
Geometric Reasoning

Distribution
Category UC{705

SAND95{2423
Unlimited Release

Printed January 1997

About Assembly Tools

Randall H. Wilson

Intelligent Systems and Robotics Center

Sandia National Laboratories

Albuquerque, NM 87185-1008

December 13, 1996

Abstract

Planning for assembly requires reasoning about various tools used by humans, robots, or
other automation to manipulate, attach, and test parts and subassemblies. This paper presents
a general framework to represent and reason about geometric accessibility issues for a wide
variety of such assembly tools.

Central to the framework is a use volume encoding a minimum space that must be free in an
assembly state to apply a given tool, and placement constraints on where that volume must be
placed relative to the parts on which the tool acts. Determining whether a tool can be applied
in a given assembly state is then reduced to an instance of the FINDPLACE problem [28]. In
addition, we present more e�cient methods to integrate the framework into assembly planning.
For tools that are applied either before or after their target parts are mated, one method pre-
processes a single tool application for all possible states of assembly of a product in polynomial
time, reducing all later state-tool queries to evaluations of a simple expression. For tools ap-
plied after their target parts are mated, a complementary method guarantees polynomial-time
assembly planning.

We present a wide variety of tools that can be described adequately using the approach,
and survey tool catalogs to determine coverage of standard tools. Finally, we describe an
implementation of the approach in an assembly planning system and experiments with a library
of over one hundred manual and robotic tools and several complex assemblies.

Introduction

\Man is a tool-using animal. . . . Without tools he is nothing, with tools he is all." |
Thomas Carlyle, Sartor Resartus, book I, 1833.

Planning for assembly, servicing, and disassembly of a product is a critical step in the design
realization process for that product. In addition, assembly planning can supply important feedback
to help designers improve the design from a manufacturing standpoint. Computer-aided assembly
planning promises to reduce the labor required to produce assembly plans while increasing their
quality and completeness. Since the need to manipulate, attach, and test parts and subassemblies

leads to important constraints on assembly plans, methods must be developed to reason about
these constraints. This paper proposes an approach to cover a wide variety of such constraints and
describes an implementation of the approach in a prototype assembly planning system.

We focus on representing and reasoning about the geometric requirements of applying various
tools in assembly. Assembly tools are implements used to manipulate, attach, and test parts and
subassemblies during the processes of assembly and disassembly. Tools in this sense include manual
tools such as screwdrivers and hammers, robotic tooling such as welders and bolt drivers, and a
number of other items such as laser welders, riveters, and part-manipulation devices used in more
traditional automation. Inspection tools include robotic cameras, coordinate measuring machines,
and human eyesight. Although these may seem like a diverse group of implements, they all share
certain aspects that allow them to be reasoned about in a common way. We call the constraints
on assembly plans deriving from the need to use various tools in assembly or disassembly tool
constraints.

We present a framework to represent and reason about the geometric accessibility of tools in
assembly resulting in necessary constraints on assembly plans. We begin by classifying tools by
whether they are used before, during, or after mating of the parts upon which the tools act. A
use volume encodes a minimum space that must be free in a subassembly to apply the tool, and
placement constraints determine where that volume must be placed relative to a canonical reference
frame. A particular application of the tool then de�nes which parts of a product the tool acts upon
and places the tool's canonical reference frame at the position of required tool use.

Given this representation, a tool can be applied in a given subassembly only if a placement of its
use volume exists that satis�es the placement constraints and does not collide with any parts in the
subassembly. This is an instance of the FINDPLACE problem [28]. However, a typical assembly
planner will make many queries about tool accessibility for a single tool application. For tools that
are applied either before or after their target parts are mated (which includes the great majority of
tools), we describe polynomial-time methods to preprocess a single tool application for all possible
states of assembly of a product, reducing all later queries to evaluations of a simple expression.
Moreover, for tools that are applied after their target parts are mated, we present an extension
to previous assembly planning techniques that guarantees polynomial-time assembly planning with
tools.

While limited to geometric accessibility issues, the approach provides coverage for a wide variety
of assembly tools. We present a number of examples and survey catalogs of standard mechanical
tools to determine how well the approach covers typical assembly tools. We also describe an
implementation of the approach in an assembly planning system and show experiments with a
library of over one hundred manual and robotic tools and several complex assemblies.

The next section describes the problem of planning with tools in greater detail, motivates our
approach, and describes assumptions and limitations. Section 2 describes previous work addressing
this and related problems. Sections 3 and 4 present our framework for tool constraints. Section 5
gives examples of tools represented using the approach and the results of our tool catalog surveys.
Section 6 then shows how the constraints are evaluated for single operations as well as e�ciently
integrated into an assembly planning system. Section 7 describes our implementation and experi-
ments. Finally, Section 8 discusses several aspects of the approach, describes future work and open
issues, and concludes.

2

1 Problem and Motivation

\But lo! men have become the tools of their tools." | Henry David Thoreau, \Econ-
omy," 1854.

We are primarily interested in representing and reasoning about assembly tools because of their
impact on assembly plans and planning. Planning the assembly process for a complex product
is demanding and time-consuming, and costly mistakes are often made because the constraints
cannot be reasoned about and resolved accurately enough or quickly enough. Determining tool
access constraints in complex geometric situations is particularly di�cult for humans early in the
design process unless costly (in time and money) prototypes are fabricated. Automated or partially
automated methods to reason about tool constraints and assembly plans would help alleviate these
problems.

Although assembly planning is our main motivation and application area for reasoning about
tools, we hope that the framework developed here will be applicable to other areas where assembly
tools are used, such as assembly plan simulation, validation, and visualization. We believe that at
least some of these areas will be less demanding than assembly planning on the tool representation
and reasoning methods.

1.1 Assembly Planning

An assembly is a product consisting of two or more independently-fabricated pieces, called parts; a
subassembly is any nonempty subset of the parts of an assembly. An assembly plan for a product is
a sequence of motions and manipulations of the parts that transforms the individual parts into the
�nished product. Given a complete description of an assembly, assembly planning is the problem
of determining a feasible assembly plan for it. Closely related to assembly plans are disassembly
plans and service plans, the latter being plans for partial disassembly and re-assembly. The planning
techniques can di�er somewhat for these processes, but in this paper we will mainly discuss assembly
planning. Most of the methods transfer easily to disassembly and service planning.

In theory, a complete assembly plan includes every detail of the assembly process down to the
factory oor, including the motions of all parts, humans, and robots that put it together and full
descriptions of the �xtures, jigs, tools, etc. that are used. In practice, assembly plans are almost
never written down in that much detail; at the very least, line workers decide their own body
motions to assemble the product. The assembly process itself is its only true description. Instead,
representations of assembly plans are abstractions: they specify the assembly plan down to a certain
level of detail, and leave the corresponding complete plan to be determined.

Automated assembly planners therefore must plan for assembly at some level of abstraction.
Because they don't reason about the constraints below their abstraction level, they often produce
plans that, when those constraints are considered, are not feasible. This paper is intended as one
step further down the abstraction hierarchy, to generate assembly plans in more detail that are
therefore more likely to be feasible. Alternatively, the resulting planners will require less human
input in an interactive assembly planning system.

We will limit consideration tomonotone two-handed assembly plans [37, 39]. In an abstract view,
such plans consist of a sequence of operations, where each operation places two rigid subassemblies
S1 and S2 in their �nal relative positions via a mating trajectory t. Most industrial products are

3

made with monotone two-handed assembly plans. For an assembly with n parts, any monotone
two-handed assembly plan has n � 1 operations. At a lower level of abstraction, the operations
break down into many sub-operations, some of which involve the use of tools.

Disassembly planning is a standard approach to automatically generating monotone two-handed
assembly plans. The planner begins with the full assembly, and attempts to �nd a subassembly
that could be placed as the last operation. This is called the partitioning problem. If the planner
succeeds, then it partitions each of the two resulting subassemblies, and continues until individual
parts remain. Although we take this view throughout the paper, the tool framework is compatible
with other assembly planning approaches with some modi�cations.

1.2 Tool Constraints

A tool is an implement used to manipulate, attach, test, modify, or otherwise a�ect a part or
set of parts in an assembly. We call the constraints on assembly plans deriving from the need
to use various tools in assembly or disassembly tool constraints. Tool constraints are important
to consider when determining an assembly plan for and designing a product. In some cases, the
optimal assembly plan is determined by tool constraints. In others, the main goal is to ensure
assemblability with a given tool set that is already present in a facility or servicer's tool kit.

If standard tools cannot be used to implement a given assembly plan, then a di�erent plan must
be chosen, the product must be redesigned, or special-purpose tools must be fabricated. Figure 1
shows a set of tools whose only purpose is to solve geometric accessibility problems while servicing
a particular make of engine. Such special-purpose tools can be quite expensive, especially when
they must be distributed to and stored at every in-�eld service center for the product. Taking tool
constraints into account early in product design will help minimize the need for such tools.

In many cases process engineers �nd it di�cult to determine tool accessibility for assembly
operations. This is especially true in cramped spaces containing geometrically complex parts that
may interfere with the operation, such as inside the engine compartment of a modern automobile.
The problem is exacerbated by products designed by a large group of designers. Even when humans
can accurately determine the feasible uses of tools, automated assembly planners that include tool
constraints would produce assembly plans with less human e�ort, allowing the results to be used
earlier and more often in product realization and design-for-assembly.

1.3 Tool-Level Assembly Planning

Let a given use of a tool to a�ect a particular set of parts be called an application of that tool.
For instance, an application might be to use wrench2 to tighten bolt6 into block3. We assume
that an unordered list of all tool applications required during assembly is given as input to the
assembly planner. Note that in this model the tool applications required cannot depend on the
order of assembly: we do not allow constraints such as \attaching part A to part B requires tool
T only if part C is missing." We also assume that a tool is used within a single operation, i.e. it
is used just before, during, or just after a single mating of two subassemblies. This rules out, for
instance, including �xtures in our framework, because they a�ect multiple operations.

A tool-level assembly plan for a product is a sequence of part motions and tool applications
that will construct the product from its constituent parts. The plan must include all required tool
applications. Then the problem of tool-level assembly planning is the following: given an assembly

4

Figure 1: Special-purpose tools used to avoid geometric accessibility problems while servicing
engines from a single manufacturer [2]. Photo used by permission of Snap-on Inc.

and a list of tool applications, �nd a feasible tool-level assembly plan for the product, or determine
that no such plan exists. Because a tool-level assembly plan is an abstraction, such a feasible plan
may of course fail once lower-level details are considered.

The two main questions a tool-level assembly planner must be able to answer about any tool
are \When does this tool need to be used?" and \When can this tool be used?" In our approach,
the �rst issue is addressed by a tool's relative time (whether it is applied before, during, or after
the mating of parts) and the tool application's target part set, which determines the assembly
operations that the tool must be used to accomplish. We give necessary constraints for the sec-
ond issue by representing the tool's geometric requirements as a volume that must be free in the
assembly, together with constraints on the placement of that volume. This framework provides a
basic representation of tool accessibility constraints that is applicable to a wide variety of common
assembly tools and can be e�ciently used by an assembly planner.

1.4 Limitations of the Approach

This paper focuses on representing and reasoning about geometric accessibility issues regarding
the use of tools. Thus we are mainly concerned with the question \Is there space for this tool
to be used?" This is the main question product designers have told us they struggle with, and
we have attempted to design a framework for reasoning about geometric tool constraints that
captures as much of the issue as possible in a practical way. Although the framework does not
cover many other questions one might wish to ask about tools, and in fact does not completely
solve the geometric accessibility issue, we believe it achieves broad coverage and lays the foundation

5

for further extensions to address those other questions.
Among the issues we do not address are:

Determining Applications Many tool applications are speci�ed in the assembly design (such
as weld points and press �ts), or can be inferred easily from the CAD data (for instance,
that a screwdriver is needed to tighten each screw). Beyond that, automatically determining
required tool applications becomes a di�cult feature-recognition task.

The Tool Wielder Reasoning about the spatial requirements of the agent wielding the tool (a
robot or human arm, or hard automation) is beyond the scope of this work. Human hands in
particular are extremely exible, and determining automatically whether they (or mechanical
tool wielders) will be able to reach and manipulate a tool is very complex (see e.g. [25]). As a
result, the tool constraints considered in this paper are necessary but not su�cient constraints
on tool-level assembly plans.

Mechanics Which tools can accomplish a task often depends on non-geometric issues such as the
force that must be applied, accuracy required, expected deformation forces, possible damage
to the parts, and so on.

Optimal Tool-level Plans The desirability of using a certain tool can depend on many factors,
including the forces required, the speed and accuracy with which it can be used, and the tools
needed for previous and following operations. A planner based on our framework could easily
output a list of possible tools to accomplish each task, to support such optimization in a later
planning phase.

Tool Interaction There might be two tools required in an operation at the same time that in-
terfere with each other. We assume that the the feasibility of each tool can be determined
independently of other tools used (either simultaneously or in sequence) in the same operation.

Nonstandard Tools In some cases a special-purpose tool can be created when standard tools do
not su�ce, or a standard tool can be used in a nonstandard way (e.g. using a screwdriver to
pound a nail).

Design Changes The inability to use a standard tool often suggests that the design be changed
to allow such access, but we do not go beyond this observation.

Some of the above issues are addressed in previous work on reasoning about tools, given below. We
believe many of these issues can be addressed in the context of our framework, but they are not
the main focus of this work.

2 Previous Work

\You ought to be able to show that you can do it a good deal better than anyone else
with the regular tools before you have a license to bring in your own improvements."
| Ernest Hemingway (on punctuation), 1925. Selected Letters, 1981.

The previous work related to representing and reasoning about tool constraints can be roughly
divided into �ve parts: assembly sequencing work on \attachments," planning for machine tools,

6

general-purpose reasoning about tools, special-purpose planners for speci�c tools, and work on
estimating the di�culty of fastening operations when obstructions are present. In addition,
our approach to representing and reasoning about tool accessibility is based on now standard
con�guration-space techniques introduced by Lozano-P�erez [28].

2.1 Assembly Sequencing and Attachments

The past decade has seen a great deal of research on assembly planning and related topics (see,
e.g., [1, 19, 29]). Most focuses on graph-theoretic techniques and constraint languages and on
collision avoidance. However, much of this research points to a need for more rigorous and powerful
methods to reason about tool constraints.

For instance, Homem de Mello and Sanderson [18, 20] use a relational model of assemblies as the
basis of their assembly sequencing approach. The relational model includes attachments between
parts in the assembly, which correspond to fastening operations. Each attachment contains a list of
the other parts whose presence prevents the attachment from being accomplished.1 However, [18,
20] do not address how to determine which parts prevent which attachments. This paper provides
a partial answer.

Henrioud and Bourjault [16] use a similar product model, including attachment information.
However, their model does not represent parts that prevent attachments; instead, they defer to
the expert judgement of an engineer to determine the feasibility of an attachment in a given
subassembly. The answer is stored in a database of constraints on the assembly. This can cause
many hundreds of questions to be asked of the engineer, some of which can be very di�cult to
answer accurately in complex assemblies. As a result the system cannot reasonably be applied to
assemblies with more than about 20 parts.

Miller and Ho�man [30] describe a system that requires access space above screws, bolts, and
nuts before they can be removed. However, the tests used to determine access are very simple,
consisting of ray casting and box tests, and only approximately distinguish between feasible and
infeasible tool applications. It is also unclear how these tests could be generalized to other tool
requirements.

Other assembly planning systems described in the literature either take an approach similar to
the above systems, or do not consider tool constraints at all. Automated and general methods to
apply tool constraints would make these systems easier and more accurate to use.

2.2 Machine Tools

Reasoning about the e�ects and use of machine tools is a well-studied problem ([33] is a good
but slightly out-of-date survey). GARI [9] was an early example of a machining expert system,
compromising among pieces of advice to order machining operations, including choosing tools to
accomplish them. A recent comprehensive system is described in [31]. Practical methods to help
generate tool paths and check machining plans have matured to the point that they are now
regularly used in commercial CAD/CAM packages such as AutoCAD and Pro/ENGINEER .

1Note that it is not possible in the relational model to represent, for example, the statement \Attachment 1 is
prevented by Parts 1 and 2 together, but not by either alone." The model could be extended to represent such
constraints, but this does not help to derive them.

7

However, the constraints applying to the use of machine tools have little in common with assem-
bly tools. Machine tools are essentially subtractive in their e�ect|always removing material|and
are much more homogeneous than assembly tools, which vary widely in shape, purpose, and use.
Furthermore, the constraints on machining include such issues as cutting forces, �xturing, satisfying
tolerances, and material deformations that rarely appear in the same form in assembly. Finally,
machine tools are in the main applied to single parts, rather than assemblies, and do not a�ect the
assembly plan.

Note that in some cases a machine tool is applied to multiple assembled parts, such as when
parts are aligned then holes are drilled for fasteners. These operations are common in industries
such as aircraft construction and shipbuilding. We consider any tool applied to assembled parts to
be an assembly tool, and hope to handle these cases in our approach.

2.3 General-Purpose Tool Reasoning and Recognition

Initial work on an ambitious system to reason about tools and their uses was reported by Brady
et al. [6]. Their system, called \Mechanic's Mate," was to recognize tools from images, determine
their uses analogically or from �rst principles, and even design new tools automatically. However,
the project was canceled before signi�cant progress could be made. See [12] for a more recent e�ort
along these lines.

2.4 Special-Purpose Planners

Special-purpose systems have been created to reason about speci�c tools and plan their use. For
instance, in [34], the position and approach path are planned for a coordinate-measuring machine.
Determining visibility regions for a camera (in our de�nition, a camera is a tool when used to
facilitate or inspect an assembly operation) is closely related to aspect graphs in computer vision [26],
to which our methods have some mathematical similarities. Miller and Ho�man's constraints on
accessibility of screws and bolts fall into this category as well [30].

Robotic grippers are a special case of assembly tools that have been widely studied (see, e.g., [13,
21, 32, 35]). Grasp planning is quite relevant to assembly planning, since in robotic assembly
(and even in human assembly and hard automation) the need to grasp parts often determines the
feasibility of assembly mating operations. Particularly interesting for our purposes are approaches
that consider the surrounding environment and task to be performed in determining a grasp for
a part, such as in [21]. Although robotic grippers are within our de�nition of tools and we have
included some in our implementation, the methods of this paper do not adequately address the
versatility in using a pair of pliers or a robotic gripper (see Section 5), much less a human hand.

2.5 Quantifying Obstructed Access

Experiments have been performed on the time human workers take to execute certain mechanical
fastening operations under varying conditions [5]. The operations studied include screwing, nut
tightening, and pop riveting, using a variety of tools and under conditions ranging from normal to
obstructed access and restricted visibility conditions.

D��az-Calder�on et al [10] present progress toward automatically determining the di�culty of
using a screwdriver in a particular assembly operation. They assign qualitative costs to the available

8

Physical Tool

Canonical
Tool

Physical Tool

Canonical
Tool

Canonical
Tool

Canonical
Tool

Tool
Application

Tool
Application

Tool
Application

Tool
Application

Figure 2: Schematic of the tool constraint representation

access angle, operation angle, and clearance for a hand around the screwdriver, and compare these
to the values given in [5].

This paper aims to develop methods that can be used to reason about geometric accessibility
issues for a wide variety of assembly tools in a single framework. We expect most of the above work
to be complementary to our approach.

3 Representing Tools

\Intelligence. . . is the faculty of making arti�cial objects, especially tools to make tools."
| Henri Bergson, L'Evolution Cr�eatrice, 1907.

Our representation for tool constraints is divided into (1) information about a tool independent
of any assembly, and (2) information about an application of a tool in a particular assembly. The
information speci�c to a tool consists of the following three parts. A tool's relative time speci�es
whether the tool is applied before, during, or after the actual mating of parts in an operation. A
use volume is a minimum region of space that must be free in an assembly to e�ectively apply the
tool. Finally, the placement constraints are constraints on where the use volume can be located
relative to the parts the tool must act on. Together, these three pieces of information de�ne a
canonical tool. This section describes our representation of canonical tools in more detail. The
next section describes tool applications, which specify a particular need for a tool in an assembly.

This organization is illustrated graphically in Figure 2. A single physical tool may have several
canonical tools corresponding to the ways it can be used, and each canonical tool may have many
applications in an assembly. The job of an assembly planner is to determine part motions and order
the tool applications into a feasible assembly plan. Except where otherwise stated, \tool" in this
paper refers to a canonical tool.

We will illustrate each piece of the representation with the example of a simple open-end wrench,
shown in Figure 3. Other tool examples are given in Section 5.

9

Figure 3: An open-end wrench

3.1 Relative Time of Application

Tools have very di�erent characteristics (and will require di�erent reasoning methods) depending
on when they are applied relative to when the a�ected parts are mated. Hence we divide tools into
three sets:

Pre-tools are tools that are applied strictly before the parts are brought together. The best
example is a glue gun that is used to apply glue to one part before mating it with another.

In-tools are tools that are applied while the parts are being mated, i.e. while they are moving
relative to each other. Examples include wrenches, screwdrivers, and robotic grippers.

Post-tools are applied strictly after the parts have been mated in the target operation. Testing,
inspection, and many fastening tools such as welders and riveters are common examples.

The set a tool belongs to is called the tool's relative time.
The criteria to determine whether a tool can be applied in a given operation vary depending on

the tool's relative time. Pre-tools need only be feasible to apply to one of the two subassemblies
S1 or S2 mated in the operation, and post-tools need only be feasible in the resulting subassembly
S = S1 [S2. In-tools are the most complex case, since they must be feasible to apply to S1 and
S2 under a particular relative motion. In Section 6 we describe the methods used to determine the
feasibility of applying a tool.

Because of the complexity of reasoning about in-tools, it is often desirable to approximate them
as post-tools or pre-tools where appropriate. In fact, the wrench example (Figure 3) is one such
case. Although the wrench is employed while the bolt is moving, we instead represent the operation
as if the bolt does not move during the process, i.e. as a post-tool. Subsection 3.4 discusses this
issue in greater depth.

In some cases a single tool might be usable at di�erent relative times. For instance, a glue
gun might conceivably be used to apply glue to a part before mating it with another, but also to
apply glue to two parts that are already mated. We will consider these two ways of using the same
physical tool to be two distinct canonical tools for planning purposes. Assembly plans might be
desired that group operations using that glue gun on a single workcell to avoid tool duplication;
such considerations can be handled by grouping physical tools rather than canonical tools.

3.2 Use Volume

We represent the spatial constraints on applying tools as problems of placing certain volumes in
the assembly. The �rst and most obvious volume to consider is the tool volume, which is the spatial
extent of the tool itself. Figure 3 shows the tool volume for a simple open-end wrench. For some

10

tools, the tool volume is all that needs to be free in an assembly to apply the tool: to spot weld two
parts with a laser welder, only the space occupied by the welding machine and laser beam must be
free of obstructions.

However, many tools move when in use. Let a tool use volume be a minimum volume that must
be free in the assembly for the tool to be applied. For pre- and post-tools, a placement of the use
volume must exist in a subassembly such that the use volume does not intersect any parts of the
subassembly. For in-tools, the use volume has a more complex meaning: there must be a placement
of the use volume in subassembly S1 such that as S1 and S2 are mated, the use volume collides
with neither S1 nor S2. For instance, a robotic gripper must not intersect with S1 (the object it is
holding), nor may it collide with S2 as it places S1 into S2.

For many tools the use volume is the space swept out by the tool as it is applied to a set of
parts. One use volume for the wrench in Figure 3 is the volume swept out as the wrench turns
a bolt 1

6
turn, is raised o� the bolt, returns to the original orientation, and is replaced, ready for

another turn. A two-dimensional projection of this use volume is shown in Figure 4a. This is the
minimal space that must be free in the assembly for the wrench to tighten a bolt in the standard
way.

Several di�erent use volumes may exist for the same physical tool, corresponding to di�erent
ways of moving it or using it to accomplish a task. For planning purposes we will treat these
di�erent use volumes for a physical tool as distinct canonical tools. For instance, another use
volume for the wrench is the volume swept out as it turns the bolt 1

12
rotation, ips over, turns

the bolt another 1

12
rotation, and returns to its initial position (see Figure 4b). Still another is the

rotational closure of the wrench about the bolt axis, when the wrench tightens the bolt without
detaching (Figure 4c).

In many cases, a small volume is removed from the use volume to avoid intersection with the
parts being acted on. For instance, a pure swept volume of the wrench would intersect with the
corners of the bolt head. An alternative is to list pairs of features from the use volume and other
parts that are expected to intersect during the computation, and disregard them.

The use volume is usually only a subset of the space that must be free in the assembly to apply
a tool; for instance, the use volume for the wrench does not include the volume swept out moving
the tool to the application point, or the space required by a robot or human arm. Moving the tool
to its application position might sweep out many di�erent volumes, and a human hand is very agile,
so in most cases the tool use volume will not include this space. Hence the use volume represents
only a necessary condition for tool application.

It is also possible to represent for each tool an upper bound on the space required to apply it;
such a volume represents a su�cient condition for tool application. For instance, this \su�cient"
volume might include the space swept out by the tool, plus the human or robot arm that wields
it, as the tool is brought from outside the assembly, applied, and removed. However, a su�cient
volume is not unique, since the motion of the tool and the con�gurations of the wielder might
change depending on the obstructions present in a particular subassembly. Subsection 6.1 discusses
a more exible approach using a motion planning algorithm to �nd approach and removal paths
for tool and wielder.

11

(a) (b)

(c)

Figure 4: Some use volumes corresponding to distinct canonical tools for the wrench in Figure 3:
(a) a 1

6
-turn swept volume, (b) two 1

12
-turns, (c) a full turn

12

(a) (b)

Figure 5: (a) A bolt (in black) to be tightened among other parts, and (b) a placement of the
1

6
-turn wrench use volume (from Figure 4a) that allows tightening

3.3 Placement Constraints

Not only does a tool's use volume need to be placed in a collision-free position in an assembly, but
the placement must satisfy other constraints. For instance, a screwdriver's tip must mate with the
screw head, and its axis must be close enough to vertical to apply the required torque. The tool's
placement constraints describe these constraints relative to a canonical reference frame. The tool
application then locates this canonical frame relative to the parts the tool acts on.

In the simplest case, the tool use volume must be placed at a completely speci�ed position
relative to certain parts of the assembly. For instance, a laser spot weld must be welded by a
conical beam whose axis is normal to the welded surfaces. The beam is rotationally symmetric,
and the laser head is never placed inside the assembly, so its geometry is irrelevant. As a result,
the use volume placement for the laser beam is completely speci�ed relative to the weld spot. If
any parts of a subassembly intersect with the beam in that position, then the laser cannot weld
that spot in that subassembly.

On the other hand, many tools have some freedom in the placement of their use volumes. For
instance, consider the 1

6
-turn wrench use volume in Figure 4a. The use volume must be placed such

that the center of the wrench jaws is aligned with the axis of the bolt, but it can be placed at any
angle around that axis. In other words, the bolt can be accessed and tightened by approaching it
from any angle. Yet at the chosen angle of access, a certain volume (the use volume) must be free
in order to apply the tool. Of course, if the bolt is not at �rst aligned with an extremal position
of the wrench, the wrench will begin in an intermediate position on the �rst turn. Figure 5 shows
one possible placement of the wrench's use volume to tighten a bolt, given a set of other parts as
obstacles.

The placement constraints are given in a canonical reference frame. In our implementation
the origin of this frame is considered the point of tool application, and the positive z-axis is the

13

direction from which the tool is applied. However, any convention can be used as long as the
tool application places the canonical reference frame correctly in the assembly (see below). The
placement constraints can be represented using standard con�guration-space techniques [27, 28].

A position and orientation of the use volume in its canonical reference frame is called a con�g-
uration, and the set of all con�gurations form a six-dimensional space called a con�guration space,
or C-space. Let C be the C-space of a tool's use volume, and let C � C be the subset of C that
satis�es the placement constraints for the tool (disregarding for now the possible collisions with
parts of the assembly). If m is the dimensionality of the subset C, then we say that the tool is an
m-degree of freedom (m-DOF) tool. In other words, the use volume has m degrees of freedom in
its feasible placements. For instance, the laser spot welder above is 0-DOF, because its position
is completely speci�ed. The wrench is 1-DOF, except when it spins the bolt without detaching
(Figure 4c), in which case its rotationally-symmetric use volume can be fully constrained, making
it 0-DOF.

Note that tool degrees of freedom refer to the freedom of placing the tool use volume, not to
the motion of the tool itself. Consider an \inspection tool": during assembly, it may be necessary
to inspect certain points, such as solder or weld sites. For a point to be visible to either a robotic
camera or a human inspector, a line of sight must exist from the point to outside the assembly.2 The
line of sight is the use volume for the inspection tool, and has two degrees of freedom in placement,
corresponding to the angles of incidence of the inspection line of sight with the inspected surface.
So the inspection tool is 2-DOF, although neither the inspector nor the line of sight moves during
inspection.

3.4 Choice of Relative Times

Although the de�nition of pre-, post-, and in-tools may seem straightforward, there are several
situations when it makes sense to represent a tool with a di�erent relative time than is obvious.
We have only found examples of approximating in-tools by post-tool constraints, but other cases
may exist.

One case is when an in-tool does not move rigidly with one subassembly during mating, so an
in-tool use volume will overconstrain the possible operations. Our wrench example (Figure 3) falls
in this case. A wrench is used to tighten a bolt or nut; in other words, to manipulate it while it is
moving relative to other parts. Therefore the wrench is an in-tool. However, the bolt or nut moves
very little while being tightened, and the height of the wrench is almost the same at the start of
tightening as at the end (the use volume can also be grown vertically to compensate). But our
representation of in-tools requires the use volume to move with one subassembly throughout the
operation (e.g. the use volume in Figure 4c), whereas the wrench can disconnect and reconnect with
a bolt to accomplish the tightening, resulting in the much smaller and less constraining volumes
in Figures 4a and 4b. For these reasons, we represent the bolt-tightening process as applying the
wrench to the bolt in �nal position, i.e. as a post-tool.

In-tools are the most di�cult and expensive tools to reason about, and post-tools are the most
e�cient (see Section 6). Hence even if the in-tool moves rigidly with one subassembly, if the use
volume is constant for all mating paths (for instance when only one mating path is possible), then
a post-tool representation is often better. This is the case for a screwdriver constrained to act

2This ignores the possibility that the operator could put their head inside the assembly to inspect.

14

vertically: although it moves with the screw, the space it requires in the assembly is always the
same because the screw always follows the same path while being tightened.

4 Tool Applications

\A tool knows exactly how it is meant to be handled, while the user of the tool can only
have an approximate idea." | Milan Kundera, The Book of Laughter and Forgetting,
1978.

The previous section describes our representation of canonical tools, which give the constraints
on the application of a given tool relative to a standard reference frame. This section describes
a tool application, which gives the position and timing of the required tool use to construct an
assembly. A single tool might be required many times in a given assembly; one tool application
must be speci�ed for each.

The �rst piece of a tool application is simply the canonical tool to be used. The second piece is
a target part set; the tool is applied in an assembly plan when all parts in the target part set come
together for the �rst time. The last piece, the application transform, simply gives the position
and orientation of the canonical tool reference frame in the assembly. Together with the tool
representation, a tool application gives all the information necessary to determine the operations
in which it is feasible to apply a tool.

This section concludes by describing how tool applications are modi�ed to allow one of a set of
possible tools to satisfy the application.

4.1 Target Parts

An operation requiring use of a tool is a target operation for a tool application. An application
speci�es target operations by means of a target part set, which is a subset of the parts of the
assembly. A target operation is any operation that brings all of the target parts together in a single
subassembly (possibly including other parts) for the �rst time. To be more precise, an operation
mating subassemblies S1 and S2 to make a larger subassembly S = S1 [S2 is a target operation
for an application with target part set T if and only if

T � S
^

T 6� S1
^

T 6� S2: (1)

This condition is equivalent to Homem de Mello's determination of when an attachment is acti-
vated [18]. His attachments are speci�ed by a set of contacts rather than a set of parts; however,
parts seem a more natural way to specify target operations, especially when a large subset of parts
is the target.

The most common target part set consists of two parts, where the tool is used to fasten the
parts together (i.e. an attachment). For example, a target part set for the open-end wrench might
be fbolt; part1g, where the wrench is used to tighten bolt into part1, as in Figure 6. In this case
part2 need not be in the target part set, because part collision constraints require it to be present

15

Assembly Reference Frame

Application
Frame

z

bolt

part2

part1

Figure 6: Specifying an application of the wrench: the target part set is fbolt; part1g and the
application transform positions the wrench's canonical reference frame within the assembly

before bolt and part1 are mated.3 Tightening a nut onto a bolt might require two simultaneous
wrench applications (each with the same target part set fnut; boltg), one to hold the bolt and one
to turn the nut. Welding, screwing, and gluing operations also apply to two parts in most cases.

However, part sets sometimes include more than two parts. A common case is a testing or
inspection operation, where the subassembly resulting from previous assembly operations is checked
for quality. In most cases, parts that are not being tested may be present in the subassembly, as
long as they do not interfere with the test.

For pre-tools and in-tools, some additional information is required. For pre-tools, this identi�es
which of the two subassemblies involved in an operation the tool is applied to. For in-tools, it
identi�es which subassembly the tool moves with. We implement this as a primary part P , which
must be a member of the target part set. Whichever subassembly includes P is the identi�ed
subassembly for the pre-tool or in-tool. For example, the primary part for a glue gun application
is the part to which glue is applied.

Note that this representation is not speci�c enough for nonmonotonic assembly plans, since
it assumes every part is placed into its �nal position with respect to others in the subassembly
and never moved. If a part were moved again, the tool might need to be re-applied (to re-tighten
a screw, for instance), or it might only need to be applied the �rst or second time (e.g. for a
subassembly test). The representation is also inadequate for other cases, such as when two parts
are fastened only after adding other parts (for �t reasons, for instance). However, the target part

3If this were not the case (e.g. if part2 were a U-shaped electrical connector), a good assembly plan might place
bolt in part1, then add part2, �nally tightening bolt. Here the target part set should include part2, because the
tightening must happen after part2 is present. Note that strictly speaking, this is a nonmonotone assembly sequence,
but applying the same reasoning that makes a wrench a post-tool, the bolt needn't move while it is tightened.

16

set representation handles most assembly tool applications adequately and is simple enough to use
easily.

4.2 Application Transform

An application's target part set speci�es when a tool needs to be used; in addition, the application
must specify where the tool must be used. This is accomplished simply by placing the tool's
canonical reference frame in the correct position and orientation relative to the assembly. We
call this relative position the application transform. The placement constraints of the tool can
be transformed by the application transform to get the real constraints on the use volume in this
application. For any subassembly with a di�erent reference frame from the whole assembly, it is
straightforward to determine the corresponding application transform within the subassembly.

For example, the application transform for the wrench has its origin at the base of the head of
the bolt, with the positive z-axis pointing out of the bolt head and parallel with the bolt's axis,
as in Figure 6. Since the placement constraints for the wrench are symmetric about its z-axis, the
rotation of the application transform about that axis is arbitrary.

4.3 Alternate Applications

In many cases, an operation can be performed by more than one possible tool. For instance, a
bolt can be tightened with an open-end wrench, a socket wrench, a socket driver, a ratcheting box
wrench, and many other choices. This is a restricted form of disjunction of tool constraints, and we
call these possible ways to accomplish a task alternate applications. This simply requires each tool
application to specify a list of possible tools to execute the action, rather than a single tool. The
application is feasible in an operation if at least one of the possible tools is feasible in the operation.

Allowing alternate applications has no e�ect on any of the results to follow. For clarity of
presentation, we will not emphasize them. However, we have implemented and tested them (see
Section 7).

Note that conjunction of tool constraints, such as requiring one wrench to hold a bolt while
another tightens a nut, is already supported. However, the current framework assumes that if each
tool can be applied individually, then both can be used together. This is not always the case:
sometimes tools interfere with each others' operation. In theory, the problem could be solved by
simultaneously placing all of the use volumes for tools that might interfere. However, in practice
this solution will be computationally impractical. In our experiments the problem of interfering
use volumes has not appeared.

5 Tools Covered

\My own experience has been that the tools I need for my trade are paper, tobacco,
food, and a little whiskey." | William Faulkner, interview in Writers at Work, 1958.

Our representation of geometric tool constraints is designed to achieve coverage of a large
variety of common assembly tools in a single framework. The goal is to allow reasoning about
many assembly tools without implementing a large number of special-purpose algorithms. In this

17

section we present evidence that the representation achieves broad coverage. First we give a number
of example tools and describe how to represent them in the framework, as well as some tools that
resist being adequately represented. We then present two informal surveys of typical assembly
tools, determining such factors as the percentage of tools judged to be adequately covered by our
approach, and the distribution of tools into relative times, degrees of freedom, and other factors.

5.1 Examples

Following are some example tools and descriptions of how their accessibility constraints might be
represented using the above framework. Some tools can be used in more than one way; remember
that a distinct canonical tool represents each way of using a physical tool.

Open-End Wrench The open-end wrench has been covered extensively in the previous section,
with the placement constraints allowing either 1-DOF (for the 1

6
-turn and 1

12
-turn use volumes

in Figures 4a and 4b) or 0-DOF (for the full-turn use volume in Figure 4c, which is rotationally
symmetric). Note that in some cases a wrench is applied at an angle out of the xy plane to avoid
a short obstruction. This constitutes a 2-DOF use. However, the use volume is not only placed
out of the plane, but changes shape slightly due to this rotation, which cannot be handled exactly
in our framework. For small angle use volumes (such as the 1

12
-turn) and small angles out of the

plane, a single volume is an adequate approximation.

Screwdriver The most natural way to apply a screwdriver is from directly above the screw.
Because the use volume is rotationally symmetric about the z-axis, this is a 0-DOF post-tool. The
tip is cut o� the use volume to avoid intersection with the screw (see Figure 7). All screwdriver
types (slotted, Phillips, hex-head) are handled the same way; a nut- or bolt-driver is the same
with a slightly di�erent use volume. A power screw- or bolt-driver that is not symmetric about
the z-axis is 1-DOF. When obstructions are present, the screwdriver might be angled slightly from
vertical, with a maximum angle encoded by the placement constraints; this canonical tool is 2-DOF
(3-DOF for the nonsymmetric power tool).

Hammer Since a hammer does not move rigidly with the nail, we model it as a post-tool, i.e.
the space required is that to place the nail in �nal position then strike it after. The use volume is
the volume swept as the hammer rises over the nail and strikes. This use volume has one degree of
freedom: the side from which the nail is struck. Other manual striking implements are similar.

Laser Welder As described in Subsection 3.3, a laser spot welder is a 0-DOF post-tool. A laser
welder that tracks a curve cannot be fully modeled in our representation, because its use volume is
dependent on the part geometry. It can be approximated by a set of laser spot weld applications
evenly spaced along the curve.

Resistance Welder A resistance welder uses two pads to contact joined metal pieces on both
sides, so it is a post-tool. The use volume is just the volume of the welder end tool, and it has one
degree of placement freedom around the spot to be welded. As with all tools, successfully placing

18

Figure 7: The use volume for a screwdriver

this volume does not guarantee that the welder can reach the welding position. A manual pop
riveter is very similar.

Glue Gun A glue gun used to place a drop of glue on a surface is a 2- or 3-DOF pre-tool,
depending on whether the gun is rotationally symmetric. A glue gun or other spreading tool used
to place adhesive on a curve or area must be approximated by a number of point applications.

Visual Inspection Inspecting the results of an assembly operation is a post-tool, and the use
volume is simply a 2-DOF line of sight (slightly widened to a cylinder) to the point of inspection.
Robotic cameras often require placement directly above the point of inspection, in which case they
are 0-DOF.

Coordinate Measuring Machine A typical CMM has a rotationally symmetric tip that can
reach a point from a number of discrete angles. To be exact, each angle setting could be modeled
as a distinct 0-DOF canonical tool; if the angles are instead approximated as continuous, a single
2-DOF post-tool will su�ce. Note that the FINDPLACE problem resulting from the 2-DOF case
(see below) reduces to a computation very similar to the special-purpose CMM planning in [34].
However, if the measurement can be taken at any point on a given face, our representation does
not su�ce, since in this case the placement constraints depend on the shape of the face.

Drill Although drills are usually used in machining piece parts, in some cases parts are aligned
and then drilled for fasteners. Here the drill becomes an assembly tool. The use volume is a vertical
sweep of the drill, and one degree of freedom around the hole exists for access.4 A drill can be

4In practice, many assembly models consist of the piece parts in their initially fabricated form, rather than their
�nal assembled form. For a part drilled after assembling with other parts, such parts will usually not have the holes
modeled. If this is the case, a swept use volume for the drill would intersect with the parts, causing the planner to

19

either a post-tool (applied after the two drilled parts are mated) or a pre-tool (if the fastener is
considered a part and is a member of the target part set).

Note that the di�cult cases above are tools whose placement constraints depend on the applica-
tion (e.g. a CMMmeasuring a face) or whose use volume varies with the application (a curve-tracing
laser welder). We will see more of these cases in the tool surveys below. We have chosen the cur-
rent representation for simplicity and broad coverage, but in Section 8 we discuss extensions that
partially address these limitations.

5.2 Tool Survey

We performed an informal survey of two listings of assembly tools to assess how well the represen-
tation and reasoning techniques in this paper cover standard tools used in assembly. The listings
surveyed are a recent Snap-on Catalog [2] and the Reader's Digest Book of Skills & Tools [11], both
of which cover a variety of manual and power tools used in assembly. The listings do not cover such
tools as visual inspection and robotic tools mentioned above, nor do they cover some high-speed
tools that would be used on an assembly line. However, manual tools used for general purpose and
service work will generally be more exible, and hence more di�cult to represent, than most such
tools. Hence we believe these surveys give some evidence of broad applicability of the methods in
this paper.

The surveys were not rigorous for several reasons. First, a representation of a tool's accessibility
constraints is subject to the ingenuity of the person creating the representation, and less-common
ways to use a tool might not be noticed or captured. For instance, as noted above, a screwdriver
might be seen as 0-DOF or 2-DOF, and in some cases a use volume can encode more or less of
the accessibility constraints. In addition, the Snap-on Catalog contains several thousand individual
tools, and the Book of Skills & Tools contains hundreds, which were grouped in the survey according
to similarities of use and representation. For instance, the Snap-on Catalog contains perhaps one
hundred ratchets (and even more sockets and attachments) which were grouped in the survey
into ten types that have similar use volumes, degrees of freedom, and functions. This grouping is
subjective and hence skews the results of the survey. Finally, the author of this paper performed
the survey, imparting an explicit source of bias.

The results of the two surveys are summarized in Table 1. Combination tools were skipped,
since each use is represented by a single other tool, and only tools that might reasonably be used
in assembly were considered. Results are shown for each listing in full, plus several subsets: those
tools which are mainly for mechanical assembly, and those mainly used for inspection. Each line
shows the total number of tools in the data set and the number that are \covered" by our approach,
i.e. judged to be adequately representable using the methods of this paper. The covered tools are
further broken down by relative time and degrees of freedom. Some tools could be used at more
than one relative time, so those columns do not sum to the number of covered tools. The largest
reasonable number of degrees of freedom was identi�ed for each tool.

Roughly, our representation achieves adequate coverage of 71% of the Snap-on tools, and 57%

decide the drill use is not feasible. To solve this problem, the use volume should not include the space that would
intersect with the drilled parts, yet should still include the volume on the \other side" that the drill tip enters; another
solution lists features that are expected to intersect and ignores them.

20

Relative Time Degrees of Freedom
Data Set Tools Covered Pre In Post 0 1 2 3 > 3

Snap-on Full 45 32 1 1 32 7 15 7 3 0
Catalog Mech 37 28 0 0 28 7 13 5 3 0

Book of Full 87 50 7 1 44 14 27 7 2 0
Skills & Tools Mech 19 16 0 0 16 4 9 1 2 0

Insp 16 10 2 0 8 4 4 2 0 0

Table 1: Summary of data from informal surveys of assembly tool listings

of those in the Book of Skills & Tools. When limited to mechanical assembly tools, the coverage
is 76% and 84%, respectively. Overall coverage is lower in the Book of Skills & Tools because it
includes many tools used for woodworking, metalworking, electrical work, masonry, etc. However,
its mechanical assembly tools are relatively simple and common, so coverage of that subset is higher
than in the Snap-on Catalog.

The most common reasons tools could not be represented were variations in placement con-
straints and variations in use volumes. For instance, a pipe wrench can grip a pipe at any point
along its length; our representation requires the placement constraints to be independent of the
application, whereas the pipe's length depends on the application. Even more complex is a pair
of pliers, which is essentially a grasping device: its placement must constitute a stable grasp of a
part, which our placement constraints cannot represent.

An example of a variable use volume is a pair of calipers. The volume they occupy depends
on the size of the measured object. Similarly, a paint brush requires a free volume that depends
on the area to be painted. Moreover, some very exible tools in the Snap-on Catalog have use
volumes that vary not only depending on the application but also on the subassembly in which
they are applied, such as tools with universal joints or the T-handle ratcheting box wrench shown
in Figure 8. Section 8 discusses extensions to the current framework that can handle some cases of
variable placement constraints and use volumes.5

Also note in the table the preponderance of post-tools, particularly in the area of mechanical
assembly. This is due to the large number of tools used for fastening, as well as the possibility of
approximating in-tools as post-tools where appropriate. It is also fortuitous, because the reasoning
techniques in the following section are most e�cient for post-tools.

6 Planning with Tools

\Here is the answer which I will give to President Roosevelt. . . . Give us the tools, and
we will �nish the job." { Winston Churchill

This section describes how the tool representation above can be used to determine the feasibility

5Note that a ratchet with a single universal joint, although an articulated tool, can be represented in the current
framework as two required tool applications: one of a socket, and one of a disconnected ratchet handle. This is
possible because the socket is 0-DOF, hence the handle volume can be constrained to meet a point in space at the
end of the socket.

21

Figure 8: A T-handle ratcheting box wrench [2]. Push-pull operation enables use in subassemblies
without enough lateral swing area to use other wrenches. Photo used by permission of Snap-on
Inc.

of applying tools in assembly operations and plans. We begin by assuming that an assembly planner
has generated a possible operation that must be tested against tool constraints, and show how to
accomplish this test. However, this generate-and-test approach is a very ine�cient way to structure
an assembly planner, so we examine more e�cient methods that apply to certain types of tools.
For pre- and post-tools, a simple expression can be determined in polynomial time that encodes
exactly those subassemblies in which the tool application is feasible, so that future tests reduce
to a fast evaluation of the expression. Moreover, post-tool constraints can be integrated with
previous disassembly-based planning techniques in an e�cient way that guarantees polynomial-
time assembly planning.

6.1 Tool Feasibility

Consider an assembly operation mating subassemblies S1 and S2 along trajectory t to make a larger
subassembly S = S1 [S2, and a tool application with target part set T . We wish to determine
whether the operation satis�es the tool constraint. If T � S1 or T � S2, then the tool was applied
in building either S1 or S2 respectively, so the tool constraint does not apply to this operation.
Similarly, if T 6� S, i.e. all the target parts are not yet present at the end of the operation, then
the constraint again does not apply to this operation. If on the other hand Equation 1 from
Subsection 4.1 holds, then this is a target operation for the application, and we must compute
whether the tool can be applied. This computation depends on the tool's relative time.

A tool can be applied in a given subassembly only if there exists a placement of the tool's use
volume that obeys the application's placement constraints and does not intersect with any parts of
the subassembly. If the tool is a post-tool, then it is applied after the subassemblies are mated, so
the use volume must be placed in S, the subassembly created when the parts are mated. If instead
the tool is a pre-tool, then the application's primary part P must be a member of either S1 or S2.
If P 2 Si, then the use volume must be placed in Si.

Finding a collision-free placement of a use volume U in a subassembly S is a straightforward
instance of the FINDPLACE problem [28]. The placement constraints de�ne a subset C of the use
volume's con�guration space that satis�es them; if the tool is n-DOF, then C is an n-dimensional

22

subset of the C-space. For each part Pi 2 S, the con�guration obstacle OU (Pi) of Pi with respect
to the use volume U is the set of all con�gurations of U in which U intersects with Pi. To solve
the FINDPLACE problem, we compute the \free" region of C-space

FREE = C n
[

Pi2S

OU (Pi)

given by subtracting all the C-obstacles from the region satisfying the placement constraints.6 If
FREE is empty, then no collision-free placement exists that satis�es the placement constraints,
and the tool cannot be applied in the subassembly S. However, if FREE is not empty, then any
con�guration in FREE is a valid placement of the tool's use volume, and therefore the tool can
be applied in the operation. See [27, 28] for further details. Note that alternate tool applications
simply give rise to multiple independent FINDPLACE problems.

In a �xed-dimensional C-space, FINDPLACE can be solved in time polynomial in the total
number of surfaces describing the parts, use volume, and placement constraints [7], as long as
the surfaces are all algebraic of bounded degree. By computing directly in the n-dimensional
submanifold of the C-space de�ned by the placement constraints, this computation can be even
more e�cient. For 0-DOF tools, only one con�guration satis�es the placement constraints, and
feasibility reduces to an intersection test between the use volume and the parts. See [21] for a good
example of practical FINDPLACE calculations in low-dimensional manifolds of C-spaces.

Theorem 1 The feasibility of an operation mating two subassemblies with respect to a pre- or

post-tool constraint can be determined in time polynomial in the total number of surfaces describing

the parts of the subassemblies and the tool's use volume and placement constraints.

A subassembly and feasible placement for the 1

6
-turn wrench use volume are shown in Figure 5.

Finally, suppose that the tool is an in-tool, and assume without loss of generality that the
primary part P 2 S1. Then a placement of the use volume in S1 must be found that satis�es three
constraints simultaneously:

� the placement satis�es the tool's placement constraints in S1,

� the placement does not intersect any parts in S1, and

� the use volume, moving rigidly with S1 along the mating trajectory t, does not collide with
any parts of S2.

Determining feasibility of an operation involving an in-tool can still be reduced to a FIND-
PLACE problem with some additional e�ort. Consider the volume V de�ned by sweeping S2 along
the negative of trajectory t; conceptually this negative is the motion of S2 if S1 and S2 follow the
same relative motion as in t, but S1 is held �xed. The use volume following t will collide with S2
if and only if the use volume intersects V at the endpoint of its motion along t. Hence we use this
new constraint in place of the third constraint above, resulting in a FINDPLACE problem: place
the use volume such that it satis�es the tool's placement constraints and does not intersect S1 [V .

6Here \n" stands for the set subtraction operation.

23

For some motions t, such as a single translation, computing V is relatively simple. However, if t
involves rotations or many translations, computing V can be very di�cult in practice.

As mentioned in Section 3.2, the use volume is usually only a subset of the space that must be
free in the assembly to apply a tool; for instance, the use volume for the wrench does not include
the volume swept out moving the tool to the application point, or the space required by a robot or
human arm. Determining whether an approach or removal path exists for the tool, and planning
manipulation motions for the tool wielder are instances of the FINDPATH problem [27, 28], which is
in general more computationally expensive than FINDPLACE. A motion planner (e.g. [8, 24, 25])
could be incorporated to plan approach and removal paths for tool and wielder; the placement
constraints for the use volume determine the goal for the approach path.

6.2 Preprocessing Pre- and Post-Tool Applications

During the course of assembly planning, and depending on the approach taken by the particular
assembly planner, a single tool application might be tested for feasibility in a very large number
of operations. Using the above approach will work; however, there is a great deal of similarity
between these many FINDPLACE problems. Each attempts to place the same use volume, with
the same placement constraints, in the same relative position to all the parts, but with di�ering
sets of parts present (and in the case of in-tools, with di�ering mating trajectories). Instead,
it is possible to preprocess each tool application with respect to its assembly, such that every
feasibility test thereafter can be answered very quickly. Although not asymptotically faster than
the repeated calls to FINDPLACE in the worst case, the following technique is potentially much
faster in practice.

The preprocessing is based on the following observation. Feasibility tests for pre- or post-tools
reduce to a question of the form \Can the use volume be placed in subassembly S?" (in-tools
are considered in the next subsection). In a given con�guration, the use volume intersects with a
certain subset of the parts of the assembly called an interference set. The tool can be applied in
any subassembly that contains no parts from the interference set. To preprocess a tool application
for an assembly, we compute a set of all its interference sets in the given assembly. Then the
tool application is feasible in a subassembly S if and only if at least one of the interference sets is
completely missing in S.

Consider �rst the 0-DOF case. A 0-DOF tool application has only one con�guration that
satis�es its placement constraints, so it also has only one interference set: the set of all parts in the
assembly that intersect with the use volume in its required placement. The tool can be applied in
any subassembly that has a null intersection with the interference set.

A tool with more than zero degrees of freedom has an in�nite number of con�gurations that
satisfy its placement constraints. A part Pi is in the interference set for a con�guration if and only
if the con�guration is in the C-obstacle OU (Pi), i.e. if the use volume intersects with Pi in that
con�guration. Hence nearby con�gurations have the same interference set as long as they do not
cross a C-obstacle boundary for some part in the assembly. The boundaries of the C-obstacles of
all the parts of the assembly subdivide the C-space of the use volume into a �nite number of cells,
and the interference set is the same for all con�gurations in a single cell of this subdivision. Again
assuming the surfaces of the parts and use volume are algebraic of bounded degree, the number of
cells in this subdivision is polynomial in the number of surfaces, and a representative point can be

24

found in each in polynomial time [4]. The set of interference sets is also of polynomial size. If the
planner needs to know the placement that allows application in each subassembly, a con�guration
can be stored with each interference set.

Note that if alternate tool applications exist (i.e. the task could be accomplished by more than
one tool), each alternate application is preprocessed independently with no additional complexity.

Figure 9a and 9b show a 1-DOF wrench application to tighten a bolt (shown in black), using
a 1

6
-turn use volume. A reference ray from the use volume's origin has been attached to illustrate

placement angles of the use volume. The one-dimensional set of con�gurations that satisfy the
placement constraints can be mapped onto a circle, shown in Figure 9c. The cells of the subdivision
in this case are intervals of the circle; the interference set for each interval is shown. The boundaries
of the intervals are angles of the reference ray where the use volume either starts or stops intersecting
with a part. The use volume is shown in a con�guration on the boundary of OU (B). So the set of
interference sets for this wrench application is

ffAg; fA;Bg; fBg; fB;Cg; fB;C;Dg; fC;Dg; fDg; fD;Eg; fEg; fA;Egg:

The wrench can tighten the bolt in any subassembly that is missing at least one of those part sets.
In most cases, the set of interference sets computed is redundant and can be simpli�ed. If one

interference set I1 is a subset of another set I2, then I2 need not be kept, because any subassembly
that does not intersect with I2 also does not intersect with I1. For instance, the interference sets
for the wrench application above can be simpli�ed to

ffAg; fBg; fDg; fEgg:

In the limit, when a collision-free placement exists for the use volume in the full assembly, then one
of the part sets is empty, and therefore a subset of all others.

It might be possible to use this observation to compute only the subset of the subdivision in
which the interference sets are minimal. For instance, any cell in the subdivision with a neighbor
cell covered by fewer C-obstacles need not be computed. It is unclear how to take advantage of
this fact, but a similar concept yielded performance and implementation bene�ts in [14].

6.3 Pre-Processing In-Tool Applications

The feasibility of a pre-tool or post-tool application only depends on the subassembly in which the
tool must be used. On the other hand, the feasibility of an in-tool depends on two subassemblies
plus their mating trajectory, making preprocessing much more di�cult. We believe polynomial-
time preprocessing is still possible for simple mating trajectories t, but it is unlikely to be practical
due to its complexity.

The following is one approach. Suppose the set of all mating trajectories can be described by
d parameters. For instance, single in�nite translations in 3D can be represented by two angles. To
extend the above approach to in-tools, we add d dimensions to the C-space of the use volume for
the mating trajectory parameters. A point in this space represents both a con�guration of the use
volume and a mating trajectory. We then subdivide this space into cells such that for all points
within each cell, the possible subassemblies that can be mated with the corresponding use volume
placement and mating trajectory are constant. The boundaries of these cells must be derived

25

(a) (b)

A

B

D

E

C

F

{A}

{B,C} {B} {A,B}

A

B

D

E

C

F

{C,D}

{D}

{D,E}

{E}

{B,C,D}

{A,E}

(c)

Figure 9: Preprocessing a wrench application: (a) the use volume, (b) the bolt (in black) and other
parts of the assembly in the plane of the wrench motion, (c) the subdivision of the circle of use
volume placements, with corresponding interference sets

26

from the three constraints on in-tool feasibility given in Subsection 6.1. To determine feasibility
of a particular operation, the subspace given by the operation's mating trajectory is traversed to
determine whether the subassemblies can be mated for any of the use volume placements. As
noted above, the implementation complexity and run-time complexity of this approach make it
unattractive.

6.4 Polynomial-Time Assembly Partitioning with Post-Tools

In [36, 38] a method is described that guarantees polynomial-time assembly planning at a certain
level of abstraction. Assuming simple types of mating trajectories, the method �nds (through
disassembly) a monotone two-handed assembly sequence for an assembly of polyhedra, in which
no parts collide. The algorithm's central step solves the partitioning problem, i.e. identifying a
removable subassembly, through construction of a non-directional blocking graph or NDBG for the
assembly. Meanwhile, the tool-feasibility tests described above allow us to determine whether a
given operation satis�es tool constraints, but they do not give an e�cient way to generate operations
that satisfy the constraints. In this subsection we describe how tool constraints can be merged
with the NDBG approach to achieve polynomial-time assembly partitioning with post-tools. The
technique can also be used with other disassembly based planning approaches (e.g. [3, 16, 17, 20]),
although the details of the integration are di�erent. We �rst summarize the NDBG approach
to partitioning, then show how post-tools are added e�ciently. The next subsection shows that
recursing on the subassemblies results in polynomial-time assembly planning with post-tools.

Problem 1 (Assembly Partitioning) Given an assembly A of polyhedra and a class of allowable

mating trajectories, identify a subassembly S and trajectory t in the class such that the operation
mating S with A n S along trajectory t causes no parts to collide. If no such subassembly S exists,

report failure.

In general, the NDBG approach requires that mating trajectories be parameterized by a �nite
number of parameters. Examples that have been worked out in full detail include single transla-
tions to in�nity and in�nitesimal rotations and translations [38], and paths consisting of multiple
translations [15]. However, other types of motions besides these examples appear amenable to the
approach. We will assume the class of mating trajectories t is such a class, but will not refer to the
type of trajectory directly, since the same technique applies to all, di�ering only in implementation
details.

Let A = fP1; : : : ; Png be an assembly of polyhedra. A blocking graph of A for a trajectory t is a
directed graph with a node for each part of A and an arc from Pi to Pj if and only if Pi will collide
with Pj when moved along t. A removable subassembly S1 is blocked by no other parts, i.e. no arcs
connect parts in S1 to parts in S2 = A n S1. Such a subassembly exists (and can be found easily) if
and only if the blocking graph for t is not strongly connected. The non-directional blocking graph

of A is a subdivision of the space of all trajectories t into cells such that all trajectories within a
cell have the same blocking graph. By checking the strong connectedness of the blocking graphs for
all cells, a removable subassembly can be found (or failure returned if none exists) in polynomial
time. By recursing on the subassemblies (at most n� 1 times), an assembly plan is found for the
product.

27

Now assume we have a list of tool applications required to assemble A, and we want to �nd an
operation that mates two subassemblies to make A, or determine that none exists. When the tool
applications are limited to post-tools, we have the Post-Tool Partitioning problem.

Problem 2 (Tool Partitioning) Given an assembly A of polyhedra, a list of tool applications for

A, and a class of allowable mating trajectories, identify a subassembly S and trajectory t in the

class such that the operation mating S with A n S along trajectory t causes no parts to collide and

satis�es all tool applications for A. If no such subassembly S exists, report failure.

Problem 3 (Post-Tool Partitioning) Given an assembly A of polyhedra, a list of post-tool ap-

plications for A, and a class of allowable mating trajectories, identify a subassembly S and trajectory

t in the class such that the operation mating S with AnS along trajectory t causes no parts to collide

and satis�es all tool applications for A. If no such subassembly S exists, report failure.

A post-tool application with target part set T imposes the following constraint on an operation
O that mates subassemblies S1 and S2 to make A:

\If T is not a subset of either S1 or S2, then the use volume must be placed in A."

Because we know A but not S1 or S2, we instead use the contrapositive:

\If the use volume cannot be placed in A, then T must be a subset of S1 or S2."

In other words, if the use volume cannot be placed in A, then any subassembly removed from A

must include all or none of the parts in T .
To keep T together in a blocking graph, we add bidirectional arcs between every pair of parts

in T . If many post-tool applications are infeasible in A, we do the same for the target part set of
each. Bidirectional arcs between a pair of parts places those parts in the same strong component
of the blocking graph, so that they cannot be split. We call this the augmented blocking graph of
t; its edges are a superset of the edges of the blocking graph of t. We call the standard NDBG
with all augmented blocking graphs a post-tool NDBG. The standard NDBG algorithm applied to
a post-tool NDBG is correct and complete for assembly partitioning with post-tool constraints. In
other words, it will produce a removable subassembly that also satis�es the post-tool constraints,
or correctly report that one does not exist.

To see this, suppose �rst that the NDBG calculation �nds a subassembly S1 removable from
S2 = A n S1 along trajectory t. Because the NDBG calculation is correct, no arcs connect S1 to
S2 in the augmented blocking graph of t. This implies that no parts of S1 collide with parts of S2
along t. Furthermore, for any infeasible post-tool in A, the target part set T is strongly connected
in the augmented blocking graph of t, so it must be a subset of either S1 or S2. Therefore the
operation mating S1 and S2 is only a target operation for feasible post-tools. Hence the operation
satis�es both tool and part collision constraints.

Conversely, assume an operation O mating S1 with S2 along t to make A is collision-free and
satis�es all the post-tool constraints. Because no parts collide, no arcs connect S1 to S2 in the
blocking graph of t. In addition, each post-tool application is either feasible in A, or O is not a
target operation for it. If the application is feasible, the above algorithm places no added arcs in
the blocking graph of t. If O is not a target operation for the application, then all added arcs are

28

included completely in S1 or S2. In each case, no arcs connect S1 to S2 in the blocking graph of
t, and therefore it is not strongly connected. Hence the NDBG calculation will �nd an operation,7

and by the previous paragraph, that operation is guaranteed to be valid.
By Theorem 1, the feasibility of each post-tool application can be determined in polynomial

time. Adding the corresponding arcs to blocking graphs in the NDBG is dominated by the NDBG
computation time, which is polynomial [38]. The exponents in the bound depend on the class of
mating trajectories and the degrees of freedom of the tools; however, both these sources give small
constant exponents. We now have the following theorem.

Theorem 2 When the class of mating trajectories is amenable to NDBG analysis, the post-tool

NDBG algorithm solves Post-Tool Partitioning in time polynomial in the total number of surfaces

describing the parts, the use volumes, and the placement constraints.

Note that this theorem holds equally well when alternate applications (Subsection 4.3) are
allowed.

We have been unable to prove a similar result for pre- and in-tools. However, the case of a small
number of 0-DOF pre-tools with 2-part target part sets can be handled with an approach similar
to the above. This case is more common than it might seem, since 2-part target part sets are the
norm, and pre-tool applications are uncommon. For each pre-tool, we run the NDBG computation
twice: once requiring the operation to be a target for the tool, and once requiring it not to be.
When the operation is not a target, we connect the target part set with arcs as above. When
the operation is a target, we modify the blocking graph calculation to not only require that the
blocking graph not be strongly connected, but also to require that the primary part is separated
from the other target part and from the parts in the interference set of the tool application. This
modi�cation relies on the details of the blocking graph analysis [36], and will not be covered in
more detail here. Because we must choose in advance a combination of pre-tools for which the
operation is a target, this approach is exponential in the number of pre-tools considered and thus
only useful for a very small number of pre-tools.

6.5 Assembly Planning with Tools

Once a single operation is found to construct an n-part assembly A from two subassemblies, we can
apply Tool Partitioning recursively to the subassemblies, until only single parts are left. Reversing
the direction of this disassembly tree results in an assembly plan that satis�es part collision and
tool constraints. Exactly n� 1 Tool Partitioning problems must be solved.

But what do we do when no operation can be found to build a particular subassembly? Do
we have to backtrack and consider di�erent operations to build previous subassemblies? We will
prove here that the answer is no: failure to partition any subassembly with tools implies that no
plan exists for the full assembly that satis�es all constraints. In particular, this implies that when
only post-tools and part-collision constraints are considered, assembly planning can be performed
in polynomial time.

Problem 4 (Tool-Level Assembly Planning) Given an assembly A of polyhedra, a list of tool

applications for A, and a class of allowable mating trajectories, identify a sequence of operations that

7Note that the operation found is not guaranteed to separate S1 and S2, but this is not required.

29

constructs A from its individual parts, causes no parts to collide, and satis�es the tool constraints.
If no such sequence exists, report failure.

Problem 5 (Post-Tool Assembly Planning) Given an assembly A of polyhedra, a list of post-

tool applications for A, and a class of allowable mating trajectories, identify a sequence of operations

that constructs A from its individual parts, causes no parts to collide, and satis�es the tool con-

straints. If no such sequence exists, report failure.

To see that no backtracking is required in tool disassembly planning, assume that there exists
a tool-level assembly plan for a product A. Then we claim that any subassembly S � A can be
assembled, and prove it by constructing an operation O to assemble S from two smaller subassem-
blies. Find the �rst operation in the plan that creates a superassembly S0 � S. In other words,
�nd the operation O0 mating S0

1
and S0

2
to make S0 = S0

1
[S0

2
such that

S � S0
^

S 6� S0

1

^
S 6� S0

2:

Exactly one operation in the plan will satisfy this condition. We now construct an operation O

that is the same as O0, but limited to parts in S: mate S1 = S0

1\S with S2 = S0

2\S along the same
trajectory to make S. Neither S1 nor S2 can be equal to S, so neither can be empty. Furthermore,
no part collisions can be caused by O, because the two subassemblies mated are subsets of those
mated by O0 and they follow the same trajectory.

Now consider any tool application for A, and let T be the application's target part set. We
claim that if operation O0 is not a target operation for the application, then neither is O. If O0 is
not a target operation, then Equation 1 tells us that

T 6� S0
_
T � S0

1

_
T � S0

2:

If T 6� S0, S � S0 implies that T 6� S, so O is not a target operation either. If instead T is a subset
of S0

1 or S0

2 (assume S0

1), then there are two cases. If T 6� S, then O is not a target operation. If
T � S, then T � S1 = S0

1\S, so O is again not a target operation. In all cases, whenever operation
O0 is not a target operation for the application, then neither is O.

Finally, suppose O0 is a target operation for the application. Because O0 is feasible, there
must exist a placement of the tool's use volume such that it collides with no parts in the relevant
subassemblies (i.e. S0 for a post-tool, S0

1 or S0

2 for a pre-tool, and both for an in-tool). Because
S1 � S0

1 and S2 � S0

2, the same placement of the use volume is valid for O as well.
We have constructed an operation O that builds an arbitrary subassembly S without causing

parts to collide or violating any tool constraints. The same reasoning applies to the two sub-
assemblies mated by O, and so on. This means that a tool-level disassembly planner need never
backtrack, because if a plan exists for the assembly, then a plan exists for any subassembly of it.
We now have the following result and two corollaries.

Theorem 3 If a tool-level assembly plan exists for an assembly A, then a tool-level assembly plan
exists for any subassembly S � A.

Corollary 4 Tool-Level Assembly Planning can be solved by n � 1 applications of an algorithm

that solves Tool Partitioning.

30

Corollary 5 Repeated application of the post-tool NDBG algorithm solves Post-Tool Assembly
Planning in time polynomial in the total number of surfaces describing the parts, the use volumes,

and the placement constraints.

6.6 Lazy Evaluation

This subsection presents an improvement over the techniques above that does not change their
asymptotic complexity but is important in practice. Subsection 6.2 gives an algorithm to preprocess
a single application for all assembly states, and Subsection 6.4 shows how to include infeasible
post-tool constraints in blocking graphs. Although these two techniques have polynomial worst-
case performance, in practice they may in fact be slower than the more straightforward approaches.
For instance, a particular part requiring an application of a fastening tool may be held in place
by its contacts with other parts until late in the disassembly planning process. The few resulting
FINDPLACE computations only consider a few parts, and might be much faster than preprocessing
the tool application against the rest of the parts. Similarly, placing the constraint in all the blocking
graphs requires feasibility tests against all the parts; waiting until the target operation is generated
will be faster in some cases.

It is possible in practice to get the bene�ts of both approaches, through the use of a standard
programming technique called lazy evaluation. Essentially, lazy evaluation computes and saves the
same data structure as the preprocessing algorithm, but incrementally creates only the pieces of the
data structure that are needed to answer a current query. In many cases, lazy evaluation guarantees
the good worst-case time bound as well as the good best-case run time of the naive approach.

In the case of preprocessing an application (Subsection 6.2), lazy evaluation consists of comput-
ing the subdivision of the use volume's C-space incrementally, only adding C-obstacles for parts as
those parts appear in subassembly tests. If parts never appear in a subassembly test, then their C-
obstacles are never computed or added to the subdivision. Between calls, the subdivision is stored,
and when the use volume must be placed in a new subassembly, the cell boundaries corresponding
to any new parts (whose presence might a�ect the computed result) are added to the subdivision.
Many subdivision construction algorithms operate incrementally anyway, so this approach may not
be any more di�cult to implement than the preprocessing version.

For 0-DOF tools lazy evaluation simply involves caching the results of part-intersection tests.
Rather than precomputing the interference set for a tool application, parts are only tested for
membership in the interference set when they appear in a feasibility test for the application. The
current interference set is stored, along with a list of parts that have been tested for membership
but found not to intersect with the use volume.

For including post-tool constraints in blocking graphs (Subsection 6.4), lazy evaluation adds no
arcs to the blocking graphs to begin with. When an operation is generated, it is tested against the
tools for which it is a target. If a post-tool is not feasible for the operation, then bidirectional arcs
between the target parts of the tool are placed in all subsequent blocking graphs in that NDBG.
Hence tool feasibility is not checked until it becomes a real constraint on operations, at which point
it is handled e�ciently. The resulting algorithm is fast in practice and polynomial-time in the worst
case.

Lazy evaluation requires careful but straightforward programming to ensure good performance
in both the best-case and worst-case scenarios. Both forms of lazy evaluation above have been

31

implemented in the experimental tool-level planner described in the next section.

7 Implementation and Experiments

\And if thou wilt make me an altar of stone, thou shalt not build it of hewn stone:
for if thou lift up thy tool upon it, thou hast polluted it." | The Bible, King James
Version, Exodus 20:25.

7.1 Implementation

We have implemented geometric tool constraints in the Archimedes 3 assembly planning system [22,
23]. Archimedes 3 is a disassembly-based assembly sequence planner, written in C++ using the
ACIS solid modeling kernel. The planner allows users to add product-speci�c assembly process
constraints through an intuitive graphic interface [22]; tool constraints were implemented as just
another type of process constraint. Disassembly operations are generated using the NDBG approach
discussed above [38]. Animation and user interface routines use OpenGLTM and X WindowsTM. All
program times reported below were run on an SGI 100Mhz R4000 Indigo II Extreme workstation.

Only 0-DOF and 1-DOF feasibility predicates have been implemented to date; these apply to
pre-tools, in-tools, and post-tools. The 1-DOF predicates are limited to a single rotational degree of
freedom, which is the most common type of placement freedom found in mechanical assembly tools.
Because of the complexity of implementing the exact combinatorial algorithms in Subsection 6.2, the
1-DOF predicates instead test a �xed number (16 at present) of sample values of the free angle. For
each application, the user can choose either of two routines to test for intersection of a use volume
with other parts in the subassembly. The �rst uses ACIS solid geometry intersection routines.
The second is a discretized test employing the Zbu�er of a 3D graphics-accelerated workstation
(see [23] for details). The latter is much faster, but requires that there be a vertical path for
insertion of the use volume into the assembly (i.e. along the z-axis of the application transform).
Lazy evaluation (Subsection 6.6) is used for both feasibility and placing arcs in the blocking graphs
for infeasible post-tools.

We have constructed a library of 124 manual, robotic, and miscellaneous assembly tools, chosen
for their relevance to Sandia applications. The tool library covers 11 of the 37 mechanical assembly
tool types identi�ed in the Snap-On catalog (see Subsection 5.2), plus a laser welder and two types
of robotic grippers. The majority of these are post-tools, reecting the distribution of common
tools found in our survey. Each tool is labeled by brand and part number for concreteness. We
constructed the library at this level of detail because for geometric accessibility questions, having
accurate and correctly-sized tools and use volumes can be critical. Table 2 summarizes the tools in
the Archimedes tool library.

The large number of canonical tools in the library is mostly due to the many sizes of certain
common tool types. For instance, it includes crowfoot wrenches in sizes 10mm{22mm in increments
of 1mm. Similarly, screwdrivers include various sizes of slotted, Phillips, and cabinet tip, many in
o�set, stubby, or long-handled forms. Finally, a single physical tool often has two or more distinct
canonical tools, such as hex keys that can be used by rotating them continuously or by repeatedly
rotating them 1

6
turn.

32

Tool Number DOF Time

Screwdrivers (slotted, Phillips, and cabinet tip)
standard 12 0 post
long-handled 4 0 post
short-handled (stubby) 3 0 post
o�set 8 1 post

Sockets (4{14mm)
wrench 11 1 post
deep socket with wrench 11 1 post
extension and wrench 11 1 post
socket driver 11 0 post

Crowfoot wrenches (10{22mm) 13 1 post
Ratcheting box wrenches (7{17mm) 10 1 post
Hex keys (1.5{10mm)

full turning 9 0 post
partial turn 9 1 post

Pipe wrenches 3 1 post
Laser spot welder 1 0 post
Rubber mallet 1 1 post
Pliers 2 0 in
Robotic grippers

notched parallel jaw 4 1 in
suction 1 0 in

Table 2: Summary of the Archimedes 3 tool library

We have simpli�ed the use of certain tools in order to include them in the library with our
limited implementation. For instance, screwdrivers are in fact 2-DOF, allowing use at a small angle
from the vertical, but we represent them as 0-DOF. Similarly, we have ignored the translational
degree of freedom that pipe wrenches have in order to include them. For these tools, the user must
specify their placement more rigidly than would be required if they were represented as higher
degree of freedom canonical tools. More extreme examples are the pliers and robotic grippers,
whose placement constraints are quite complex in reality (see Section 5). In these cases, we simply
allow the user to specify their placement exactly; for parallel jaw grippers with a vertical notch
grasping a cylindrical part feature, the placement can have one degree of rotational freedom. Our
users have found these tools to be very useful despite the extra constraints Archimedes places on
their use.

The tool library is organized as an object hierarchy to take advantage of similarities between
tools in both representations and reasoning techniques. For example, the (non-o�set) screwdrivers,
socket drivers, and full-turning hex keys are all instances of the same class. Their relative times and
placement constraints are the same; the only di�erences are the tool and use volumes. Similarly,
o�set screwdrivers, wrenches, and partial-turning hex keys are closely related. The top level of
the hierarchy breaks tools down by degrees of freedom, followed by relative time. Each tool also

33

has routines to create tool-level animations of assembly plans. Because the volumes for each tool
require large amounts of memory, they are only loaded when a constraint using the tool is de�ned.

Tool constraints are de�ned using a graphical interface outlined in [22]. The user selects the
target part set using the mouse and chooses the tool from a hierarchical listing of canonical tools.8

A primary part is then chosen if the tool requires one. Finally, the user de�nes the application
transform by graphically positioning the tool's reference frame with respect to the target parts. If
the tool is 1-DOF, the user has the option of specifying the value of the degree of freedom, rather
than letting it vary. This e�ectively makes the tool 0-DOF for that application. Figure 10 shows
the application transform being de�ned for a socket wrench. Finally, alternate tool applications can
be speci�ed to accomplish the same assembly purpose (Subsection 4.3). The alternate applications
have the same target part set, but all other details are independent. An operation is feasible if at
least one of the alternate tool applications is feasible.

7.2 Experiments

Tool constraints have been tested on a number of assemblies. We will summarize three examples:

The pattern wheel shown in Figure 11a is a 13-part subassembly of a mechanical safety device.
It is held together by 36 laser spot welds and assembled by robot using a suction gripper (4
parts) and a parallel-jaw gripper (9 parts). Once the assembly geometry has been read and a
part contact graph constructed, �nding a tool-level assembly plan for the pattern wheel takes 15
seconds. Figures 11b and 11c show two of the resulting operations as animated by Archimedes.

The discriminator is a 42-part mechanical safety device designed to prevent accidental operation
of a system (Figure 12). Assembling the discriminator requires 55 laser spot welds, 8 applications
of a Phillips screwdriver, 4 applications of a hex key, and one use of the pliers. Snap-ring pliers and
a light-duty press are also required but are not in the tool library. Archimedes �nds a tool-level
assembly plan for the discriminator in 50 seconds. Figure 12 shows screen dumps from the animated
output of the resulting plan.

The Rockwell assembly is a circuit board in a case, a relatively simple assembly mechanically,
that is currently in low-volume production at Rockwell International (see Figure 13a). During its
assembly, however, a number of tight tool accessibility questions arise. The assembly has 78 parts
including all fasteners and hardware (the circuit board is modeled as a single part). Assembling it
requires 28 Phillips screwdriver, 5 slotted screwdriver, and 4 socket driver applications, plus one use
of a long-handled screwdriver. Finding a tool-level assembly plan for the Rockwell assembly takes
129 seconds. Figure 13b shows an operation applying a socket driver from above and screwdriver
from below.

8The tool hierarchy the user sees is organized by function, and is therefore quite di�erent from the internal object
hierarchy used to implement the library.

34

Figure 10: De�ning the application transform for a socket wrench. The bottom slider allows the
user to �x the degree of freedom. The translucent region shows the use volume.

8 Discussion

\A sharp tongue is the only edged tool that grows keener with constant use." |
Washington Irving, The Sketch Book of Geo�rey Crayon, 1820.

As the evidence in Section 5 shows, the framework for tool constraints presented in this paper
can represent accessibility constraints for a wide variety of assembly tools, while remaining simple
enough to implement easily. In this section we sketch some extensions and future work that would
provide greater capability and coverage.

Variable Placement Constraints One of the most common reasons tools could not be repre-
sented in Section 5 is variations in placement constraints. A pipe wrench is a good example. Our
representation requires placement constraints to be constant for each tool, whereas the pipe's length

35

(a)

(b) (c)

Figure 11: (a) The pattern wheel assembly, (b) a laser welding operation, and (c) a robot suction
gripper placing a part

36

(a)

(b) (c)

Figure 12: The discriminator: (a) An exploded view, (b) a Phillips screwdriver tightening a motor-
mounting screw, and (c) a hex key tightening a hex-head screw

37

(a) (b)

Figure 13: The Rockwell assembly: (a) the full assembly, and (b) a socket driver tightening a nut,
while the bolt is held from below by a screwdriver

(and hence where the use volume may be placed) varies with the application. With a good user
interface, the placement constraints might be moved from canonical tools to applications, allowing
them to vary as needed. However, we believe this will be quite complex to handle.

A solution of intermediate complexity is to allow parameterized placement constraints. The
application would specify a tool, target set, application transform, and values for the tool's place-
ment parameters. For instance, the pipe wrench might have a single parameter z1, and allow the
use volume to be placed anywhere from z = 0 to z = z1. The z-axis of the application transform
would then align with the pipe, with its origin at one end, and parameter z1 would be set to the
length of the pipe.

However, neither of the above extensions handle more complex placement constraints, such as
those for a pair of pliers or tweezers used to manipulate a part. In these situations, the placement
constraints are complex functions having to do with stability and applied force. As a result, special-
purpose functions will very likely be required to determine tool placement for such tools.

Variable Use Volumes The other common reason tools cannot be represented in the current
framework is variation in their use volumes. Some cases of variable use volumes can be represented
using parameterized use volumes. For instance, a pair of calipers occupy volume that depends on
the measured dimension. Hence the use volume is di�erent for each application. The calipers consist
of two rigid bodies whose relative position can be parameterized by an angle � or by a distance
d between the caliper points. The application simply needs to specify the value of the parameter
within a possible range given by the tool, from which a rigid use volume can be calculated.

38

But as with variable placement constraints, parameterized use volumes do not handle all cases.
An additional extension would allow articulated use volumes consisting of several rigid use volumes
to be placed simultaneously, constrained by the tool's placement constraints to have a given form
relative to each other. For instance, a ratchet with two universal joints could be represented by
three use volumes: one for the socket, one for the intermediate link, and one a swept volume
for the handle. The positions of the handle and intermediate link are constrained in the obvious
way. However, this approach is likely to be computationally expensive, requiring a FINDPLACE
computation in the composite C-space of the interrelated volumes.

Still other tools resist characterization even with articulated use volumes. The T-handle ratch-
eting box wrench in Figure 8 is an example; the volume swept by the handle depends upon the
angle between the two links, which can di�er depending on the subassembly in which it is being
applied.

Less Strict Target Operations On industrial assembly lines, it is common to see several parts
placed, then all fastened simultaneously or in succession by the same tool. Our framework does
not currently allow this assembly sequence: it requires that the fastener tool be applied to each
part immediately after it is placed. Note that this only a�ects the e�ciency of the resulting
assembly plan: each tool must be usable in its target operation or it can't be used later either.
One might de�ne the target part set for each application to include all the parts fastened, but this
overconstrains the tool use in the other direction, not allowing earlier application if needed.

This limitation can be addressed by a two-stage planning process. First, a feasible assembly
plan is found, requiring a tool to be applied as soon as its target parts are present, as in this paper.
This plan can then be optimized by allowing tool applications to move forward or backward in the
plan. In-tools cannot typically move at all, but pre-tools can often be applied earlier and post-tools
later than in the original plan. In terms of geometric accessibility, a pre-tool can be applied to its
primary part at any time before it is mated with the rest of the target parts. Similarly, a post-tool
can be applied at any point after its target part set comes together and before any parts are present
that prevent placing its use volume.

Moving the tool applications is usually further constrained by other assembly process con-
straints. For instance, adhesive (a common pre-tool) cannot be applied so early that it dries or
contaminates other parts or equipment. Similarly, a part may need to be welded (a post-tool) to
ensure its stability during later transportation or operations. The framework in this paper can only
support tool accessibility considerations during such optimizations.

FINDPLACE Methods As indicated in Sections 5 and 7, most tools have relatively few degrees
of freedom (up to 2, perhaps 3) in a higher-dimensional con�guration space (6D, and more for
articulated use volumes). In addition, the 3D geometry of typical industrial assemblies can be very
complex. Because FINDPLACE problems subject to these constraints are at the core of tool-level
planning, we must �nd practical and e�cient methods to compute them.

Acknowledgments

I would like to thank David Strip, Jean-Claude Latombe, Randy Brost, and Arlo Ames for thought-
provoking early discussions on this topic. Ron Jones provided a powerful yet intuitive graphic in-

39

terface to de�ne tool constraints in the Archimedes assembly planning system. Michael Goldwasser
contributed the integration of pre-tools into the NDBG framework and other useful insight. Jim
Dedig modeled the majority of the tools in the Archimedes tool library.

This work was supported by Sandia National Laboratories under DOE contract DE-AC04-
94AL85000.

AutoCAD , Pro/ENGINEER , ACIS , and Snap-on are registered trademarks of Autodesk,
Inc., Parametric Technology Corp., Spatial Technology Inc., and Snap-On Tools Corp., respectively.
OpenGLTM and X WindowsTM are trademarks of Silicon Graphics, Inc. and X Consortium, Inc.

References

[1] Proc. IEEE Intl. Symp. on Assembly and Task Planning, 1995.

[2] Snap-on Catalog. Snap-on Inc., Kenosha, WI, January 1995.

[3] D. F. Baldwin, T. E. Abell, M.-C. M. Lui, T. L. De Fazio, and D. E. Whitney. An integrated
computer aid for generating and evaluating assembly sequences for mechanical products. IEEE
Trans. on Robotics and Automation, 7(1):78{94, 1991.

[4] S. Basu, R. Pollack, and M.-F. Roy. A new algorithm to �nd a point in every cell de�ned by
a family of polynomials. In B. Caviness and J. Johnson, editors, Quanti�er Elimination and

Cylindrical Algebraic Decomposition. Springer-Verlag. To appear.

[5] G. Boothroyd, P. Dewhurst, and W. Knight. Product Design for Manufacture and Assembly.
Marcel Dekker, 1994.

[6] M. Brady, P. E. Agre, D. J. Braunegg, and J. H. Connell. The mechanic's mate. In T. O'Shea,
editor, Advances in Arti�cial Intelligence. Elsevier, 1985.

[7] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, 1988.

[8] P. C. Chen and Y. K. Hwang. Sandros: A motion planner with performance proportional to
task di�culty. In Proc. IEEE Intl. Conf. on Robotics and Automation, pages 2346{2353, 1992.

[9] Y. Descotte and J.-C. Latombe. Making compromises among antagonist constraints in a
planner. Arti�cial Intelligence, 27(2):183{217, 1985.

[10] A. D��az-Calder�on, D. Navin-Chandra, and P. K. Khosla. Measuring the di�culty of assembly
tasks from tool access information. In Proc. IEEE Intl. Symp. on Assembly and Task Planning,
pages 87{93, 1995.

[11] S. French and R. V. Huber, editors. Reader's Digest Book of Skills & Tools. The Reader's
Digest Assoc., Inc., 1993.

[12] K. Green, D. Eggert, L. Stark, and K. Bowyer. Generic recognition of articulated objects
through reasoning about potential function. CVGIP: Image Understanding, 62(2):177{93,
1995.

40

[13] R. Grupen, T. Henderson, and I. McCammon. A survey of general-purpose manipulation. Intl.
J. of Robotics Research, 8(1):38{62, 1989.

[14] L. J. Guibas, D. Halperin, H. Hirukawa, J.-C. Latombe, and R. H. Wilson. A simple and
e�cient procedure for polyhedral assembly partitioning under in�nitesimal motions. In Proc.

IEEE Intl. Conf. on Robotics and Automation, pages 2553{2560, 1995.

[15] D. Halperin and R. H. Wilson. Assembly partitioning along simple paths: the case of multiple
translations. In Proc. IEEE Intl. Conf. on Robotics and Automation, pages 1585{1592, 1995.

[16] J. M. Henrioud and A. Bourjault. LEGA: a computer-aided generator of assembly plans. In
[19], pages 191{215.

[17] R. L. Ho�man. Automated assembly in a CSG domain. In Proc. IEEE Intl. Conf. on Robotics

and Automation, pages 210{215, 1989.

[18] L. S. Homem de Mello. Task Sequence Planning for Robotic Assembly. PhD thesis, Carnegie-
Mellon Univ., 1989.

[19] L. S. Homem de Mello and S. Lee, editors. Computer-Aided Mechanical Assembly Planning.
Kluwer, 1991.

[20] L. S. Homem de Mello and A. C. Sanderson. A correct and complete algorithm for the
generation of mechanical assembly sequences. IEEE Trans. on Robotics and Automation,
7(2):228{240, 1991.

[21] J. Jones and T. Lozano-P�erez. Planning two-�ngered grasps for pick-and-place operations on
polyhedra. In Proc. IEEE Intl. Conf. on Robotics and Automation, pages 683{688, 1990.

[22] R. E. Jones and R. H. Wilson. Constraint-based interactive assembly planning. Submitted to
1997 IEEE Intl. Conf. on Robotics and Automation.

[23] S. G. Kaufman, R. H. Wilson, R. E. Jones, T. L. Calton, and A. L. Ames. The Archimedes 2
mechanical assembly planning system. In Proc. IEEE Intl. Conf. on Robotics and Automation,
pages 3361{8, 1996.

[24] L. E. Kavraki, P. �Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional con�guration spaces. IEEE Trans. on Robotics and Automation.
To appear.

[25] Y. Koga, K. Kondo, J. Ku�ner, and J.-C. Latombe. Planning motions with intentions. In
Proc. SIGGRAPH, pages 395{408, 1994.

[26] D. J. Kriegman and J. Ponce. Computing exact aspect graphs of curved objects: Solids of
revolution. Intl. J. of Computer Vision, 5(2):119{135, 1990.

[27] J.-C. Latombe. Robot Motion Planning. Kluwer, 1991.

[28] T. Lozano-P�erez. Spatial planning: A con�guration space approach. IEEE Transactions on

Computers, C-32(2):108{120, 1983.

41

[29] D. Lyons, S. Lee, C. Ramos, and J. Troccaz (guest editors). Special issue on assembly and
task planning. IEEE Trans. on Robotics and Automation, 12(2), April 1996.

[30] J. M. Miller and R. L. Ho�man. Automatic assembly planning with fasteners. In Proc. IEEE

Intl. Conf. on Robotics and Automation, pages 69{74, 1989.

[31] R. Narang and G. Fisher. Development of a framework to automate process planning functions
and to determine machining parameters. Intl. J. of Production Research, 31(8):1921{42, 1993.

[32] J. Ponce, S. Sullivan, A. Sudsand, J.-D. Boissonnat, and J.-P. Merlet. On computing four-
�nger equilibrium and force-closure grasps of polyhedral objects. Intl. J. of Robotics Research,
1996. To appear.

[33] A. Requicha and J. Vandenbrande. Automatic process planning and part programming. Tech-
nical Report 217, Inst. for Robotics and Intelligent Systems, 1987.

[34] A. Spyridi and A. Requicha. Accessibility analysis for the automatic inspection of mechan-
ical parts by coordinate measuring machines. In Proc. IEEE Intl. Conf. on Robotics and

Automation, pages 1284{1289, 1990.

[35] A. S. Wallack and J. F. Canny. Planning for modular and hybrid �xtures. In Proc. IEEE Intl.
Conf. on Robotics and Automation, pages 520{527, 1994.

[36] R. H. Wilson. On Geometric Assembly Planning. PhD thesis, Stanford Univ., March 1992.
Stanford Technical Report STAN-CS-92-1416.

[37] R. H. Wilson, L. Kavraki, T. Lozano-Perez, and J.-C. Latombe. Two-handed assembly se-
quencing. Intl. J. of Robotics Research, 14(4):335{350, 1995.

[38] R. H. Wilson and J.-C. Latombe. Geometric reasoning about mechanical assembly. Arti�cial
Intelligence, 71(2):371{396, 1994.

[39] J. D. Wolter. On the Automatic Generation of Plans for Mechanical Assembly. PhD thesis,
Univ. of Michigan, 1988.

42

