior probability or the set of transitions with
minimum size. Conflict resolution may use a two-step
hitting-set-based solution (generate a hitting set and
resolve the hitting set) or conflict-directed search
[Williams and Ragno, 2003] to generate the transitions
directly. A candidate is then created with initial hybrid
state hsti-1, and pre-loaded Trans→t for each t in {ti-n, …, ti).
Each entry transtk in Transunguarded is added to Trans→tk.

HyDE Implementation Status
The HyDE reasoning engine is implemented in C++.
Complete diagnosis reasoning can be performed although
not all of the earlier-discussed capabilities have been
implemented yet. It passes an extensive and demanding
test suite on Windows, Solaris, Linux and VxWorks
platforms. A graphical modeling environment is available
using the GME open-source tool [Ledeczi, et al., 2001].
The same environment can also be used to set initial state
and configuration parameters. Observations can be
reported to HyDE either through streams (file or otherwise)
or an API allowing integration with a real-time system.

HyDE model variables can have Boolean, Enumeration,
Interval or Real domains. For Enumeration domains, the
domain’s values must be specified. The within-component
transition model is specified as a finite-state automaton in

which locations are the states and the transition guards may
be specified either as commands, some predicate over
model variables, or a combination of the two. The
propagation model is specified as constraint predicates
over model variables. Constraints may be Boolean
expressions if the variables are Boolean; algebraic and
ordinary differential equations for interval- and real-valued
variables, and equality or inequality for all variables. If all
variables are interval or real, the user can configure HyDE
to solve the constraints symbolically to transform them into
state space equations or a Kalman Filter when used for
propagation. Currently the Euler integration technique is
the only integration model. The dependency model can
either be real-time justification (truth maintenance)
mechanism or a dependency graph that is derived from the
constraints.

HyDE currently supports only consistency-based
Candidate Set Management. Candidates are added to the
candidate set only if consistent and deleted only if
inconsistent. The maximum number of candidates in the
candidate set is configurable. In Candidate Testing, only
identification of the first enabled transition is supported.
Comparison may use an equality check or thresholding to
make a binary determination of consistency. Candidate
Generation uses best-first search with a configurable
preference for what is considered best. The user can set
several parameters, including maximum candidate size,
minimum candidate weight, and time of a candidate’s last-
hypothesized fault transition to guide the search.

HyDE Applications
HyDE has been and is being used on several projects.
These projects exercise very different capabilities of
HyDE, affirming the need for such a general framework.
The following three projects have successfully used HyDE
in demonstrations using real-time telemetry streaming from
the system being diagnosed.
1. The Drilling Automation for Mars Environment
(DAME) project, led by NASA Ames Research Center, is
aimed at developing a lightweight, low-power drill
prototype that can be mounted on a Mars Lander and drill
several meters below the Mars surface for conducting
geology and astrobiology research. Three kinds of
diagnosis technologies were used on this project, HyDE for

Figure 6: HyDE on DAME

model-based diagnosis, a rule-based diagnosis system, and
a neural-network diagnosis system. The drill and the
diagnostic application using HyDE are illustrated in Figure
6. HyDE was to model only the two major components of
the drill, the bit and the auger (top level model shown in
Figure 7). Nevertheless the model was complex, requiring
73 variables and 162 differential and algebraic constraints.
The model had nominal (nominal, idle), faulty (jamming,
inclusion unknownFault), and unobserved (HardMaterial)
locations. The bit model is shown in Figure 8.
There were four rounds of testing over a period of two
years. In 2005, laboratory experiments were run at
Honeybee Robotics, the company that constructed the drill.
Later in 2005, field tests were performed at Houghton
Crater on Devon Island, in the Canadian arctic, chosen to
approximate the Martian terrain and climate. Based on the
results, laboratory tests were performed at NASA Ames
Research Center in 2006 to improve the models for better
diagnosis. Finally, there was a second field test at the
Houghton Crater. [Balaban, et al., 2007] summarize
HyDE’s final performance:

All of the modeled fault modes were encountered in
the field; some, such as choking, binding, and hard
material, numerous times. The model-based
diagnostic system was able to successfully identify
the faults in roughly 85% of the cases. The rate of
false positive diagnoses was approximately 5%.

2. The Advanced Diagnostic and Prognostic Test-bed
(ADAPT) was developed at NASA Ames Research Center
with the goal to test, measure, evaluate, and mature
diagnostic and prognostic health-management
technologies. The test-bed hardware for generates, stores,
distributes, and monitors electrical power. The initial test-
bed configuration is functionally representative of an
exploration vehicle’s Electrical Power System. HyDE was
used to build an 86-component enumeration constraint
model of the test-bed components. The ADAPT is in stark
contrast to the DAME model in that it contains a lot of
components but very few variables and constraints in the
components. Diagnosis was purely consistency-based. In
addition, modeling used a special feature of HyDE that
allows observations to be made input variables, enabling
the modelers to build consistency models instead of
predictive models. HyDE passed all the acceptance tests,

which included a set of pre-defined fault scenarios and
acceptance bounds on the time to diagnosis. Additional
tests were run on other fault scenarios (not included in
acceptance tests) and HyDE was able to diagnose all but
one of these scenarios (resulting from inadequate
information in the model). More details of HyDE on
ADAPT are presented in [Scott Poll, et. al., 2007].

Figure 8: HyDE model of Drill Bit

Figure 7: Top Level HyDE model of DAME

3. The Autonomous Lander Demonstrator project
(ALDER) demonstrated autonomy capabilities relevant to
a small spacecraft mission on traditional flight hardware
integrated with traditional flight software. Diagnosis
systems, including HyDE, were ported to VxWorks and
executed on the Aitech S950 processor, interoperating with
autonomy technologies for planning, diagnosis, computer
vision and adaptive control. A HyDE component model of
a simple propulsion system (tanks, valves, regulators,
attitude control system and main engine) detected common
faults such as stuck valves and regulator failures.

Several other projects are using HyDE for offline diagnosis
using simulated data. The International Space Station (ISS)
Electrical Power System (EPS) recovery procedure
automation project at NASA Ames Research Center uses
HyDE to supply current hybrid state to an execution
system that will attempt to partially automate recovery
procedures based on this information. The Aircraft
Landing Gear Diagnosis project at NASA Langley
Research Center is using HyDE to model the landing gear
and wheels of an aircraft in an effort to diagnose faults
during landing. The Spacecraft Engine Diagnosis project at
NASA Marshall Space Flight Center uses HyDE to model
components of the J2X engine, which is expected to power
the upper stage of the NASA Crew Launch Vehicle (CLV).
HyDE was also integrated with the CLARAty (Coupled
Layer Architecture for Robotic Autonomy) architecture at
NASA Jet Propulsion Laboratories.

Conclusions and Future Work
We presented the Hybrid Diagnosis Engine (HyDE), a
general framework for stochastic and hybrid model-based
diagnosis. HyDE supports multiple modeling paradigms
and multiple strategies for the steps in the diagnosis
reasoning. HyDE is extensible by adding new modeling

paradigms and user-defined algorithms for diagnosis
reasoning steps. HyDE is being used on several projects
that span the spectrum from consistency-based reasoning
to stochastic reasoning and discrete models to hybrid
models.

HyDE is still a work in progress and we expect to keep
adding to the capabilities to HyDE through addition of new
modeling paradigms and algorithms. We have identified
several major areas for future work. We would like provide
mechanisms for validation and verification (V&V) of
models and algorithms, which would be prerequisite for
deployment on real systems. We would like to add support
for parametric faults. This would require support for
modeling of parameters representing such faults,
additional algorithms for parameter estimation and
modifications to existing algorithms for detection and
isolation of such faults. We would also like to use the
existing models and algorithms for suggesting recovery
sequences. Livingstone 2 [Kurien and Nayak, 2000]
demonstrated how this can be done for finite-domain
models. We would like to extend this to HyDE models and
algorithms.

Acknowledgements. We thank the following people for
providing us with information and pictures on the use of
HyDE on their projects: DAME: Howard Cannon (NASA
Ames Research Center), Edward Balaban (Perot Systems
Government Services, Inc.); ADAPT: Scott Poll (NASA
Ames Research Center), Adam Sweet (Perot Systems
Government Services, Inc.); and ALDER: Jeremy Frank
(NASA Ames Research Center), Edward Balaban (Perot
Systems Government Services, Inc.). We also
acknowledge the help of the following people in supplying
information on the use of HyDE: Peter Robinson (Science
Applications International Corp.), Vandi Verma (Perot
Systems Government Services, Inc.), Cuong C. Quach and
Sixto Vazquez (NASA Langley Research Center), Jon
Patterson (NASA Marshall Space Flight Center), Bradley
Burchett (Rose-Hulman University), and Thomas Slack
(University of Memphis).

References
[Hamscher, et al., 1992] Walter Hamscher, Luca Console,

and Johan De Kleer. Readings in Model-based
Diagnosis. San Mateo, CA: Morgan Kaufmann, 1992.

[De Kleer and Williams, 1987] Johan De Kleer and Brian
C. Williams. Diagnosing multiple faults, Artificial
Intelligence, 32(1):97–130, 1987.

 [Hofbaur and Williams, 2002] Michael Hofbaur and Brian
Williams. Mode Estimation of Probabilistic Hybrid
Systems, in Proc. 5th International Workshop on Hybrid
Systems: Computation and Control (HSCC ’02),
Stanford, CA, USA, pp. 253-266, 2002.

[Dearden and Clancy, 2002] Richard Dearden and Dan
Clancy. Particle Filters for Real-time Fault Detection

in Planetary Rovers, in Proc. 13th International
Workshop on Principles of Diagnosis (DX ’02),
Semmering, Austria, pp. 1-6, 2002.

[Williams and Nayak, 1996] Brian Williams and Pandu
Nayak. A model-based approach to reactive self-
configuring systems, in AAAI, pp. 971–978, (1996).

[Kurien and Nayak, 2000] James Kurien and Pandu Nayak.
Back to the Future with Consistency-based Trajectory
Tracking, AAA/IAAI 2000, pp370-377.

[Gertler, 1988] Janos Gertler. Fault Detection and
Diagnosis in Engineering Systems. New York: Marcel
Dekker, 1988.

[Mosterman and Biswas, 1999] Pieter J. Mosterman and
Gautam Biswas. Diagnosis of continuous valued
systems in transient operating regions. IEEE
Transactions on Systems, Man, and Cybernetics,
1(6):554–565, 1999.

[Narasimhan and Biswas, 2003] Sriram Narasimhan and
Gautam Biswas. Model-based Diagnosis of Hybrid
Systems. Eighteenth Intl. Joint Conf. on Artificial
Intelligence, Acapulco, Mexico, Aug., 2003.

[Narasimhan, et al., 2003] Sriram Narasimhan, Lee
Brownston, and Daniel Burrows. Explanation
constraint programming for model-based diagnosis of
engineered systems, Aerospace Conference, 2004.
Proceedings. 2004 IEEE, Vol.5, Iss., 6-13 March 2004
Pages: 3495- 3501 Vol.5.

[Narasimhan, et al., 2004] Sriram Narasimhan, Richard
Dearden, and Emmanuel Benazera. Combining Particle
Filters and Consistency-based Approaches for
Monitoring and Diagnosis of Stochastic Hybrid
Systems, 15th International Workshop on Principles of
Diagnosis (DX04), Carcassonne, France, June 2004.

[Ledeczi, et al., 2001] Ledeczi A., Maroti M., Bakay A.,
Karsai G., Garrett J., Thomason IV C., Nordstrom G.,
Sprinkle J., Volgyesi P.: The Generic Modeling
Environment, Workshop on Intelligent Signal
Processing, Budapest, Hungary, May 17, 2001.

[Williams and Ragno, 2003] Brian C. Williams, and
Robert Ragno. Conflict-directed A* and its Role in
Model-based Embedded Systems, Special Issue on
Theory and Applications of Satisfiability Testing,
Journal of Discrete Applied Math, January 2003.

[Balaban, et al., 2007] Edward Balaban, Howard Cannon,
Sriram Narasimhan, and Lee Brownston. Model-Based
Fault Detection and Diagnosis System for NASA Mars
Subsurface Drill Prototype, IEEE Aerospace
Conference, Big Sky, Montana, March 3-10, 2007.

[Scott Poll, et. al., 2007] Scott Poll, et. al. Evaluation,
Selection, and Application of Model-Based Diagnostic
Tools and Approaches, AIAA Infotech@Aerospace
2007, Rohnert Park, CA, May 7-10.

