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Abstract 
This paper describes technical progress made in 

maturing ISHM technologies for hybrid diagnostic 

reasoners under NASA’s Exploration Systems 

Research & Technology (ESR&T) program by 

Northrop Grumman Corporation and its NASA 

partners at ARC, GRC, JPL, and JSC.  A layered 

architecture was developed that supports both 

distributed and hierarchical reasoning as well as 

interoperability and interchangeability of reasoning 

algorithms.  A hybrid reasoner using this architecture 

was to be demonstrated performing automated fault 

detection and isolation in an “Apollo 13”-like failure 

scenario. 

 

1. Introduction 
Future space exploration systems, such as the 

Crew Exploration Vehicle (CEV), lunar habitats, and 

Mars transfer vehicles, will require very robust on-

board diagnostic and prognostic reasoning capabilities 

to achieve the safety margins and self-reliance required 

for these increasingly ambitious missions.  While many 

diagnostic and prognostic reasoners exist, only a few 

have been validated in contexts other than very 

constrained laboratory demonstrations.  Furthermore, it 

is likely that an actual implementation of an Integrated 

Systems Health Management (ISHM) system will 

require that many different types of reasoners work 

together to generate candidate diagnosis for widely 

varying types of failures.  In essence, a hybrid 

reasoning architecture, in which different reasoners can 

communicate with each other, is required.  Such 

architectures have not been adequately demonstrated to 

date and require further development.  Furthermore, 

most reasoners have been tested only in isolation with 

little regard for interoperability and interchangeability.   

Faced with these issues, Northrop Grumman 

Corporation and its NASA partners (Ames Research 

Center - ARC, Glenn Research Center - GRC, and Jet 

Propulsion Laboratory – JPL, Johnson Space Center – 

JSC) led a project under NASA’s Exploration Systems 

Mission Directorate (ESMD) Exploration Systems 

Research and Technology (ESR&T) program to mature 

and validate critical ISHM technologies for application 

to future space exploration systems.  A key technical 

objective of this effort was to develop and demonstrate 

advanced diagnostic and prognostic hybrid reasoning 

algorithms produced by combining existing 

nonproprietary algorithms and software.  This included 

developing architectures and interfaces required to 

integrate different types of reasoning algorithms and 

achieve a level of “plug-and-play” interoperability and 

interchangeability.   

Since no single reasoning technology currently 

available has been shown to effectively handle all types 

of data (e.g. quantitative, qualitative, static, dynamic) 

and isolate complex interacting failures while operating 

in real-time on a distributed network, the thesis of this 

project is that hybrid reasoning systems offer a 

practical way of achieving these goals and providing 

the core of robust and flexible ISHM systems.  Hybrid 

reasoning systems, if properly designed, should exhibit 

synergies that leverage the strengths and compensate 

for any weaknesses in the component diagnostic 

algorithms.  For instance, a Kalman filter might be used 

to monitor the low-level closed-loop controlling the 

temperature of a heater (continuous variable state) 

while a model-based reasoner (MBR) [1] is used to 

diagnose faults associated with the heater switches 

(discrete states).  Such continuous and discrete state 

hybrid reasoners have been demonstrated previously 

[2].  In addition, if hierarchical reasoning is applied to 

system-level fault isolation by reasoning across 

multiple subsystem diagnoses, hybrid reasoning is 

practically unavoidable since the subsystems are likely 

to embody different types of reasoners.  For example, 

an ISHM system for a future manned exploration 

vehicle might have the power subsystem monitored by 

an MBR system, the Environmental Control & Life 

Support (ECLS) subsystem by a neural-network, and 

system-level reasoning and crew interface supported by 

a rule-based system. 

This paper describes technical progress in the 

areas of architecture, interfaces, hybrid reasoner 
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integration, and planned demonstrations.  Due to 

NASA budget constraints and priorities, the 

demonstration of the hybrid reasoner was not 

completed. However, significant background work was 

conducted in developing a general architecture for 

hybrid reasoner integration as well as the design of a 

proposed hybrid reasoner planned for demonstration on 

a simulation of an “Apollo-13”-inspired multi-level 

cascading failure scenario. 

 

2. Architectures for health management 
Integrating various types of diagnostic / prognostic 

algorithms to create a hybrid reasoning system requires 

an architecture that can satisfy competing demands.  

The architecture must be general enough to support a 

wide range of algorithms and diagnostic approaches, 

yet specific enough to maintain consistent states and 

mapping between different classes of reasoners in order 

to support interoperability and interchangeability.  It 

must also be capable of supporting both distributed and 

hierarchical reasoning. 

Two existing open standards which can provide 

the foundation for hybrid health management reasoning 

system architectures are:  International Organization 

for Standardization (ISO) 13374 [3] and Machinery 

Information Management Open Systems Alliance 

(MIMOSA) Open System Architecture for Condition 

Based Maintenance (OSA-CBM) [4][5]. 

The ISO 13374 standard addresses condition 

monitoring and diagnostics of machines.  The intent of 

ISO 13374 is to provide the basic requirements for 

open software specifications which will allow machine 

condition monitoring data and information to be 

processed.  This standard establishes general guidelines 

for software specifications related to data processing, 

communication, and presentation of machine condition 

monitoring and diagnostic information.  ISO 13374 

defines machine condition assessment using six 

distinct, layered, processing blocks.  OSA-CBM is an 

implementation of ISO 13374 targeted for real-time, 

on-board, and embedded condition-based maintenance 

system architectures, including those involving 

logically and/or physically distributed CBM software 

components.  

These standards embody a layered architecture 

where layers correspond to levels of signal, data, or 

information processing and information propagates 

between layers in a defined manner.   The layers are: 

 

Layer 1, Data Acquisition - Represents the software 

module that provides system access to digitized 

sensor or transducer data. 

Layer 2, Data Manipulation - Performs single 

and/or multi-channel signal transformations along 

with specialized feature extraction algorithms.   

Layer 3, State Detection - Identifies components 

that are outside anticipated operational envelopes 

and flags these components for assessment.  

Layer 4, Health Assessment - Provides a health 

assessment of the subsystem (e.g., nominal or off-

nominal/degraded in some specified way).   

Layer 5, Prognostics Assessment - Projects the 

current health state into the future including 

estimates of remaining useful life. 

Layer 6, Advisory  Generation – Provides 

appropriate advisory, caution, and warning messages 

in response to outputs from the lower level Fault 

Detection, Isolation, and Recovery (FDIR) functions, 

and handles requests from external control to 

respond to the current health situation. 

 

These standards, particularly OSA-CBM, were to 

be used as the basis for the hybrid system architecture.  

However, the original intent of OSA-CBM was to serve 

as an architecture for aircraft maintenance and safety 

critical health monitoring.  Thus the layers correlate 

most closely to maintenance functions rather than 

critical diagnostic reasoning functions.   This presented 

several problems.  First, the definitions of layers 2, 3, 

and 4 created some confusion as to which layer a 

reasoner belongs.  For example, BEAM, which is a 

signal-level analysis system, might be characterized as 

belonging to either layer 2 or 3.  Furthermore, the layer 

definitions were too coarse, especially between layers 3 

and 4, to represent the typical reasoning steps for 

model-based reasoners.  Finally and most importantly, 

the existing layers reflected no obvious concept of 

hierarchical reasoning.  It was therefore initially 

unclear how to correlate hierarchical reasoner 

operation to this layered representation. 

 

3.  Architecture for hybrid reasoning 
To satisfy the demands of hierarchical reasoning 

and facilitate modularity of reasoners such as a MBR 

system, we proposed the architecture depicted in 

Figure 1.  The architecture is layered like OSA-CBM, 

but with the layers now paralleling the processing steps 

of consistency-based reasoning [6].  In consistency-

based reasoning, the goal is to identify the faulty 

components that best account for the difference 

between predicted normal device behavior and 

observed (abnormal) behavior. Predicted behavior is 

inferred from a formal model of normal structure and 

behavior of the device.  While the layers are based on 

consistency-based reasoning, they remain general 



enough to accommodate a large number of diagnostic 

reasoning paradigms and algorithms.  The small 

changes in the layers and their definitions enable 

hierarchical reasoning while maintaining consistent 

states and mapping between layers. 

The development of interfaces and standards 

centered on the following five main reasoning layers in 

the architecture as indicated in Figure 1 as dark (brown 

colored) boxes:  

 

• Data Validation (DV) 

• Propagation and Prediction (P&P) 

• Hypothesis Generation (HG) 

• Hypothesis Testing (HT) 

• Hypothesis Discrimination (HD).   

 

After receiving the sensor data, the DV layer 

determines whether the information is valid and what 

state they are in.  This may be a simple binning 

operation where continuous values are translated into 

coarse discrete values, or a complex operation such as 

sensor state estimation using Kalman filters or feature-

based algorithms.  The P&P layer generates a list of 

discrepancies by comparing predicted sensor values to 

actual observed values.  Traditionally, these two layers 

are described as fault detection.  The HG layer 

generates a suspect for each discrepancy, which is a list 

of components where one’s failure accounts for the 

discrepancy.  In consistency-based reasoning, this 

function may be called conflict generation.  The HT 

layer generates a list of candidates, each of which is a 

minimally sized set of malfunctioning components that 

account for all observed discrepancies.  In consistency-

based reasoning, this function may be called diagnosis.  

Finally, the role of the HD layer is to refine the list of 

candidates by gathering more observations, i.e., 

evidence, either through passive or active means.  The 

combination of layers HG, HT, and HD is traditionally 

referred to as fault isolation. 

Consistent states and mapping between different 

classes of diagnostic algorithms are maintained by 

establishing standards for the processed output 

generated at each layer.  For example, the P&P layer 

generates discrepancies that follow the standard, 

regardless of whether the P&P layer represents a rule-

based, neural network, or Kalman filter algorithm.  

This enables interoperability and interchangeability of 

hybrid reasoner components.  Furthermore, this 

architecture supports both distributed and hierarchical 

reasoning.  It also supports distributed reasoning by 

allowing the layers to operate in parallel.  For example, 

it is possible for multiple independent algorithms to 

generate discrepancies in the P&P layer.  However, the 

Figure 1.  Proposed layered architecture for hybrid resoner. 
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powerful feature of this architecture is that it naturally 

supports hierarchical reasoning which enables system-

level health monitoring and isolation of faults across 

subsystems. At the subsystem-level, for example, the 

output of the HT or HD layer is a list of candidates 

(i.e., diagnoses for the subsystem).  At the system-level 

these sets of subsystem candidate diagnoses can be 

used as the set of discrepancies, i.e., the inputs for the 

HG layer.  In effect, the entire subsystem-level reasoner 

appears as a P&P layer to the system-level reasoner as 

shown in Figure 1.  This characteristic of the 

architecture enables the creation of hierarchies to any 

arbitrary number of levels, extending from simple 

subsystem- to–system hierarchies through arbitrarily 

extensive and complex “system-of-systems” 

hierarchies.  

 

3.1. Comparison to OSA-CBM 
The proposed reasoning layers are mapped to the 

OSA-CBM layers as shown in Figure 2.  The lowest 

layer, Hardware Proxy, spans two OSA-CBM layers, 

Data Acquisition and Data Manipulation.  The goal of 

the Hardware Proxy layer is to acquire signals from 

hardware and convert them into software readable 

format.  The two layers, DV and P&P, are spanned by 

a single OSA-CBM layer, State Detection.   The 

essential functions of these layers are to check for 

consistency of the sensor data and identify mismatches 

between the predicted and observed data. 

Significant differences in the arrangement of the 

layers are observed in the HG, HT, and HD layers 

which are simultaneously covered by the Health and 

Prognostic Assessment layers in OSA-CBM.  In the 

OSA-CBM architecture, health assessment and 

prognostic assessment are represented as serial 

operations.  In the proposed hybrid architecture, both 

are covered by the HG, HT, and HD layers because the 

reasoning process is essentially identical for diagnosis 

and prognosis.  The only difference is that, for 

prognostics, the reasoning is carried out using forecast 

sensor data rather than current data.  As previously 

noted, splitting the Health Assessment layer into HG, 

HT, and HD layers allows more modularity in the 

algorithms and natural hierarchies to be created.  The 

processed outputs of HT or HD from a lower level of 

the hierarchy can be thought of as the P&P layer for the 

hierarchy one level above. 

Finally, the Fault Mitigation layer performs one of 

the roles of the OSA-CBM Advisory Generation layer.  

In OSA-CBM, the advisory layer:  1) Informs the 

human and/or machine of faults.  2) Provides advice on 

how to handle the current fault situation.  The Fault 

Mitigation layer essentially performs the second of 

these functions.  In the proposed hybrid architecture, 

there is no explicit layer dedicated to generating output 

for humans and machines.  This function is expected to 

be carried out by external processes that intercept 

messages flowing between the layers. 

The benefits of the layer definitions proposed here 

are that they describe more accurately, and in greater 

detail, the reasoning process required to generate a 

diagnosis or health assessment.  In a sense, this 

formulation has exposed the sub-layers of the Health 

Assessment layer of OSA-CBM.  Exposing these layers 

facilitates the design of modular reasoning algorithms 

without having to build a monolithic, large, and/or 

complex software system to generate a complete health 

assessment.  For instance, if a faster and more efficient 

conflict generation algorithm is developed, it can be 

readily inserted into the HG layer without requiring 

changes to any of the other layers.  Finally, the 

proposed layered architecture now more explicitly 

embodies the concept of a hierarchy.  Within the 

standard OSA-CBM architecture it might be possible to 

construct a hierarchy of sorts by carefully crafting the 

output messages of the Advisory Generation layer for 

transmission to the Health Assessment layer of the next 

higher level in the hierarchy.  However, this is a 

relatively cumbersome ad-hoc method that may also 

violate basic OSA-CBM concepts. 

 

Figure 2.  Reasoner layers comparison to OSA-
CBM 
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4.  Demonstration of hybrid reasoning 
The proposed architecture and hybrid reasoner 

were to be demonstrated on an “Apollo-13”-like 

scenario.  The failure mode of the Apollo 13 lunar 

mission was an actual multi-point, cascading failure 

that is representative of an important class of complex, 

unexpected, life threatening, and failure modes.  These 

complex failure modes are still survivable given 

sufficiently rapid diagnosis, fault isolation, and 

selection and execution of recovery options as proven 

by the cooperative efforts of the Apollo 13 mission 

control team and crew [7][8].  However, if the 

communication system had also failed, or the crew was 

on a mission to Mars, for example, with 

communication delay times on the order of tens of 

minutes, the outcome is likely to have been less 

desirable.  Such events argue for an increased level and 

sophistication of automated on-board fault detection, 

isolation, and recovery for increasingly ambitious 

missions, such as those planned for the Moon and 

Mars.  Hybrid diagnostic reasoners can provide a key 

part of the solution to this problem.   

Because the failure is well documented, the 

scenario can also serve as a reference point by which to 

compare the manual detection and diagnosis times from 

Apollo 13 with the performance of a hybrid-reasoner-

based ISHM system.  To demonstrate the capabilities 

of a hybrid diagnostic reasoning system in this context, 

the Environmental Control and Life Support (ECLS), 

electrical power distribution, and fuel-cell cryogenic-

feed subsystems were chosen as the focal points for the 

demonstration as they represented the critical 

subsystems involved in the Apollo 13 failure. 

 

4.1. Reasoning technologies 
The constituent diagnostic algorithms provide the 

foundation of any reasoner technology.  The selection 

of candidate algorithms was based on three factors:  1) 

Diversity in the types or classes of the reasoning 

algorithms and their ability to analyze a wide variety of 

fault symptoms; 2) Maturity level of the software; 3) 

Existing algorithm expertise among the project team 

members.  The selected algorithms were: 

 

MEXEC (Model Executive) – A model-based 

diagnostic engine that uses knowledge compilation 

techniques for analyzing a set of N observations to 

rapidly determine the most likely states of a system in 

real-time.  A system is modeled as a network of 

interacting components, each of which is modeled as a 

state machine.  MEXEC can deal with common issues 

including limited observability and time-delayed 

symptoms.  MEXEC's diagnostic precision improves 

with increasing N at the cost of increased 

computational overhead [9]. 

BEAM (Beacon-based Exception Analysis for 

Multimissions) - A feature-based / statistical anomaly 

detector for real-time fault detection and 

characterization. An allowed set of behaviors is 

“learned” and deviations from this are noted and 

examined.  For each phase of normal operation, BEAM 

is trained on the nominal subsystem data.  Any 

deviation from the nominal behavior is tagged as 

anomalous.  A simple reasoner then generates a list of 

candidates (i.e., components or signals that are 

responsible for the anomaly) and tries to identify the 

type of anomaly.  In essence, BEAM takes quantitative 

measurements and converts them into qualitative 

measurements [10][11]. 

SHINE (Spacecraft Health Inference Engine) – 

A rule-based system designed to meet the needs of a 

reusable inference engine (expert system) for the 

purpose of monitoring, analysis, and diagnosis of real-

time and non-real-time systems.  The knowledge base 

(set of rules) is encoded as a set of propositional logic 

statements.  SHINE was designed to be efficient 

enough to operate in a real-time environment. 

HyDE (Hybrid Diagnostic Engine) – A model-

based diagnostic engine that uses candidate generation 

and consistency checking to diagnose discrete faults in 

stochastic hybrid systems.  HyDE can also deal with 

common issues such as limited observability, sensor 

noise, and time-delayed symptoms [12]. 

 

The reasoners encompassed three classes of 

algorithms: 1) feature-based reasoning; 2) rule-based 

reasoning; and 3) model-based reasoning.  These 

choices were deemed sufficient to demonstrate and 

validate the architecture and interfaces. 

 

4.2. Integration 
As mentioned previously, the selection of 

reasoners was based upon their availability and 

maturity, the expertise of the project team members, 

and the classes of reasoners represented.  The strengths 

and weaknesses of each reasoner were compared to the 

characteristics and response times associated with 

subsystem and system-level diagnostic requirements.  

This evaluation led to the assignment of reasoners to 

subsystems and/or system-level diagnostic tasks that 

would take best advantage of those capabilities.  For 

example, the SHINE-BEAM-MEXEC combination 

provided the fastest response time and was therefore 

chosen to monitor the power distribution system 

because it had the most demanding response time 

requirements (on the order of tens of milliseconds).   



The resulting hierarchical architecture, mapping of the 

reasoners to subsystems for the demonstration, and 

interfaces for each reasoner are shown in Figure 3. 

 

The HyDE reasoner was selected to monitor the 

power cryogenic and the environmental control and life 

support (ECLS) subsystems.  The HyDE reasoner 

spans all of the reasoning layers, from DV to HT.  

HyDE was originally based on its own custom internal 

architecture.  The effort to adapt HyDE to the proposed 

hybrid architecture was delayed due to resource 

limitations.  Therefore, HyDE was used primarily to 

demonstrate interface standards and the hierarchical 

reasoning capabilities facilitated by the hybrid 

architecture. 

The first set of reasoners to demonstrate the 

layered reasoning approach is the SHINE-BEAM-

MEXEC combination.  SHINE encompassed the DV 

layer, where it translates the continuous sensor readings 

into discrete states and report the readings to MEXEC.  

Also residing in the DV layer, BEAM would detect any 

anomalies in the dynamics of the associated sensor(s), 

which would be passed on as sensor state 

measurements to MEXEC in the P&P layer.  MEXEC, 

which also includes the HG and HT layers, would 

employ the sensor state information from the DV layer 

(BEAM and SHINE) to generate candidate diagnoses.  

The layers supported by the reasoners are listed in 

Table 1. 

The candidate diagnoses generated by the 

subsystem reasoners, HyDE and SHINE-BEAM-

MEXEC, would be sent as states of an abstract 

subsystem sensor the MEXEC system-level diagnostic 

reasoner.  The role of the system-level MEXEC 

reasoner is to narrow down the list of subsystem 

candidates by eliminating those that are not consistent 

with all of the diagnoses of other subsystems.  MEXEC 

was chosen for the system-level reasoner because 

model-based reasoners provide greater formalism for 

modeling the subsystem interactions.  System-level 

reasoners have traditionally been developed using rule-

based systems which are typically very system specific, 

sometimes ad-hoc, and not easily generalized.  One of 

the related research goals included the development of 

a general framework for applying model-based 

reasoners to system-level reasoning tasks. 

 

Table 1:  Reasoner and layer correspondence 

Layer HyDE SHINE BEAM 

 

MEXEC 

D V X X X  

P & P X   X 

H G X   X 

H T X   X 

Figure 3.  Demonstration reasoner architecture and interfaces. 
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4.3. System-level reasoning 
An area that received special attention was the 

information exchanged between subsystem and system-

level reasoners.  Typically, the output of the HT layer 

at the subsystem level is a set of candidate diagnoses.  

A problem for the system-level reasoner is the sheer 

number and combinations of candidate diagnoses that 

could be received from subsystems.  The proposed 

solution to this problem is to reduce the number of 

candidate diagnoses conveyed to the system-level 

reasoner by using abstract states to instead describe the 

categories in which the set of subsystem diagnoses fall.  

That is, instead of reporting every set of candidate 

diagnoses, the subsystem reasoners would report their 

diagnoses in the form of abstract candidate diagnoses 

“states”.   The system level reasoner then finds the 

consistent states for the subsystems and these found 

states subsequently narrow the number of subsystem 

diagnoses.  For instance, suppose that subsyetem 

diagnoses for power distribution in Apollo 13 resulted 

in 10 candidates partitioned as in figure 4.  While these 

candidates are consistent with all information that the 

subsystem diagnoser has access to, the system level has 

access to diagnoses of the power source.  If the source 

cannot provide power, then the distribution system has 

no power either, resulting in only one candidate being 

globally consistent. 

The main motivation behind the abstract 

subsystem states is to keep the system level from 

having to reason with too many low level details.  If the 

subsystem reasoner does not provide an abstracted 

description of its diagnosis, and could instead identify a 

potentially huge set of candidate diagnoses, the system-

level reasoner would effectively need to “understand” 

and internally track every potential state of the 

subsystems to perform its own diagnosis.   This, in 

effect, would also mean that the system-level reasoner 

would require a redundant model of the entire system, 

eliminating the need for  separate subsystem reasoners 

and negating the advantages of hierarchical reasoning 

in reducing computational and modeling costs. 

 

 
 

Figure 4.  Power distribution subsystem state 
abstractions for system-level diagnostic 
evaluation. 

 

4.4. Interface 
The actual implementation of the hybrid reasoners 

requires a definition of the interface standards 

(messages) between the reasoning layers.  The main 

consideration for the initial draft was the essential 

information that needs to be exchanged between layers 

to maintain consistent states and mapping.  The initial 

draft did not consider message types and any schema. 

The essential information that needs to be passed 

from one layer to the next higher layer was identified 

as: 

 

1. DV: time, sensor list, states/values, and 

confidence (likelihood)  

2. P&P:  time, sensor list, mismatched 

states/values, and confidence (likelihood)  

3. HG: time, component list, suspected mode 

states, and confidence (likelihood) 

4. HT: time, component list (or abstracted 

component list), mode states, confidence 

(likelihood) 

 

Information exchange between the reasoning 

layers was to be implemented in a manner consistent 

with the proposed OSA-ISHM architecture.  This 

would be accomplished by mapping the reasoning 

layers into corresponding OSA-ISHM layers as shown 

in Figure 2.   For example, the P&P reasoning layers 

map into a single OSA-ISHM State Detection (SD) 

layer while the HG and HT layers map into the OSA-

ISHM Health Assessment (HA) layer.  SD and HA 

messages would then be defined and used to convey 

state abstractions and diagnostic information between 

layers.   

 

5. Conclusion 
The essential technologies and architecture for 

creating hybrid reasoners using nonproprietary 

algorithms and software were presented.  The 

architecture is layered in a manner inspired by, and 

similar to, OSA-CBM, but with the layers paralleling 

the reasoning steps of consistency-based reasoning 

methods.  While the layers are based on consistency-

based reasoning, they remain generic enough to 

accommodate a large number of diagnostic reasoning 

paradigms and algorithms.  However, the layers are 

also specific enough to maintain consistent states and 

mappings between different classes of reasoners to 

support interoperability and interchangeability.  The 

proposed layers are also capable of supporting both 

distributed and hierarchical reasoning architectures. 
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The layered architecture as well as the hybrid 

reasoner was to be demonstrated on an “Apollo 13”-

like multi-subsystem cascading failure scenario.  A 

MEXEC-BEAM-SHINE combination hybrid reasoner 

was being developed to monitor the power distribution 

subsystem, while the HyDE hybrid reasoner was to 

monitor the ECLS and power cryogenic subsystems.  A 

second MEXEC process was to serve as the system-

level reasoner.  Although the hybrid reasoning system 

was not fully implemented due to the premature 

cancellation of the project, significant technical 

progress was made by the project team in the areas of 

architecture, interfaces, hybrid reasoner integration, 

demonstration concept development, and subsystem 

simulations. 
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