

Modular Architecture for Hybrid Diagnostic Reasoners

Han G. Park
1,2

, Anthony Barrett
1
, Erwin Baumann

2
, Michael Grage

2
, Sriram Narasimhan

3

Jet Propulsion Laboratory
1
, Northrop Grumman Corporation

2
, NASA Ames Research Center

3

Han.Park@ngc.com

Abstract
This paper describes technical progress made in

maturing ISHM technologies for hybrid diagnostic

reasoners under NASA’s Exploration Systems

Research & Technology (ESR&T) program by

Northrop Grumman Corporation and its NASA

partners at ARC, GRC, JPL, and JSC. A layered

architecture was developed that supports both

distributed and hierarchical reasoning as well as

interoperability and interchangeability of reasoning

algorithms. A hybrid reasoner using this architecture

was to be demonstrated performing automated fault

detection and isolation in an “Apollo 13”-like failure

scenario.

1. Introduction
Future space exploration systems, such as the

Crew Exploration Vehicle (CEV), lunar habitats, and

Mars transfer vehicles, will require very robust on-

board diagnostic and prognostic reasoning capabilities

to achieve the safety margins and self-reliance required

for these increasingly ambitious missions. While many

diagnostic and prognostic reasoners exist, only a few

have been validated in contexts other than very

constrained laboratory demonstrations. Furthermore, it

is likely that an actual implementation of an Integrated

Systems Health Management (ISHM) system will

require that many different types of reasoners work

together to generate candidate diagnosis for widely

varying types of failures. In essence, a hybrid

reasoning architecture, in which different reasoners can

communicate with each other, is required. Such

architectures have not been adequately demonstrated to

date and require further development. Furthermore,

most reasoners have been tested only in isolation with

little regard for interoperability and interchangeability.

Faced with these issues, Northrop Grumman

Corporation and its NASA partners (Ames Research

Center - ARC, Glenn Research Center - GRC, and Jet

Propulsion Laboratory – JPL, Johnson Space Center –

JSC) led a project under NASA’s Exploration Systems

Mission Directorate (ESMD) Exploration Systems

Research and Technology (ESR&T) program to mature

and validate critical ISHM technologies for application

to future space exploration systems. A key technical

objective of this effort was to develop and demonstrate

advanced diagnostic and prognostic hybrid reasoning

algorithms produced by combining existing

nonproprietary algorithms and software. This included

developing architectures and interfaces required to

integrate different types of reasoning algorithms and

achieve a level of “plug-and-play” interoperability and

interchangeability.

Since no single reasoning technology currently

available has been shown to effectively handle all types

of data (e.g. quantitative, qualitative, static, dynamic)

and isolate complex interacting failures while operating

in real-time on a distributed network, the thesis of this

project is that hybrid reasoning systems offer a

practical way of achieving these goals and providing

the core of robust and flexible ISHM systems. Hybrid

reasoning systems, if properly designed, should exhibit

synergies that leverage the strengths and compensate

for any weaknesses in the component diagnostic

algorithms. For instance, a Kalman filter might be used

to monitor the low-level closed-loop controlling the

temperature of a heater (continuous variable state)

while a model-based reasoner (MBR) [1] is used to

diagnose faults associated with the heater switches

(discrete states). Such continuous and discrete state

hybrid reasoners have been demonstrated previously

[2]. In addition, if hierarchical reasoning is applied to

system-level fault isolation by reasoning across

multiple subsystem diagnoses, hybrid reasoning is

practically unavoidable since the subsystems are likely

to embody different types of reasoners. For example,

an ISHM system for a future manned exploration

vehicle might have the power subsystem monitored by

an MBR system, the Environmental Control & Life

Support (ECLS) subsystem by a neural-network, and

system-level reasoning and crew interface supported by

a rule-based system.

This paper describes technical progress in the

areas of architecture, interfaces, hybrid reasoner

klittle
Note
#65

klittle
Note
insert blank lines

integration, and planned demonstrations. Due to

NASA budget constraints and priorities, the

demonstration of the hybrid reasoner was not

completed. However, significant background work was

conducted in developing a general architecture for

hybrid reasoner integration as well as the design of a

proposed hybrid reasoner planned for demonstration on

a simulation of an “Apollo-13”-inspired multi-level

cascading failure scenario.

2. Architectures for health management
Integrating various types of diagnostic / prognostic

algorithms to create a hybrid reasoning system requires

an architecture that can satisfy competing demands.

The architecture must be general enough to support a

wide range of algorithms and diagnostic approaches,

yet specific enough to maintain consistent states and

mapping between different classes of reasoners in order

to support interoperability and interchangeability. It

must also be capable of supporting both distributed and

hierarchical reasoning.

Two existing open standards which can provide

the foundation for hybrid health management reasoning

system architectures are: International Organization

for Standardization (ISO) 13374 [3] and Machinery

Information Management Open Systems Alliance

(MIMOSA) Open System Architecture for Condition

Based Maintenance (OSA-CBM) [4][5].

The ISO 13374 standard addresses condition

monitoring and diagnostics of machines. The intent of

ISO 13374 is to provide the basic requirements for

open software specifications which will allow machine

condition monitoring data and information to be

processed. This standard establishes general guidelines

for software specifications related to data processing,

communication, and presentation of machine condition

monitoring and diagnostic information. ISO 13374

defines machine condition assessment using six

distinct, layered, processing blocks. OSA-CBM is an

implementation of ISO 13374 targeted for real-time,

on-board, and embedded condition-based maintenance

system architectures, including those involving

logically and/or physically distributed CBM software

components.

These standards embody a layered architecture

where layers correspond to levels of signal, data, or

information processing and information propagates

between layers in a defined manner. The layers are:

Layer 1, Data Acquisition - Represents the software

module that provides system access to digitized

sensor or transducer data.

Layer 2, Data Manipulation - Performs single

and/or multi-channel signal transformations along

with specialized feature extraction algorithms.

Layer 3, State Detection - Identifies components

that are outside anticipated operational envelopes

and flags these components for assessment.

Layer 4, Health Assessment - Provides a health

assessment of the subsystem (e.g., nominal or off-

nominal/degraded in some specified way).

Layer 5, Prognostics Assessment - Projects the

current health state into the future including

estimates of remaining useful life.

Layer 6, Advisory Generation – Provides

appropriate advisory, caution, and warning messages

in response to outputs from the lower level Fault

Detection, Isolation, and Recovery (FDIR) functions,

and handles requests from external control to

respond to the current health situation.

These standards, particularly OSA-CBM, were to

be used as the basis for the hybrid system architecture.

However, the original intent of OSA-CBM was to serve

as an architecture for aircraft maintenance and safety

critical health monitoring. Thus the layers correlate

most closely to maintenance functions rather than

critical diagnostic reasoning functions. This presented

several problems. First, the definitions of layers 2, 3,

and 4 created some confusion as to which layer a

reasoner belongs. For example, BEAM, which is a

signal-level analysis system, might be characterized as

belonging to either layer 2 or 3. Furthermore, the layer

definitions were too coarse, especially between layers 3

and 4, to represent the typical reasoning steps for

model-based reasoners. Finally and most importantly,

the existing layers reflected no obvious concept of

hierarchical reasoning. It was therefore initially

unclear how to correlate hierarchical reasoner

operation to this layered representation.

3. Architecture for hybrid reasoning
To satisfy the demands of hierarchical reasoning

and facilitate modularity of reasoners such as a MBR

system, we proposed the architecture depicted in

Figure 1. The architecture is layered like OSA-CBM,

but with the layers now paralleling the processing steps

of consistency-based reasoning [6]. In consistency-

based reasoning, the goal is to identify the faulty

components that best account for the difference

between predicted normal device behavior and

observed (abnormal) behavior. Predicted behavior is

inferred from a formal model of normal structure and

behavior of the device. While the layers are based on

consistency-based reasoning, they remain general

enough to accommodate a large number of diagnostic

reasoning paradigms and algorithms. The small

changes in the layers and their definitions enable

hierarchical reasoning while maintaining consistent

states and mapping between layers.

The development of interfaces and standards

centered on the following five main reasoning layers in

the architecture as indicated in Figure 1 as dark (brown

colored) boxes:

• Data Validation (DV)

• Propagation and Prediction (P&P)

• Hypothesis Generation (HG)

• Hypothesis Testing (HT)

• Hypothesis Discrimination (HD).

After receiving the sensor data, the DV layer

determines whether the information is valid and what

state they are in. This may be a simple binning

operation where continuous values are translated into

coarse discrete values, or a complex operation such as

sensor state estimation using Kalman filters or feature-

based algorithms. The P&P layer generates a list of

discrepancies by comparing predicted sensor values to

actual observed values. Traditionally, these two layers

are described as fault detection. The HG layer

generates a suspect for each discrepancy, which is a list

of components where one’s failure accounts for the

discrepancy. In consistency-based reasoning, this

function may be called conflict generation. The HT

layer generates a list of candidates, each of which is a

minimally sized set of malfunctioning components that

account for all observed discrepancies. In consistency-

based reasoning, this function may be called diagnosis.

Finally, the role of the HD layer is to refine the list of

candidates by gathering more observations, i.e.,

evidence, either through passive or active means. The

combination of layers HG, HT, and HD is traditionally

referred to as fault isolation.

Consistent states and mapping between different

classes of diagnostic algorithms are maintained by

establishing standards for the processed output

generated at each layer. For example, the P&P layer

generates discrepancies that follow the standard,

regardless of whether the P&P layer represents a rule-

based, neural network, or Kalman filter algorithm.

This enables interoperability and interchangeability of

hybrid reasoner components. Furthermore, this

architecture supports both distributed and hierarchical

reasoning. It also supports distributed reasoning by

allowing the layers to operate in parallel. For example,

it is possible for multiple independent algorithms to

generate discrepancies in the P&P layer. However, the

Figure 1. Proposed layered architecture for hybrid resoner.

Propagation
& Prediction

Subsystem System-level

Legend:

Primarily processing

(Layer)

Primarily processed

output

Discrepancies

Data Validation

Data generator
or processor

Measurements
& commandsHardware Proxy

Reports of invalid
or missing data

Discrepancies:
Mismatches between

prediction & observation

Suspects:
Lists of components
able to account for each
discrepancy

Candidates:
List of components whose
malfunctions account

for all discrepancies

Proposed fault mitigation
Strategies & plan

Data / results

Propagation &
Prediction (P&P)

Hypothesis
Generation (HG)

Hypothesis
Testing (HT)

Hypothesis
Discrimination (HD)

Fault
mitigation

Candidates:
(a reduced set via probing

and/or active testing)

Forecast

F
a
u
lt D

ete
ctio

n
F

a
u
lt Iso

latio
n

F
a
u
lt

R
ec

o
v
e
ry

Prognostics

Hardware System

Candidates:

List of components whose

malfunctions account

for all discrepancies

Proposed fault mitigation

Strategies & plan

Hypothesis

testing

Hypothesis

discrimination

Fault

mitigation

Candidates:

(a reduced set via probing

and/or active testing)
Prognostics

Hypothesis

Generation

Suspects:

List of components whose

Able to account for each

discrepancy

powerful feature of this architecture is that it naturally

supports hierarchical reasoning which enables system-

level health monitoring and isolation of faults across

subsystems. At the subsystem-level, for example, the

output of the HT or HD layer is a list of candidates

(i.e., diagnoses for the subsystem). At the system-level

these sets of subsystem candidate diagnoses can be

used as the set of discrepancies, i.e., the inputs for the

HG layer. In effect, the entire subsystem-level reasoner

appears as a P&P layer to the system-level reasoner as

shown in Figure 1. This characteristic of the

architecture enables the creation of hierarchies to any

arbitrary number of levels, extending from simple

subsystem- to–system hierarchies through arbitrarily

extensive and complex “system-of-systems”

hierarchies.

3.1. Comparison to OSA-CBM
The proposed reasoning layers are mapped to the

OSA-CBM layers as shown in Figure 2. The lowest

layer, Hardware Proxy, spans two OSA-CBM layers,

Data Acquisition and Data Manipulation. The goal of

the Hardware Proxy layer is to acquire signals from

hardware and convert them into software readable

format. The two layers, DV and P&P, are spanned by

a single OSA-CBM layer, State Detection. The

essential functions of these layers are to check for

consistency of the sensor data and identify mismatches

between the predicted and observed data.

Significant differences in the arrangement of the

layers are observed in the HG, HT, and HD layers

which are simultaneously covered by the Health and

Prognostic Assessment layers in OSA-CBM. In the

OSA-CBM architecture, health assessment and

prognostic assessment are represented as serial

operations. In the proposed hybrid architecture, both

are covered by the HG, HT, and HD layers because the

reasoning process is essentially identical for diagnosis

and prognosis. The only difference is that, for

prognostics, the reasoning is carried out using forecast

sensor data rather than current data. As previously

noted, splitting the Health Assessment layer into HG,

HT, and HD layers allows more modularity in the

algorithms and natural hierarchies to be created. The

processed outputs of HT or HD from a lower level of

the hierarchy can be thought of as the P&P layer for the

hierarchy one level above.

Finally, the Fault Mitigation layer performs one of

the roles of the OSA-CBM Advisory Generation layer.

In OSA-CBM, the advisory layer: 1) Informs the

human and/or machine of faults. 2) Provides advice on

how to handle the current fault situation. The Fault

Mitigation layer essentially performs the second of

these functions. In the proposed hybrid architecture,

there is no explicit layer dedicated to generating output

for humans and machines. This function is expected to

be carried out by external processes that intercept

messages flowing between the layers.

The benefits of the layer definitions proposed here

are that they describe more accurately, and in greater

detail, the reasoning process required to generate a

diagnosis or health assessment. In a sense, this

formulation has exposed the sub-layers of the Health

Assessment layer of OSA-CBM. Exposing these layers

facilitates the design of modular reasoning algorithms

without having to build a monolithic, large, and/or

complex software system to generate a complete health

assessment. For instance, if a faster and more efficient

conflict generation algorithm is developed, it can be

readily inserted into the HG layer without requiring

changes to any of the other layers. Finally, the

proposed layered architecture now more explicitly

embodies the concept of a hierarchy. Within the

standard OSA-CBM architecture it might be possible to

construct a hierarchy of sorts by carefully crafting the

output messages of the Advisory Generation layer for

transmission to the Health Assessment layer of the next

higher level in the hierarchy. However, this is a

relatively cumbersome ad-hoc method that may also

violate basic OSA-CBM concepts.

Figure 2. Reasoner layers comparison to OSA-
CBM

Data Validation

Hardware Proxy

Propagation &

prediction

Hypothesis

generation

Hypothesis

testing

Hypothesis

discrimination

Fault

mitigation

F
a

u
lt D

e
te

c
tio

n
F

a
u

lt Is
o

la
tio

n

F
a

u
lt

R
e

c
o

v
e

ry

Data Acquisition (DA) (L1)

Data Manipulation (DM) (L2)

State Detection (SD) (L3)

Health

Assessment
(HA) (L4)

Prognostic
Assessment

(PA) (L5)

Advisory Generation (AG) (L6)

4. Demonstration of hybrid reasoning
The proposed architecture and hybrid reasoner

were to be demonstrated on an “Apollo-13”-like

scenario. The failure mode of the Apollo 13 lunar

mission was an actual multi-point, cascading failure

that is representative of an important class of complex,

unexpected, life threatening, and failure modes. These

complex failure modes are still survivable given

sufficiently rapid diagnosis, fault isolation, and

selection and execution of recovery options as proven

by the cooperative efforts of the Apollo 13 mission

control team and crew [7][8]. However, if the

communication system had also failed, or the crew was

on a mission to Mars, for example, with

communication delay times on the order of tens of

minutes, the outcome is likely to have been less

desirable. Such events argue for an increased level and

sophistication of automated on-board fault detection,

isolation, and recovery for increasingly ambitious

missions, such as those planned for the Moon and

Mars. Hybrid diagnostic reasoners can provide a key

part of the solution to this problem.

Because the failure is well documented, the

scenario can also serve as a reference point by which to

compare the manual detection and diagnosis times from

Apollo 13 with the performance of a hybrid-reasoner-

based ISHM system. To demonstrate the capabilities

of a hybrid diagnostic reasoning system in this context,

the Environmental Control and Life Support (ECLS),

electrical power distribution, and fuel-cell cryogenic-

feed subsystems were chosen as the focal points for the

demonstration as they represented the critical

subsystems involved in the Apollo 13 failure.

4.1. Reasoning technologies
The constituent diagnostic algorithms provide the

foundation of any reasoner technology. The selection

of candidate algorithms was based on three factors: 1)

Diversity in the types or classes of the reasoning

algorithms and their ability to analyze a wide variety of

fault symptoms; 2) Maturity level of the software; 3)

Existing algorithm expertise among the project team

members. The selected algorithms were:

MEXEC (Model Executive) – A model-based

diagnostic engine that uses knowledge compilation

techniques for analyzing a set of N observations to

rapidly determine the most likely states of a system in

real-time. A system is modeled as a network of

interacting components, each of which is modeled as a

state machine. MEXEC can deal with common issues

including limited observability and time-delayed

symptoms. MEXEC's diagnostic precision improves

with increasing N at the cost of increased

computational overhead [9].

BEAM (Beacon-based Exception Analysis for

Multimissions) - A feature-based / statistical anomaly

detector for real-time fault detection and

characterization. An allowed set of behaviors is

“learned” and deviations from this are noted and

examined. For each phase of normal operation, BEAM

is trained on the nominal subsystem data. Any

deviation from the nominal behavior is tagged as

anomalous. A simple reasoner then generates a list of

candidates (i.e., components or signals that are

responsible for the anomaly) and tries to identify the

type of anomaly. In essence, BEAM takes quantitative

measurements and converts them into qualitative

measurements [10][11].

SHINE (Spacecraft Health Inference Engine) –

A rule-based system designed to meet the needs of a

reusable inference engine (expert system) for the

purpose of monitoring, analysis, and diagnosis of real-

time and non-real-time systems. The knowledge base

(set of rules) is encoded as a set of propositional logic

statements. SHINE was designed to be efficient

enough to operate in a real-time environment.

HyDE (Hybrid Diagnostic Engine) – A model-

based diagnostic engine that uses candidate generation

and consistency checking to diagnose discrete faults in

stochastic hybrid systems. HyDE can also deal with

common issues such as limited observability, sensor

noise, and time-delayed symptoms [12].

The reasoners encompassed three classes of

algorithms: 1) feature-based reasoning; 2) rule-based

reasoning; and 3) model-based reasoning. These

choices were deemed sufficient to demonstrate and

validate the architecture and interfaces.

4.2. Integration
As mentioned previously, the selection of

reasoners was based upon their availability and

maturity, the expertise of the project team members,

and the classes of reasoners represented. The strengths

and weaknesses of each reasoner were compared to the

characteristics and response times associated with

subsystem and system-level diagnostic requirements.

This evaluation led to the assignment of reasoners to

subsystems and/or system-level diagnostic tasks that

would take best advantage of those capabilities. For

example, the SHINE-BEAM-MEXEC combination

provided the fastest response time and was therefore

chosen to monitor the power distribution system

because it had the most demanding response time

requirements (on the order of tens of milliseconds).

The resulting hierarchical architecture, mapping of the

reasoners to subsystems for the demonstration, and

interfaces for each reasoner are shown in Figure 3.

The HyDE reasoner was selected to monitor the

power cryogenic and the environmental control and life

support (ECLS) subsystems. The HyDE reasoner

spans all of the reasoning layers, from DV to HT.

HyDE was originally based on its own custom internal

architecture. The effort to adapt HyDE to the proposed

hybrid architecture was delayed due to resource

limitations. Therefore, HyDE was used primarily to

demonstrate interface standards and the hierarchical

reasoning capabilities facilitated by the hybrid

architecture.

The first set of reasoners to demonstrate the

layered reasoning approach is the SHINE-BEAM-

MEXEC combination. SHINE encompassed the DV

layer, where it translates the continuous sensor readings

into discrete states and report the readings to MEXEC.

Also residing in the DV layer, BEAM would detect any

anomalies in the dynamics of the associated sensor(s),

which would be passed on as sensor state

measurements to MEXEC in the P&P layer. MEXEC,

which also includes the HG and HT layers, would

employ the sensor state information from the DV layer

(BEAM and SHINE) to generate candidate diagnoses.

The layers supported by the reasoners are listed in

Table 1.

The candidate diagnoses generated by the

subsystem reasoners, HyDE and SHINE-BEAM-

MEXEC, would be sent as states of an abstract

subsystem sensor the MEXEC system-level diagnostic

reasoner. The role of the system-level MEXEC

reasoner is to narrow down the list of subsystem

candidates by eliminating those that are not consistent

with all of the diagnoses of other subsystems. MEXEC

was chosen for the system-level reasoner because

model-based reasoners provide greater formalism for

modeling the subsystem interactions. System-level

reasoners have traditionally been developed using rule-

based systems which are typically very system specific,

sometimes ad-hoc, and not easily generalized. One of

the related research goals included the development of

a general framework for applying model-based

reasoners to system-level reasoning tasks.

Table 1: Reasoner and layer correspondence

Layer HyDE SHINE BEAM

MEXEC

D V X X X

P & P X X

H G X X

H T X X

Figure 3. Demonstration reasoner architecture and interfaces.

MEXEC

MBR

BEAM

Statistical

SHINE
Rule-based

Power

Distribution
Sim

System-level

Subsystem

Interface

MEXEC

MBR

HYDE

Hybrid MBR

HYDE

Hybrid MBR

Power

Cryo
Sim

ECLS
Sim

Interface

Interface Interface

Interface Interface

Interface

Interf.

Data Validation

Hardware Proxy

Propagation &

prediction

Hypothesis

generation

Hypothesis

testing

Hypothesis

discrimination

Fault

mitigation

F
au

lt D
etectio

n
F

au
lt Iso

latio
n

F
au

lt

R
eco

v
ery

Interfaces

In
terfac

e

Interf.

4.3. System-level reasoning
An area that received special attention was the

information exchanged between subsystem and system-

level reasoners. Typically, the output of the HT layer

at the subsystem level is a set of candidate diagnoses.

A problem for the system-level reasoner is the sheer

number and combinations of candidate diagnoses that

could be received from subsystems. The proposed

solution to this problem is to reduce the number of

candidate diagnoses conveyed to the system-level

reasoner by using abstract states to instead describe the

categories in which the set of subsystem diagnoses fall.

That is, instead of reporting every set of candidate

diagnoses, the subsystem reasoners would report their

diagnoses in the form of abstract candidate diagnoses

“states”. The system level reasoner then finds the

consistent states for the subsystems and these found

states subsequently narrow the number of subsystem

diagnoses. For instance, suppose that subsyetem

diagnoses for power distribution in Apollo 13 resulted

in 10 candidates partitioned as in figure 4. While these

candidates are consistent with all information that the

subsystem diagnoser has access to, the system level has

access to diagnoses of the power source. If the source

cannot provide power, then the distribution system has

no power either, resulting in only one candidate being

globally consistent.

The main motivation behind the abstract

subsystem states is to keep the system level from

having to reason with too many low level details. If the

subsystem reasoner does not provide an abstracted

description of its diagnosis, and could instead identify a

potentially huge set of candidate diagnoses, the system-

level reasoner would effectively need to “understand”

and internally track every potential state of the

subsystems to perform its own diagnosis. This, in

effect, would also mean that the system-level reasoner

would require a redundant model of the entire system,

eliminating the need for separate subsystem reasoners

and negating the advantages of hierarchical reasoning

in reducing computational and modeling costs.

Figure 4. Power distribution subsystem state
abstractions for system-level diagnostic
evaluation.

4.4. Interface
The actual implementation of the hybrid reasoners

requires a definition of the interface standards

(messages) between the reasoning layers. The main

consideration for the initial draft was the essential

information that needs to be exchanged between layers

to maintain consistent states and mapping. The initial

draft did not consider message types and any schema.

The essential information that needs to be passed

from one layer to the next higher layer was identified

as:

1. DV: time, sensor list, states/values, and

confidence (likelihood)

2. P&P: time, sensor list, mismatched

states/values, and confidence (likelihood)

3. HG: time, component list, suspected mode

states, and confidence (likelihood)

4. HT: time, component list (or abstracted

component list), mode states, confidence

(likelihood)

Information exchange between the reasoning

layers was to be implemented in a manner consistent

with the proposed OSA-ISHM architecture. This

would be accomplished by mapping the reasoning

layers into corresponding OSA-ISHM layers as shown

in Figure 2. For example, the P&P reasoning layers

map into a single OSA-ISHM State Detection (SD)

layer while the HG and HT layers map into the OSA-

ISHM Health Assessment (HA) layer. SD and HA

messages would then be defined and used to convey

state abstractions and diagnostic information between

layers.

5. Conclusion
The essential technologies and architecture for

creating hybrid reasoners using nonproprietary

algorithms and software were presented. The

architecture is layered in a manner inspired by, and

similar to, OSA-CBM, but with the layers paralleling

the reasoning steps of consistency-based reasoning

methods. While the layers are based on consistency-

based reasoning, they remain generic enough to

accommodate a large number of diagnostic reasoning

paradigms and algorithms. However, the layers are

also specific enough to maintain consistent states and

mappings between different classes of reasoners to

support interoperability and interchangeability. The

proposed layers are also capable of supporting both

distributed and hierarchical reasoning architectures.

Space of computed diagnoses

partitioned by properties of

interest at system level

AC

Only

DC

Only
No

Power

AC & DC

Available

The layered architecture as well as the hybrid

reasoner was to be demonstrated on an “Apollo 13”-

like multi-subsystem cascading failure scenario. A

MEXEC-BEAM-SHINE combination hybrid reasoner

was being developed to monitor the power distribution

subsystem, while the HyDE hybrid reasoner was to

monitor the ECLS and power cryogenic subsystems. A

second MEXEC process was to serve as the system-

level reasoner. Although the hybrid reasoning system

was not fully implemented due to the premature

cancellation of the project, significant technical

progress was made by the project team in the areas of

architecture, interfaces, hybrid reasoner integration,

demonstration concept development, and subsystem

simulations.

6. Acknowledgements
This project was funded under the NASA’s

Exploration Systems Mission Directorate (ESMD)

Exploration Systems Research and Technology

(ESR&T) program. The authors would like to thank

Dr. Robert Morris of NASA Ames Research Center for

his guidance and support as NASA’s Contracting

Office Technical Representative (COTR), and Dan

Dvorak of JPL for his original discussions on

diagnostic reasoning methods.

7. References
[1] Williams, B.C., Nayak, P.P., “A Model-based Approach

to Reactive Self-Configuring Systems,” Proceedings of the

National Conference on Artificial Intelligence, 1996.

[2] Park, H.G., Cannon, H., Bajwa, A., Mackey, R., James,

M., Maul, W., “Hybrid Diagnostic System: Beacon-based

Exception Analysis for Multimissions - Livingstone

Integration,” Machinery Failure Prevention Technology

Conference, Virginia Beach, Virginia, April 2004.

[3] International Standard ISO 13374-1: Condition

monitoring and diagnostics (CM&D) of machines – Data

processing, communication and presentation – Part 1:

General Guidelines. http://www.iso.org/iso/en/

CatalogueDetailPage.CatalogueDetail?CSNUMBER=21832

[4] MIMOSA References: http://www.mimosa.org/

[5] OSA-CBM References: http://www.osacbm.org/

[6] Reiter, R., "A Theory of Diagnosis from First Principles,"

Artificial Intelligence, vol. 32, no. 1, pp. 57-96, 1987.

[7] Apollo Operations Handbook Block II Spacecraft,

Systems Data, Section 2, Subsection 2.6 Electrical Power

System, October 15, 1969.

[8] Cortright, Edgar M., “Apollo 13 Review Board Final

Report,” June 15, 1970.

[9] Barrett, A., “Model Compilation for Real-Time Planning

and Diagnosis with Feedback,” International Joint

Conference on Artificial Intelligence (IJCAI 2005),

Edinburgh, Scotland. July 2005.

[10] Park, H.G., Mackey, R., James, M., Zak, M., Baroth, E.,

“BEAM: Technology for Autonomous Vehicle Health

Monitoring,” CS/APS/PSHS/MSS JANNAF Meeting, Destin,

Florida, April 2002.

[11] Park, H.G., Zak, M., “Grey-box Approach for Fault

Detection of Dynamical Systems,” ASME Journal of Dyn.

Sys., Meas., & Control, Vol. 125, pp. 451-454, 2003.

[12] Narasimhan, S., Dearden, R., Benazera, E., “Combining

Particle Filters and Consistency-based Approaches for

Monitoring and Diagnosis of Stochastic Hybrid Systems,”

15th International Workshop on Principles of Diagnosis

(DX04), Carcassonne, France, June 2004.

