
Automated Assume-Guarantee Reasoning by
Abstraction Refinement

Mihaela Gheorghiu Bobaru1,2, Corina S. Păsăreanu1, and Dimitra Giannakopoulou1

1 PSGS and RIACS, NASA Ames Research Center,
Moffett Field, CA 94035, USA

2 Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada
mg@cs.toronto.edu,

{corina.s.pasareanu,dimitra.giannakopoulou}@nasa.gov

Abstract. Current automated approaches for compositional model checking in
the assume-guarantee style are based on learning of assumptions as deterministic
automata. We propose an alternative approach based on abstraction refinement.
Our new method computes the assumptions for the assume-guarantee rules as
conservative and not necessarily deterministic abstractions of some of the compo-
nents, and refines those abstractions using counterexamples obtained from model
checking them together with the other components. Our approach also exploits
the alphabets of the interfaces between components and performs iterative refine-
ment of those alphabets as well as of the abstractions. We show experimentally
that our preliminary implementation of the proposed alternative achieves similar
or better performance than a previous learning-based implementation.

1 Introduction

Despite impressive recent progress in the application of model checking to the verifi-
cation of realistic systems, the essential challenge in model checking remains the well-
known state-space explosion problem [8]. Compositional techniques attempt to tame
this problem by applying verification to individual components and merging the results
without analyzing the whole system. In checking components individually, it is often
necessary to incorporate some knowledge of the context in which each component is
expected to operate correctly. Assume-guarantee reasoning [13, 15] addresses this is-
sue by using assumptions that capture the expectations that a component makes about
its environment. Assumptions have traditionally been developed manually, which has
limited the practical impact of assume-guarantee reasoning.

In recent work, automation has been achieved through learning-based techniques [10].
The L* learning algorithm [2] is used to generate the assumptions needed for the
assume-guarantee rules. The simplest such rule checks if a system composed of com-
ponents M1 and M2 satisfies a property P by checking that M1 under assumption A
satisfies P (Premise 1) and discharging A on the environment M2 (Premise 2). For
safety properties, Premise 2 amounts to checking that A is a conservative abstraction
of M2, i.e., an abstraction that preserves all of M2’s execution paths. This rule is also
represented as follows, where the notation is described in more detail in Section 2.

(Premise 1) 〈A〉M1 〈P 〉
(Premise 2) 〈true〉M2 〈A〉

〈true〉M1 ‖ M2 〈P 〉
(1)

Learning-based assume-guarantee verification is an iterative process, during which L*
makes conjectures in the form of automata that represent intermediate assumptions.
Each conjectured assumption A is used to check the two premises of Rule 1. The pro-
cess ends if A passes both premises of the rule, in which case the property holds in the
system, or if it uncovers a real violation. Otherwise, a counterexample is returned and
L* modifies the conjecture. Similar approaches are proposed in [1, 4, 17]; the work in
[12] uses sampling rather than L* to learn the assumptions in a similar way.

In this paper we propose an alternative approach, AGAR (Assume-Guarantee Ab-
straction Refinement), that automates assume-guarantee reasoning by iteratively com-
puting assumptions as conservative abstractions of the interface behavior of M2, i.e.,
the behavior that concerns the interaction with M1. In each iteration, the computed as-
sumption A satisfies Premise 2 of the Rule 1 by construction and it is only checked for
Premise 1. If the check is successful, we conclude that M1 ‖ M2 satisfies the property;
if the check fails, we get a counterexample trace that we analyze to see if it corresponds
to a real error in M1 ‖ M2 or it is spurious due to the over-approximation in the ab-
straction. If it is spurious, we used it to refine A and then repeat the entire process.
Unlike learning-based assumption generation, AGAR does not constrain assumptions
to be deterministic. Therefore the assumptions constructed with AGAR can be (po-
tentially) exponentially smaller than those obtained with learning, resulting in smaller
verification problems.

To reduce the assumption sizes even further, we also combine the abstraction re-
finement with an orthogonal technique, interface alphabet refinement, which extends
AGAR so that it starts the construction of A with a small subset of the interface alphabet
and adds actions to the alphabet as necessary until the required property is shown to hold
or to be violated in the system. Actions to be added are discovered also by counterex-
ample analysis. We introduced alphabet refinement in [11] for learning-based assume-
guarantee reasoning; we adapt it here for AGAR3. We have implemented AGAR with
alphabet refinement in the explicit state model checker LTSA [14] and performed a se-
ries of experiments that demonstrate that it can achieve better performance than L* for
Rule 1 above.

Related work. AGAR is a variant of the well-known CEGAR (Counter Example-
Guided Abstraction Refinement) [7] with the notable differences that the computed
abstractions keep information only about the interface behavior of M2 that concerns
the interaction with M1 while it abstracts away its internal behavior, and that the coun-
terexamples used for the refinement of M2’s abstractions are obtained in an assume-
guarantee style by model checking the other component, M1.

CEGAR has been used before in compositional reasoning in [5]). In that work, a
conservative abstraction of every component is constructed and then all the resulting
abstractions are composed and checked. If the check passes, the verification concludes

3 Note that [6] introduced a related alphabet minimization technique for L* as well.

2

a) b)

Input:

Output:

π

0 2

ack

sendinput

send output

send

output

input

inputoutput

0 1

0 1 2

ack

1

Fig. 1. (a) Example LTSs; (b) Order property.

successfully, otherwise the resulting abstract counterexample is analyzed on every ab-
straction that is refined if needed. The work does not use assume-guarantee reasoning,
it does not address the reduction of the interface alphabets and it has not been compared
with learning-based techniques.

A comparison of learning and CEGAR-based techniques has been performed in [3]
but for a different problem: the ”interface synthesis” for a single component whose
environment is unknown. In our context, this would mean generating an assumption
that passes Premise 1, in the absence of a second component against which to check
Premise 2. The interface being synthesized by the CEGAR-based algorithm in [3] is
built as an abstraction of M1. The work does not apply reduction to interface alphabets,
nor does it address the verification of the generated interfaces against other components,
i.e., completing the assume-guarantee reasoning.

2 Preliminaries

Labeled Transition Systems (LTSs). We model components as finite-state labeled
transition systems (LTSs), as considered by LTSA. Let U be the universal set of ob-
servable actions and let τ denote a special action that is unobservable.

An LTS M is a tuple 〈Q,Σ, δ, q0〉, where: Q is a finite non-empty set of states;
Σ ⊆ U is the alphabet of M ; δ ⊆ Q× (Σ ∪{τ})×Q is a transition relation, and q0 is
the initial state. We write (q, a, q′) ∈ δ as q

a→ q′. An LTS M is non-deterministic if it
contains τ -transitions or if ∃(q, a, q′), (q, a, q′′) ∈ δ such that q′ 6= q′′. Otherwise, M is
deterministic. π denotes an error state with no outgoing transitions, and Π denotes the
LTS 〈{π},U, ∅, π〉. Let M = 〈Q,Σ, δ, q0〉 and M ′ = 〈Q′, Σ′, δ′, q′0〉; M transits into
M ′ with action a, denoted M

a→ M ′, if (q0, a, q′0) ∈ δ and either Q = Q′, Σ = Σ′,
and δ = δ′ for q′0 6= π, or, in the special case where q′0 = π, M ′ = Π .
Parallel Composition. Parallel composition “‖” is a commutative and associative op-
erator such that: given LTSs M1 = 〈Q1, Σ1, δ

1, q1
0〉 and M2 = 〈Q2, Σ2, δ

2, q2
0〉,

M1 ‖ M2 is Π if either one of M1, M2 is Π . Otherwise, M1 ‖ M2 is an LTS
M = 〈Q,Σ, δ, q0〉 where Q = Q1 × Q2, q0 = (q1

0 , q2
0), Σ = Σ1 ∪ Σ2, and δ is

defined as follows (the symmetric version also applies): M1 ‖ M2
a→ M ′

1 ‖ M2 if
M1

a→ M ′
1, a /∈ Σ2, and M1 ‖ M2

a→ M ′
1 ‖ M ′

2 if M1
a→ M ′

1, M2
a→ M ′

2, a 6= τ .
As an example [10], consider a simple communication channel that consists of two

components whose LTSs are shown in Fig. 1(a).

3

Paths and traces. A path in an LTSs M = 〈Q,Σ, δ, q0〉 is a sequence p of alternating
states and (observable or unobservable actions) of M , p = qi0 , a0, qi1 , a1, . . . , an−1, qin

such that for every k ∈ {0, . . . , n− 1} we have (qik
, ak, qik+1) ∈ δ.

The trace of path p, denoted σ(p) is the sequence b0, b1, . . . , bl of actions along
p, obtained by removing all τ from a0, . . . , an−1. A state q reaches a state q′ in M

with a sequence of actions t, denoted q
t⇒ q′, if there exists a path p from q to q′ in

M whose trace is t, i.e., σ(p) = t. A trace of M is the trace of a path in M starting
from q0. The set of all traces of M forms the language of M , denoted L(M). For any
trace t = a0, a1, . . . , an−1, a trace LTS can be constructed whose only transitions are
q0

a0→ q1
a1→ q2 . . .

an−1→ qn. We sometimes abuse the notation and denote by t both a
trace and its trace LTS. The meaning should be clear from the context. For Σ′ ⊆ Σ,
t↓Σ′ is the trace obtained by removing from t all actions a /∈ Σ. Similarly, M↓Σ′ is an
LTS over Σ obtained from M by renaming to τ all the action labels not in Σ. Let t1, t2
be two traces. Let Σ1, Σ2 be the sets of actions occurring in t1, t2, respectively. By the
symmetric difference of t1 and t2 we mean the symmetric difference of sets Σ1 and Σ2.
Safety properties. A safety LTS is a deterministic LTS not containing π. A safety prop-
erty P is a safety LTS whose language L(P) defines the acceptable behaviors over ΣP .

An LTS M = 〈Q,Σ, δ, q0〉 satisfies P = 〈QP , ΣP , δP , qP
0 〉, denoted M |= P , iff

∀t ∈ L(M) · t↓ΣP∈ L(P). For checking a property P , its safety LTS is completed
by adding error state π and transitions on all the missing outgoing actions from all
states into π so that the resulting transition relation is (left-)total (when seen as in (Q×
(Σ ∪ {τ}))×Q) and deterministic; the resulting LTS is denoted by Perr. LTSA checks
M |= P by computing M ‖ Perr and checking if π is reachable in the resulting LTS.

For example, the Order property in Fig. 1(b) states that inputs and outputs come in
matched pairs, with the input always preceding the output. The dashed arrows represent
transitions to the error state that were added to obtain Ordererr.
Assume-guarantee triples. An assume-guarantee triple 〈A〉M〈P 〉 is true if whenever
component M is part of a system satisfying assumption A, the system must also guar-
antee property P . In LTSA, this reduces to checking whether A ‖ M |= P .
Learning assumptions with L*. Previous work [10] uses the L* algorithm [2] to it-
eratively learn the assumption A for Rule 1, as a deterministic finite state automaton.
L* needs to interact with a teacher that answers queries and validates conjectures. For
membership queries on string s, the teacher uses LTSA to check 〈s〉M1 〈P 〉; if true,
then s ∈ L(A) and the Teacher returns “true”. Otherwise, the answer to the query
is “false”. The conjectures returned by L* are intermediate assumptions; the teacher
implements two oracles to validate these conjectures: Oracle 1 guides L* towards a
conjecture that makes 〈A〉M1 〈P 〉 true and then Oracle 2 is invoked to discharge A
on M2. If this is also true, then the assume guarantee rule ensures that P holds on
M1 ‖ M2; the teacher returns “true” and the computed assumption A. If model check-
ing returns “false”, the returned counterexample is analyzed to determine if P is indeed
violated in M1 ‖ M2 or if A is imprecise due to learning, in which case A is modified
and the process repeats. If A has n states, L* makes at most n−1 incorrect conjectures.
The number of membership queries made by L* is O(kn2 + n log m), where k is the
size of A’s alphabet and m is the length of the longest counterexample returned when a
conjecture is made.

4

Interface alphabet. When reasoning in an assume-guarantee style, there is a natural
notion of the complete interface between M1 and M2, when property P is checked.
Let M1 = 〈Q1, Σ1, δ

1, q1
0〉 and M2 = 〈Q2, Σ2, δ

2, q2
0〉 be LTSs modeling two compo-

nents and let P = 〈QP , ΣP , δP , qP
0 〉 be a safety property. The interface alphabet ΣI is

defined as ΣI = (Σ1 ∪ΣP) ∩Σ2.

3 Motivating Example

We motivate our approach using the input-output example from Section 2. We show
that even on this simple example AGAR leads to smaller assumptions in fewer iter-
ations than the learning approach, and therefore it potentially leads faster to smaller
verification problems.

Let M1 = Input, M2 = Output, and P = Order. As mentioned, we aim to automati-
cally compute an assumption according to Rule 1. Instead of “guessing” an assumption
and then checking both premises of the rule, as in the learning approaches, we build
an abstraction that satisfies Premise 2 by construction. Therefore, all that needs to be
checked is Premise 1.

The initial abstraction A of Output is illustrated in Figure 2(a). Its alphabet consists
of the interface between Input and the Order property on one side, and Output on the
other, i.e., the alphabet of A is ΣI = {(ΣInput ∪ ΣOrder) ∩ ΣOutput. The LTS A is con-
structed simply by mapping all concrete states in Output to the same abstract state 0
which has a self-loop on every action in ΣI and no other transitions. By construction,
A is an overapproximation of M2, i.e., L(M2↓ΣI

) ⊆ L(A), and therefore Premise 2
〈true〉M2 〈A〉 holds. Checking Premise 1 of the assume-guarantee rule using A as the
assumption fails, with abstract counterexample: 0, output, 0. We simulate this coun-
terexample on M2 and find that it is spurious (i.e., it does not correspond to a trace in
M2), therefore A needs to be refined so that the refined abstraction no longer contains
this trace. We split abstract state 0 into two new abstract states: abstract state 0, repre-
senting concrete states 0 and 2 that do not have an outgoing output action, and abstract
state 1, representing concrete state 1 that has an outgoing output action, and adjust the
transitions accordingly. The refined abstraction A′, shown in Figure 2(a), is checked
again for Premise 1 and this time it passes, therefore AGAR terminates and reports that
the property holds.

The sequence of assumptions learned with L* is shown in Figure 2(b). The assump-
tion computed by AGAR thus has two states fewer than that obtained from learning and
is computed in two fewer iterations.

4 Assume-Guarantee Abstraction Refinement (AGAR)

The abstraction refinement presented here is an adaptation of the CEGAR framework
of [7], with the following notable differences: 1) abstraction refinement is performed
in the context of LTSs; abstract transitions for LTSs are computed using closure with
respect to actions that are not in their interface alphabet, and 2) counterexample analy-
sis is performed in an assume-guarantee style: a counterexample obtained from model
checking one component is used to refine abstractions of a different component.

5

A:

A0:

A3:A2:

A1:

A′:

(a) (b)

1

ackoutput
send

2

send

sendack

10

ack

send
output

send

10

send
outputack

0

0 1

send

output

ack
send

ack

0

2

ack

outputsend

3

ackoutput
send

sendack
send

send

0
output

Fig. 2. Assumptions computed (a) with our algorithm and (b) with L*.

In this section, we start by describing, independently of the assume-guarantee rule,
abstraction refinement as applied to LTSs. We then describe how we use this abstrac-
tion refinement in an iterative algorithm (AGAR) that computes assumptions for Rule 1.
Later on, we combine AGAR with an orthogonal algorithm that performs iterative re-
finement of the interface alphabet between the analyzed components.

4.1 Abstraction refinement for LTSs
Abstraction. Let C = 〈QC , ΣC , δC , qC

0 〉 be an LTS that we refer to as concrete. Let al-
phabet ΣA be such that ΣA ⊆ ΣC . An abstraction A of C is an LTS 〈QA, ΣA, δA, qA

0 〉
such that there exists a surjection α : QC → QA, called the abstraction function, that
maps each concrete state qC ∈ QC to an abstract state qA ∈ QA; qA

0 must be such that
α(qC

0) = qA
0 . The concretization function γ : QA → 2QC is defined for any qA ∈ QA

as γ(qA) = {qC ∈ QC | α(qC) = qA}. Note that γ induces a partition on QC , namely
{γ(qA) | qA ∈ QA}.

To define the abstract transition relation δA, we first introduce the notion of reach-
ability with respect to a subset alphabet. For qC ∈ C, a ∈ ΣC , we define the set
ReachableC(qC , a, ΣA) of concrete states qC

i reachable from qC on action a, under the
transitive closure of δC over actions in (ΣC \ΣA) ∪ {τ}:

ReachableC(qC , a, ΣA) = {qC
i ∈ C|∃t, t′ ∈ ((ΣC\ΣA)∪{τ})∗·qC t⇒ qC

i or qC t,b,t′⇒ qC
i }.

We define the abstraction to be existential, but using ReachableC instead of the
usual transition relation of C [7]: ∃(qA

i , a, qA
j) ∈ δA iff

∃qC
i , qC

j ∈ C · α(qC
i) = qA

i , α(qC
j) = qA

j , and qC
j ∈ ReachableC(qC

i , a, ΣA) (2)

From the above definition and that of weak simulation [16], it follows that the abstrac-
tion defines a weak simulation relation between C↓ΣA

and A. It is known that weak
simulation implies trace inclusion [16]. We therefore have the following:

6

Algorithm 1 CEGAR for LTSs with respect to subset alphabets
Inputs: Concrete LTS C, its abstraction A, and an abstract counterexample p =

qA
0 , a1, q

A
1 , a2, . . . , an, qA

n in A.
Outputs: a concrete counterexample t, if p is not spurious, or a refined abstraction A′ without

path p, if p is spurious.
1: i ← 0
2: S0 ← {qC

0 }
3: while Si 6= ∅ ∧ i ≤ n− 1 do
4: i ← i + 1
5: Si ← γ(qA

i) ∩ ReachableC(Si−1, ai, ΣA)
6: end while
7: if Si = ∅ then
8: split qA

i−1 into two new abstract states xA
i−1, z

A
i−1 s.t. γ(xA

i−1) = γ(qA
i−1) ∩ {qC |

ReachableC(qC , ai, ΣA) ∩ qA
i 6= ∅}, γ(zA

i−1) = γ(qA
i−1) \ γ(xA

i−1)
9: build new abstraction A′ with QA′ = QA \ {qA

i−1} ∪ {xA
i−1, z

A
i−1}

10: change only incoming and outgoing transitions for qA
i−1 in A to/from {xA

i−1, z
A
i−1} in

refined abstraction A′, according to Definition 2
11: return A′

12: else
13: return concrete trace t ← σ(p)
14: end if

Proposition 1. Given concrete LTS C and and its abstraction A defined as above,
L(C↓ΣA) ⊆ L(A), and consequently 〈true〉 C 〈A〉 hold.

The CEGAR algorithm for LTSs is defined by Algorithm 1. It takes as inputs a
concrete system C, an abstraction A (as defined above), and an abstract counterexample
path p (in A). The algorithm analyzes the counterexample (lines 1–6) to see if it is real,
in which case it is returned (line 13) or spurious, in which case it is used to refine the
abstraction (lines 7–11). The refined abstraction A′ is such that it no longer contains p.
We discuss Algorithm 1 in more detail below.

Analysis of abstract counterexamples. Suppose we have obtained an abstract coun-
terexample in the form of a path p = qA

0 , a1, q
A
1 , a2, . . . , an, qA

n in the abstraction A of
C. We want to determine if it corresponds to a concrete path in C. For this we need to
“play” (i.e. symbolically simulate) p in C from the initial state qC

0 . We do so considering
that ΣA ⊆ ΣC and thus we use ReachableC again.

We first extend ReachableC to sets: for S ⊆ QC , ReachableC(S, a, ΣA) = {qC
j ∈

C | ∃qC
i ∈ S.qC

j ∈ Reachable(qC
i , a, ΣA)}. We play the abstract counterexample p

following [7]. We start at step 0 with the set S0 = {qC
0 } of concrete states, and the first

transition qA
0

a1→ qA
1 from p. Note that S0 = {qC

0 }∩γ(qA
0). At each step i ∈ {1, . . . , n},

we compute the set Si = γ(qA
i) ∩ ReachableC(Si−1, ai, ΣA). If, for some i ≤ n, Si is

empty, the abstract counterexample is spurious and we need to refine the abstraction to
eliminate it. Otherwise, the counterexample corresponds to a concrete path.

Abstraction refinement. The abstraction refinement is performed in lines 8–10 of Al-
gorithm 1: p is spurious because abstract state qA

i−1 does not distinguish between two
disjoint, non-empty sets of concrete states [7]: (i) those that reach, with action ai, states

7

in the concretization of qA
i (these are the states defined as γ(xA

i−1) in line 8) and (ii)
those reached so far from qC

0 with the prefix a1, a2, . . . , ai−1, i.e., the states in Si−1.
To eliminate the spurious abstract path, we need to refine A by splitting its state

qA
i−1 into (at least) two new abstract states that separate the (concrete) states of types

(i) and (ii) (line 9). We split qA
i−1 into xA

i−1 where γ(xA
i−1) contains the set of states in

(i) and zA
i−1 where γ(zA

i−1) contains the set of states in (ii) and any remaining states
in γ(qA

i−1). Note that this results in a finer partition of the concrete states. After the
splitting, we update the abstract transitions in line 10. The refined abstraction A′ has
the same transitions as A except for those incoming or outgoing for the split state qA

i−1:
they are readjusted to point to or from the states xA

i−1, z
A
i−1 according to condition 2.

We therefore can conclude that:
Lemma 1. If a counterexample p input to Algorithm 1 is spurious, the returned ab-
straction A′ results in a strictly finer partition than A and does not contain p.

4.2 The AGAR Algorithm
The pseudocode that combines Algorithm 1 with Rule 1 is given in Algorithm 2. Recall
that ΣI denotes the alphabet (ΣM1 ∪ ΣP) ∩ ΣM2 of the interface between M1 and
M2, with respect to P . The algorithm checks that M1 ‖ M2 satisfies P using Rule 1.
It builds abstractions A of M2 in an iterative fashion (while loop at lines 2–15); these
abstractions are used to check Premise 1 of the assume guarantee rule using model
checking (lines 3–5). If the check is successful, then, according to the rule (and since
A satisfies Premise 2 by construction), P indeed holds in M1 ‖ M2 and the algorithm
returns ”true”. Otherwise, a counterexample p is obtained from model checking Premise
1 (line 7) and Algorithm 1 is invoked to check if p corresponds to a real path in M2 (in
which case it means p is a real error in M1 ‖ M2 and this is reported to the user in line
11). If p is spurious, Algorithm 1 returns a refined abstraction A′ for which we repeat
the whole process starting from checking Premise 1.
Obtaining an abstract counterexample. As mentioned, we use counterexamples from
failed checks of Premise 1 (that involves checking component M1) to refine abstractions
of M2. Obtaining an abstract counterexample involves several steps (lines 7–9). First,
a counterexample from line 4 is a path o = q0, b1, q1, b2, . . . , bl, ql in A ‖ M1 ‖ Perr.
Thus, for every i ∈ {0, l}, qi is a triple of states (qA

i , q1
i , pi) from A ×M1 × Perr. We

first project every triple on A to obtain the sequence o′ = qA
0 , b1, q

A
1 , b2, q

A
2 , . . . , blq

A
l ;

o′ is not yet a path in A as it may contain actions from M1 and Perr that are not observ-
able to A; those actions have to be between the same consecutive abstract states in the
sequence, since they do not change the state of A; we eliminate from o′ those actions
and the duplicate abstract states that they connect, and finally obtain p that we pass to
Algorithm 1.

Theorem 1. Our algorithm (AGAR) computes a sequence of increasingly refined ab-
stractions of M2 until both premises of Rule 1 are satisfied, and we conclude that the
property is satisfied by M1 ‖ M2, or a real counterexample is found that shows the
violation of the property on M1 ‖ M2.

Proof. Correctness The algorithm terminates when Premise 1 is satisfied by the current
abstraction or when a real counterexample is returned by Algorithm 1. In the former

8

Algorithm 2 AGAR: assume-guarantee verification by abstraction-refinement
Inputs: Component LTSs M1, M2, safety property LTS P , and alphabet ΣA = ΣI .
Outputs: true if M1 ‖ M2 satisfies P , false with a counterexample, otherwise.
Uses: Algorithm 1
1: Compute initial abstraction A of M2, with a single state qA

0 having self-loops on all actions
in ΣA

2: while true do
3: Check Premise 1: 〈A〉M1 〈P 〉
4: if successful then
5: return true
6: else
7: Get counterexample o = q0, b1, q1, b2, . . . , bl, ql from line 3, where each qi =

(qA
i , q1

i , pi)
8: Project o on A to get o′ = qA

0 , b1, q
A
1 , b2, q

A
2 , . . . bl, q

A
l

9: Project o′ on ΣA to get abstract counterexample p = qA
0 , a1, q

A
1 , . . . , an, qA

n in A.
10: end if
11: Call Algorithm 1 with inputs: M2, A, p
12: if Algorithm 1 returned real counterexample t then
13: return false with counterexample t
14: else
15: A = A′

16: end if
17: end while

case, since the abstraction satisfies Premise 2 by construction (Proposition 1), Rule 1
ensures that M1 ‖ M2 indeed satisfies P , so AGAR correctly returns answer ”true”.
In the latter case, the counterexample returned by Algorithm 1 is a common trace of
M1 and of M2 that leads to error in Perr. This shows that property P is violated on
M1 ‖ M2 and in this case again AGAR correctly returns answer ”false”.

Termination AGAR continues to refine the abstraction until a real counterexample is
reported or the property holds. Refining the abstraction always results in a finer partition
of its states (Lemma 1), and is thus guaranteed to terminate since in the worst case it
converges to M2 which is finite-state. ut

If M2 has n states, AGAR makes at most n refinement iterations, and in each it-
eration, counterexample analysis performs at most m closure operations, each of cost
O(n3), where m is the length of the longest counterexample analyzed. This bound is not
very tight as the closure steps are done on-the-fly to seldom exhibit worst-case behavior,
and actually involve only parts of M2’s transition relation as needed.

4.3 AGAR with interface alphabet refinement
In [11] we introduced an alphabet refinement technique to reduce the alphabet of the
assumptions learned with L*. This technique improved significantly the performance
of compositional verification. We show here how alphabet refinement can be similarly
introduced in AGAR. Instead of the full interface alphabet ΣI , we start AGAR from a
small subset ΣA ⊆ ΣI . A good strategy is to start from those actions in ΣI that appear
in the property to be verified, since the verification should depend on them. We then

9

Algorithm 3 AGAR with alphabet refinement
Inputs: Component LTSs M1, M2, safety property LTS P , and alphabet ΣA ⊆ ΣI .
Outputs: true if M1 ‖ M2 satisfies P , false with a counterexample, otherwise.
Uses: Algorithm 2
1: while true do
2: Call Algorithm 2 with M1, M2, P, ΣA.
3: if Algorithm 2 returned true then
4: return true
5: else
6: Obtain counterexample t = a1, . . . , an from Algorithm 2 and trace s = σ(o′) from

line 8 of Algorithm 2.
7: Check if error reachable in serr↓ΣI‖ M2 where serr↓ΣI is the trace-LTS ending with an

extra transition into error state π
8: if error reached then
9: return false with counterexample s↓ΣI

10: else
11: Compare t to s↓ΣI to find difference action set Σ
12: ΣA ← ΣA ∪Σ
13: end if
14: end if
15: end while

run Algorithm 2 with this small ΣA. Alphabet refinement introduces an extra layer of
approximation, due to the smaller alphabet being used.

The pseudocode is in Algorithm 3. This algorithm adds an outer loop to AGAR
(lines 1–15). At each iteration, it invokes AGAR (line 2) for the current alphabet ΣA.
If AGAR returns ”true”, it means that alphabet ΣA is enough for proving the property
(and ”true” is returned to the user). Otherwise, the returned counterexample needs to be
further analyzed (lines 5–13) to see if it corresponds to a real error (which is returned to
the user in line 9) or it is spurious due to the approximation introduced by the smaller
interface alphabet, in which case it is used to refine this alphabet (lines 11–12).

Additional counterexample analysis As explained in [11], when ΣA ⊂ ΣI , the coun-
terexamples obtained by applying Rule 1 may be spurious, in which case ΣA needs to
be extended. Intuitively, a counterexample is real if it is still a counterexample when
considered with ΣI . For counterexample analysis, we modify Algorithm 2 to also out-
put the trace s = σ(o′) of actions along the intermediate path o′ obtained at its line 8.
Since p is a path obtained from o′ by eliminating transitions labeled with actions from
ΣI \ΣA (See Section 4.2) and t = σ(p), it follows that s is an “extension” of t to ΣI .

We check whether s↓ΣI is a trace of M2 by making it into a trace LTS ending with
the error state π, and whose alphabet is ΣI (line 7). Since M2 does not contain π, the
only way to reach error is if s↓ΣI is a trace of M2; if we reach error, the counterexample
t is real. If s↓ΣI

is not a trace of M2, since t is, we need to refine the current alphabet
ΣA. At this point we have two traces, s↓ΣI

and t that agree with respect to ΣA and
only differ on the actions from ΣI \ ΣA; since one trace is in M2 and the other is not,
we are guaranteed to find in their symmetric difference at least an action that we can
add to ΣA to eliminate the spurious counterexample t. We include the new action(s)

10

Table 1. Comparison of AGAR and learning for 2 components, with and without alphabet refinement.

No alpha. ref. With alpha. ref.
Case

k AGAR Learning AGAR Learning Sizes
|A| Mem. Time |A| Mem. Time |A| Mem. Time |A| Mem. Time |M1 ‖ Perr| |M2|

Gas Station 3 16 4.11 3.33 177 42.83 – 5 2.99 2.09 8 3.28 3.40 1960 643
4 19 37.43 23.12 195 100.17 – 5 22.79 12.80 8 25.21 19.46 16464 1623
5 22 359.53 278.63 45 206.61 – 5 216.07 83.34 8 207.29 188.98 134456 3447

Chiron, 2 10 1.30 0.92 9 1.30 1.69 10 1.30 1.56 8 1.22 5.17 237 102
Property 2 3 36 2.59 5.94 21 5.59 7.08 36 2.44 10.23 20 6.00 30.75 449 1122

4 160 8.71 152.34 39 27.1 32.05 160 8.22 252.06 38 41.50 180.82 804 5559
5 4 55.14 – 111 569.23 676.02 3 58.71 – 110 – 386.6 2030 129228

Chiron, 2 4 1.07 0.50 9 1.14 1.57 4 1.23 0.62 3 1.06 0.91 258 102
Property 3 3 8 1.84 1.60 25 n jmj 4.45 7.72 8 2.00 3.65 3 2.28 1.12 482 1122

4 16 4.01 18.75 45 25.49 36.33 16 5.08 107.50 3 7.30 1.95 846 5559
5 4 52.53 – 122 134.21 271.30 1 81.89 – 3 163.45 19.43 2084 129228

MER 2 34 1.42 11.38 40 6.75 9.89 5 1.42 5.02 6 1.89 1.28 143 1270
3 67 8.10 247.73 335 133.34 – 9 11.09 180.13 8 8.78 12.56 6683 7138
4 58 341.49 – 38 377.21 – 9 532.49 – 10 489.51 1220.62 307623 22886

Rover Exec. 2 10 4.07 1.80 11 2.70 2.35 3 2.62 2.07 4 2.46 3.30 544 41

and then repeat AGAR with the new alphabet. Termination follows from the fact that
the interface alphabet is finite.

5 Evaluation

We implemented AGAR with alphabet refinement for Rule 1 in the LTSA tool. We
compared AGAR with learning based assume guarantee reasoning, using a similar ex-
perimental setup as in [11]. The case studies are: Gas Station (with 3 . . . 5 customers),
Chiron – a model of a GUI (with 2 . . . 5 event handlers), and two NASA models: MER
resource arbiter (with 2 . . . 4 threads competing for a common resource) and Rover,
with an executive and an event monitoring component. We first used the same two-
way decompositions of these models as described in [11]. For Gas Station and Chiron,
these decompositions were demonstrated to be the best for the performance of learning
(without alphabet refinement) among all possible two-way decompositions [9].

All experiments were performed on a Dell PC with a 2.8 GHz Intel Pentium 4 CPU
and a 1.0 GB RAM running Linux Fedora Core 4 and Sun’s Java SDK version 1.5.
We report the maximum assumption size (i.e., number of states) reached (”|A|”), the
memory consumed (”Mem.”) in MB, the time (”Time”) in seconds, and the numbers of
states on each side of the two-way decomposition: ”|M1 ‖ Perr|” and ”|M2|”. A ”–”
indicates that the limit of 1G of memory or 30 minutes has been exceeded. For those
cases, the other quantities are shown as they were when the limit was reached. We also
highlight in bold font the best results.

The results for the first set of experiments are shown in Table 1. Overall, AGAR
shows similar or better results than learning in more than half of the cases. From the
results, we noticed that the relative sizes of M1 ‖ Perr and M2 seem to influence the
performance of the two algorithms; e.g., for Gas Station, where M2 is consistently
smaller, AGAR is consistently better, while for Chiron, as the size of M2 becomes much
larger, the performance of AGAR seems to degrade. Furthermore, we observed that the
learning runs exercise more the first component, whereas AGAR exercises both. We

11

Table 2. Comparison of AGAR and learning for balanced decompositions.

No alpha. ref. With alpha. ref.
Case

k AGAR Learning AGAR Learning Sizes
|A| Mem. Time |A| Mem. Time |A| Mem. Time |A| Mem. Time |M1 ‖ P | |M2|

Gas Station 3 10 3.35 3.36 294 367.13 – 5 2.16 3.06 59 11.14 81.19 1692 1942
4 269 174.03 – 433 188.94 – 10 15.57 191.96 5 9.25 4.73 4608 6324
5 7 47.91 184.64 113 82.59 – 2 47.48 – 15 52.41 71.29 31411 32768

Chiron, 2 41 2.45 5.46 140 118.59 395.56 9 1.91 3.89 17 2.73 13.09 906 924
Property 2 3 261 81.24 710.1 391 134.57 – 79 39.94 663.53 217 36.12 – 6104 6026

4 54 7.11 37.91 354 383.93 – 45 9.55 121.66 586 213.78 – 1308 1513
5 402 73.74 – 112 90.22 – 33 19.66 157.35 46 30.05 686.37 11157 11748

Chiron, 2 2 0.98 0.37 40 5.21 8.30 2 1.02 0.49 3 1.04 0.91 168 176
Property 3 3 88 15.45 102.93 184 284.83 – 46 41.40 115.77 3 5.97 2.26 4240 4186

4 2 5.60 2.65 408 222.54 – 2 6.14 11.90 20 9.33 7.44 4156 4142
5 79 44.16 405.03 179 104.25 – 42 42.04 430.47 3 21.94 7.00 16431 16840

MER 4 9 27.62 – 311 104.72 – 2 27.60 – 10 65.42 35.78 10045 66230

therefore considered a second set of experiments were we tried to compare the relative
performance of the two approaches for two-way system decompositions that are more
balanced in terms of number of states.

We generated off-line all the possible two-way decompositions and chose those
minimizing the difference in number of states between M1 ‖ Perr and M2. The rest of
the setup remained the same. The results for these new decompositions are in Table 2
(for MER, in only one case we found a more balanced partition than previously). These
results show that with these new decompositions AGAR is consistently better in terms
of time (14/21 cases), memory (16/21 cases) and assumption size (16/21 cases)4. The
results also indicate that the benefits of alphabet refinement are more pronounced for
learning. The results are somewhat non-uniform as k increases because for each larger
value of k we re-computed balanced decompositions independently of those for smaller
values. This is why we even found smaller components for larger parameter, as for
Chiron, Property 2, k = 3 vs. k = 4.

6 Conclusions and Future Work

We have introduced an assume-guarantee abstraction-refinement technique (AGAR) as
an alternative to learning-based approaches. Our preliminary results clearly indicate
that the alternative is feasible. We are currently extending AGAR with the following
rule (for reasoning about n components).

(Premise 1) 〈A1〉M1 〈P 〉
(Premise 2) 〈A2〉M2 〈A1〉

. . .
(Premise n) 〈true〉Mn 〈An−1〉

〈true〉M1 ‖ M2 ‖ . . . ‖ Mn 〈P 〉

(3)

In previous work [11], learning with this rule overcame the intermediate state ex-
plosion related to two-way decompositions (i.e., when components are larger than the

4 We did not count the cases when both algorithms ran out of limits.

12

entire system). That helped us demonstrate better scalability of compositional vs. non-
compositional verification which we believe to be the ultimate test of any compositional
technique. We expect to similarly achieve better scalability for AGAR.

The implementation of AGAR for Rule 3 involves the creation of n − 1 instances
ARi of our abstraction-refinement code for computing each Ai as an abstraction of
Mi+1 ‖ Ai+1, except for An−1 which abstracts Mn . Counterexamples obtained from
(Premise 1) are used to refine the intermediate abstractions A1, . . . , An−1. When Ai is
refined, all the abstractions A1, . . . , Ai−1 are refined as well to eliminate the spurious
trace. In the future, we also plan to explore extensions of AGAR to liveness properties.
Acknowledgements. We thank Moshe Vardi and Orna Grumberg for helpful sugges-
tions and the CAV reviewers for their comments.

References
1. R. Alur, P. Madhusudan, and Wonhong Nam. “Symbolic Compositional Verification by

Learning Assumptions”. In Proc. of CAV’05, pages 548–562, 2005.
2. D. Angluin. “Learning regular sets from queries and counterexamples”. Inf. and Comp.,

75(2):87–106, Nov. 1987.
3. D. Beyer, T. A. Henzinger, and V. Singh. “Algorithms for Interface Synthesis”. In Proc. of

CAV’07, volume 4590 of LNCS, pages 4–19, 2007.
4. S. Chaki, E. M. Clarke, N. Sinha, and P. Thati. “Automated Assume-Guarantee Reasoning

for Simulation Conformance”. In Proc. of CAV’05, volume 3576 of LNCS, pages 534–547,
2005.

5. S. Chaki, J. Ouaknine, K. Yorav, and E. Clarke. “Automated Compositional Abstraction
Refinement for Concurrent C Programs: A Two-Level Approach”. ENTCS, 89(3), 2003.

6. S. Chaki and O. Strichman. “Optimized L*-Based Assume-Guarantee Reasoning”. In Proc.
of TACAS’07, volume 4424 of LNCS, pages 276–291, 2007.

7. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. “Counterexample-Guided Abstraction
Refinement”. In Proc. of CAV’00, volume 1855 of LNCS, pages 154–169, 2000.

8. E. M. Clarke, Orna Grumberg, and Doron Peled. “Model Checking”. MIT, 2000.
9. J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. “Breaking Up is Hard to Do: An Inves-

tigation of Decomposition for Assume-Guarantee Reasoning”. In Proc. of ISSTA’06, pages
97–108. ACM, 2006.

10. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. “Learning Assumptions for Com-
positional Verification”. In Proc. of TACAS’03, volume 2619 of LNCS, pages 331–346, 2003.

11. M. Gheorghiu, D. Giannakopoulou, and C. S. Pasareanu. “Refining Interface Alphabets for
Compositional Verification”. In Proc. of TACAS’07, volume 4424 of LNCS, pages 292–307,
2007.

12. A. Gupta, K. L. McMillan, and Z. Fu. “Automated Assumption Generation for Composi-
tional Verification”. In Proc. of CAV’07, volume 4590 of LNCS, pages 420–432, 2007.

13. C. B. Jones. “Specification and Design of (Parallel) Programs”. In Inf. Proc. 83: Proc. of
IFIP 9th World Congress, pages 321–332. IFIP: North Holland, 1983.

14. Jeff Magee and Jeff Kramer. Concurrency: State Models & Java Programs. John Wiley &
Sons, 1999.

15. A. Pnueli. “In Transition from Global to Modular Temporal Reasoning about Programs”. In
Logic and Models of Conc. Sys., volume 13, pages 123–144, 1984.

16. R.Milner. Communication and Concurrency. Prentice-Hall, New York, 1989.
17. N. Sinha and E. M. Clarke. “SAT-Based Compositional Verification Using Lazy Learning”.

In Proc. of CAV’07, volume 4590 of LNCS, pages 39–54, 2007.

13

