
Lambda Station Version 1.0
Development Release

Abstract

 Lambda Station provides forwarding and admission control service to interface production local
networks to advanced and R&D wide-area networks. Lambda Station has three major interfaces offered
as Web Services. It has an interface for applications and remote Lambda Stations to request
provisioning of alternative path for selected flows, an interface to WAN provided where required, and
an interface to configure local network infrastructure. A Lambda Station deals with the last-mile
problem in local network. Selective forwarding of traffic is controlled dynamically at the demand of
applications and at a granularity down to the single flow. This document describes the first
development release of Lambda Station software version 1.0. (LS_v1.0). It includes the description of
design principles, implementation details and results of using a Lambda Station service via several
R&D high-bandwidth networks such as UltraScience Net and UltraLight.

Computing Division

Fermi National Accelerator
Laboratory

Physics Department

California Institute of Technology

 February 2006.

ACKNOWLEDGEMENTS
The Lambda Station project is ongoing joint effort of software developers, network
analysts and engineers at Fermi National Accelerator Laboratory (Fermilab) and the
California Institute of Technology (Caltech). The project is funded by the Mathematical,
Informational, and Computational Sciences division of the U.S. Department of Energy's
Office of Science.

The list of participants in this project:

Fermilab: Andrey Bobyshev, Matt Crawford, Phil Demar, Vyto Grigaliunas, Maxim

Grigoriev, Don Petravick (PI), Ron Rechenmacher.

Caltech: Harvey Newman (PI), Julian Bunn, Frank Van Lingen, Dan Nae, Sylvain Ravot,

Conrad Steenberg, Xun Su, Michael Thomas, Yang Xia.

There are four major directions of the project:
● exploiting a wide-area testbed infrastructure based on high-bandwidth R&D networks

UltraScience Net, UltraLight, and others, with involvement of site production
networks to be able to use Lambda Station's services

● developing Lambda Station software capable of dynamic configuring of site local area
networks and interfacing with advanced WANs

● adapting of existing SciDAC applications to selectively exploit advanced research
networks through Lambda Station services

● researching the behavior of network aware applications and their performance
characteristics in a flow-based switching environment.

CONTACT INFORMATION.
Please use the following information to contact us:

E-Mail: lambda-station-technical@fnal.gov

WWW: http://www.lambdastation.org/

1

DOCUMENT STATUS AND LICENSE.
 The Lambda Station project is ongoing project. The information contained in this

document represents working status as of the date this document is published. It is not

guaranteed that provided information is error-free and stable. The terms of following

license is fully applied to this document itself and to any software described in this

document.

Fermitools Software Legal Information (Modified BSD License)

COPYRIGHT STATUS: Dec 1st 2001, Fermi National Accelerator Laboratory

(FNAL) documents and software are sponsored by the U.S. Department of Energy

under Contract No. DE-AC02-76CH03000. Therefore, the U.S. Government retains

a world-wide non-exclusive, royalty-free license to publish or reproduce these

documents and software for U.S. Government purposes. All documents and

software available from this site are protected under the U.S. and Foreign

Copyright Laws, and FNAL reserves all rights.

 * Distribution of the software available from this server is free of charge subject to

the user following the terms of the Fermitools Software Legal Information.

 * Redistribution and/or modification of the software shall be accompanied by the

Fermitools Software Legal Information (including the copyright notice).

 * The user is asked to feed back problems, benefits, and/or suggestions about the

software to the Fermilab Software Providers.

 * Neither the name of Fermilab, the URA, nor the names of the contributors may be

used to endorse or promote products derived from this software without specific

prior written permission.

DISCLAIMER OF LIABILITY (BSD): THIS SOFTWARE IS PROVIDED BY

THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

FERMILAB, OR THE URA, OR THE U.S. DEPARTMENT of ENERGY, OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

2

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Liabilities of the Government: This software is provided by URA, independent

from its Prime Contract with the U.S. Department of Energy. URA is acting

independently from the Government and in its own private capacity and is not

acting on behalf of the U.S. Government, nor as its contractor nor its agent.

Correspondingly, it is understood and agreed that the U.S. Government has no

connection to this software and in no manner whatsoever shall be liable for nor

assume any responsibility or obligation for any claim, cost, or damages arising out

of or resulting from the use of the software available from this server.

Export Control: All documents and software available from this server are subject

to U.S. export control laws. Anyone downloading information from this server is

obligated to secure any necessary Government licenses before exporting documents

or software obtained from this server.

3

Table of Contents
ACKNOWLEDGEMENTS...2
CONTACT INFORMATION..2
DOCUMENT STATUS AND LICENSE..3
INTRODUCTION...7
TERMINOLOGY..7

ABBREVIATIONS...7
CONCEPTS..7

LAMBDA STATION ARCHITECHTURE..8
A Lambda Station Model of a Complex Network..10
DSCP Tagging..11
Lambda Station Aware Applications..12

Use case: Application is capable of DSCP tagging...13
Authentication and Authorization...14
Resource Monitoring...14

 Specification of API for resource monitoring service...15
Flow Descriptions...16

LAMBDA STATION INTERFACE SPECIFICATION...18
Information Methods...18

whoami - Return lambdastation identity ...19
sayHello – Request/response message to test reachability of remote site................19
ip2client – Determine PBR client's identity for specified IP address.......................20
checkIP4client – Check whether specified IP address belongs to specified PBR
client...20

Service group of methods..21
openSvcTicket2 – Request alternate network path for flows...................................21
openSvcTicket – Request alternate network path for specific flows........................23
cancelTicket – Method to cancel specified ticket. ...26
completeTicket – Method to complete specified ticket gracefully.27
getTicket – Method to select tickets based on various selection criterion and return
only specified portion of ticket's information. ...28
getTicketStatus – Method to return status of ticket specified by its localID.29
getMyRemoteID – Method to return remoteID associated with local ticket..........30
getFlowsSpec – Method to return specification of flows associated with ticket....31
updateFlowsSpec – Method to modify flows specification of ticket.32
getDscp – Method to return DSCPout associated with ticket..............................34

4

updateDscp – Method to update either DSCPout or DSCPin or both of them for
flows associated with ticket. ...34

DIAGRAM OF TICKET's STATES...36
NETWORK CONFIGURATION MODULE..39
new – Method to define flow object...40
addFlows – Method to add flows from PBR configuration.....................................41
delFlows – Method to delete flows from PBR configuration...................................42
A sequencing ACL model..42
IMPLEMENTATION DETAILS...43
INSTALLATION NOTES...44
EXAMPLE OF A LAMBDA STATION SETUP..46
EXPERIMENTING WITH LAMBDA STATION..49
REFERENCES...52

5

INTRODUCTION
 This document describes the initial development (or experimental) release of a Lambda
Station software version 1.0 (LSv1.0). The main goal of this release is to investigate
design principles, test and evaluate proposed interfaces and to demonstrate a system that
supports the full functional cycle of admission control and forwarding of application's
traffic by request Lambda Station service, interaction between applications and Lambda
Stations, dynamic configuring of local area networks on-demand of applications. A
testbed built with LSv1.0 system involved the components of Fermilab and Caltech
production networks and R&D UltraScience and UltraLight networks. In this documents
we also include the results of using a Lambda Station service between test clusters at
Fermilab and Caltech, and demonstration during SuperComputing 2005.

Lambda Station v1.0 is implemented in PERL. The services are accessible via SOAP

protocol, however no great efforts were made yet for interoperability with other

platforms.

TERMINOLOGY

ABBREVIATIONS

 Below is the list of abbreviations used in this document.

● LS – a Lambda Station

● LSI – Lambda Station Interface

● LSC – a Lambda Station Controller

● PERLRE - Perl run-time environment

● SRM – Storage Resource Manager

CONCEPTS

● Flow - is a stream of IP packets with the same attributes such as source/destination IP

addresses, protocols, ports and TOS (DSCP)

● Policy Based Routing (PBR) – is a technology to forward(route) IP packets to

specified destination based on criteria other then destination IP address. A variety of
criteria could be deployed, e.g. source IP address, protocol port ranges, DSCP and
other or their combination.

6

● PBR-Client – one or more end systems that source and sink traffic flows that can be

subject to policy based routing.

● Topology - is a network infrastructure that traffic will across to the given network
destination

● Lambda Station - is a distributed control system to switch forwarding path of traffic

on-demand of applications on per flow basis. A Lambda Station is dealing with the
last-mile problem in local network. It is aimed to provide service for existing
production use computing facilities

● Network (Lambda Station) Aware applications - application that can inquire and

utilize certain knowledge of network characteristics and status to increase overall
performance. Applications that can interact with a Lambda Stations is called a Lambda
Station aware applications

● DSCP is Differentiated Services Code Point is an integer value encoded in the DS
field of an IPv4 header. The DSCP is an example of traffic marking because its value
corresponds with a preferred QoS as the packet traverses part of the network.

● DSCP tagging – a process adding of meaningful DSCP into IP headers of application's

traffic either via native DSCP support by API or by some external tools (such as
iptables in Linux).

● R&D Networks – experimental or special-purpose high-bandwidth networks that

become available for many sites but that do not provide a commodity service.

● Requester – identity under which an application places a request for service.

● Ticket – Lambda Station's representation of a PBR-Client's request (or a set of

connected requests).

LAMBDA STATION ARCHITECHTURE
Figure 1 shows a service based view on Lambda Station architecture. The central part of
this architecture is LSI module which stands for Lambda Station Interface.

7

The LSI is a unified interface used by applications and remote Lambda Stations to
request admission and forwarding service at the local site. The LSI assigns a unique ID to
each request initiated by either a local application or a remote station acting on a request
by a remote application. This ID is used to track the status and progress of the requested
service or to cancel it. All requests go through an authentication and authorization
procedure. From the LSI's perspective, requests of remote Lambda Stations are not
different from requests submitted by local applications except that access to certain
functions can be restricted to peer Lambda Stations. Lambda Stations have to keep
knowledge about other remote Lambda Stations, their parameters and available PBR-
Clients. Exchange and propagation of such knowledge is a function of the Discovery
Service. To exchange information at least two Lambda Stations need to know about each
to other.

A Lambda Station is not a bandwidth broker. At this time it does not support traffic
policing and shaping. However, the goal of switching traffic into alternative paths is to
get better performance for data transfers. That is why a Lambda Station needs to control
and monitor its local resources and avoid making the effective performance of the high
bandwidth path worse than the production path. The Resource Service has that
responsibility. It should be mentioned that monitoring is based on requested bandwidth

8

Figure 1

and not on real-time traffic monitoring or bandwidth forecasting. Such capabilities may
be added in future versions of Lambda Station. Finally, the Netconfig service is used to
configure local networks dynamically for requested alternative paths.

A Lambda Station Model of a Complex Network

A Lambda Station deals with the last-mile problem in local networks. It provides a

means to adapt production network facilities to support access to advanced and/or
research networks. Typically, a campus network can be presented by a hierarchical
design with several logical layers. Such a hierarchical layout for a workgroup based
approach to building campus networks is depicted in figure 2.

It consists of work group, core and border layers. Depending on the site's specific access
to R&D networks for different groups of users may need to be configured at one or

several layers. For the architecture in figure 2, outbound traffic of WG-B can be
switched to R&D networks at the workgroup layer because it has direct connection to the
R&D admission devices. In order to get incoming traffic from R&D networks forwarded
by a symmetric path, the inbound rules for WG-B need to be configured at the R&D
layer. The WG-A has no direct connection to R&D from its work group layer, hence

9

Figure 2

PBR rules need to be applied at the network core and R&D layer both, for inbound and

outbound traffic. In general, work groups may require PBR rules to be applied on

multiple layers of campus network for one or both directions of traffic.

A logical model of a Lambda Station network is shown in figure 3. The main
components of that model are PBR-Clients, groups of network devices and multiple
external network connections. Let us assume that there are several alternative wide-area
networks available to a site. In figure 3 the drawings in blue represent the regular
production network topology. In green and red are alternative R&D Networks with
perhaps higher bandwidth available but not intended for production or commodity use.
The goal of Lambda Station is to forward traffic of PBR-Clients, designated down to per-
flow granularity, toward the alternative networks, on demand from applications. In order
to accomplish that goal Lambda Station will need to reconfigure one or several groups of
devices with set of rules for one or both directions of traffic. Possibly different sets of
rules will be applied to different groups of devices. How to group these devices depends
on the site network design and involves taking into consideration physical topology of
network and a need to minimize management efforts. For example, if a network
administrator can reduce the number of rules or use the same set of rules for all work
groups on several network layers it will certainly simplify management. As long as the
same PBR rules are applied on several layers of hierarchical work group architecture
Lambda Station network model can be represented by only one group of devices.

DSCP Tagging

It is desirable (but not strictly necessary) to know the criteria for selecting flows before a
data transfer begins. Many applications use ephemeral transport ports that are not known
before a connection is opened. They may also change dynamically during a session. It
takes time to reconfigure the network, especially when two sites need to do so in

synchrony. A DSCP is one of a few keys that can be specified in advance. A Lambda

Station design does not necessarily rely on DSCP but can utilize it when available.

While DSCP can help to solve the problem of flow matching prior to data transfer starts,
it also introduces additional complexity. First, the passing DSCP is not guaranteed in the
WAN. Second, in a dynamically configurable network DSCP tagging needs to be
synchronized between sites and depends on the status of their networks. (See more in the
Lambda Station awareness section). It is planned that two sites will be able to negotiate
the best possible strategy to match flows with or without DSCP tagging. At this time a
Lambda Station software does support two different modes to work with DSCP.

10

In the first mode, a site may choose to use fixed DSCP values to identify all traffic that
will be switched by Lambda Station. Lambda Station then advises applications when to
apply that DSCP value, and router configurations remain constant. This mode will
typically used by sites that do not want their network devices dynamically reconfigured
under Lambda Station's control.

 In the second mode, a DSCP value is assigned on per ticket basis by the local Lambda
Station. The same DSCP code can be used by multiple tickets as long as the source
and/or destination IP addresses are used as additional flow selectors. The list of DSCP
codes that can be used for assignments is configurable.

Lambda Station Aware Applications

There are several different scenarios for how a Lambda Station may control path
selection for applications. Obviously, if an application has requested an alternative path it
may also need to know the status and progress of its request. If the application uses

11

Figure 3

DSCP tagging to mark flows it also may need to synchronize tagging with the current
status of an alternate path – especially if the site is using static network configuration.
Also an application may need to monitor the status of a ticket because the remote site
may decide to complete it or cancel for some reason and it may require corresponding
actions at the local end of the session. Thus, close integration of Lambda Station enables
applications to use the network in a more agile fashion. The Lambda Station API
provides all the foregoing capabilities. It certainly introduces an additional level of
complexity for applications and in many cases it cannot be fully exploited. That is why a
Lambda Station does support other operational modes that are not required network
awareness. Below we would like to consider a few typical use cases.

Use case: Application is capable of DSCP tagging

An application determines that it can exploit a high-bandwidth path for bulk data
movement between two sites. It places a request to the local lambdastation. In the request
the application can specify characteristics of the flows to be rerouted, start and end times,
desired bandwidth, and other data. All requests go through authentication and
authorization phases. If the request is accepted the ticket ID will be returned to the
application. This ID can be used to monitor the status of the ticket. Using information
from the created ticket, the Lambda Station controller contacts the LS at the remote site
and tries to create a corresponding ticket. If successful, and both Lambda Stations agree
on parameters of data movement and flow matching, it will receive the remoteID. The
next step is configuring the network infrastructure for PBR. Each Lambda Station is
responsible only for configuring its own site and monitoring status of the remote site.
The application keeps checking status of ticket by localID. When the network is
configured successfully it starts DSCP tagging its packets, which results in traffic being
forwarded over in alternate path. If at any point there is an error, or the ticket is canceled
for some reasons,the network will be reconfigured into its original state.

lsiperf – a sample Lambda Station aware application

As an example of Lambda Station aware application we wrote a wrapper for the well-
known iperf network performance measurement tool. Lsiperf starts the usual iperf. In
background it starts a Lambda Station client process which places a ticket request for an
alternate path and watches its progress. If the path is established it starts DSCP marking
of iperf's packets if DSCP tagging was requested. It also performs some other actions
corresponding to ticket's status. For example, if the ticket is canceled it stops tagging.

12

Authentication and Authorization

A Lambda Station relies on the authentication schemes of its operating environment and
the framework used for integration of its components. Lambda Station's SOAP Server is
built on the Apache 2.55 HTTP. All authentication schemes supported in Apache 2.55 can
be used with LS software. Lambda Station v1.0 uses basic (password) authentication over
SSL or X.509 client certificates.

Authorization rules control access to certain functions based on the identity of the
requester.

Currently there are two defined privileges:

● new ticket operations (alias new) which allows the requester to create, complete,
cancel and modify tickets

● join privilege (alias join) allows joining a new request to an opened ticket. Ticket is
opened if it is in one of the following states: bookedLocal, booked, active (see
section Ticket's States).

A requester could be authorized to create and/or join tickets based on srcSite, dstSite and
a list of PBR clients at each site. Authorization is configured in two files, lambda.deny
and lambda.allow. See lsDefs.pm for exact locations of these files. The comparison can
be exact or partial. The deny list is checked first and overrides the allow list. The format
of authorization files is the following:

requester:{exact|match}:privilege:SiteID1(PBR-Client1,...):SiteID2(PBR-Client1,...)

The keyword ANY can be used to match any patterns.

 Example:

Allow access to lambdastation objects

#requester:exact|match:privileges:srcSite1(client1,client2);
srcSite2(Client2...):dstSite(client1..)

#netadm@lambda.fnal.gov:exact:new,join:Fermilab(any):Caltech(CMS)

fnal.gov:match:new,join:Fermilab(any):any(any)

/DC=org/DC=doegrids:match:new,join:Fermilab(any):any(any)

Resource Monitoring

A Lambda Station is not a bandwidth broker. At this time it does not support traffic
policing and shaping. However, the goal of switching traffic into an alternative path is to
get better performance for data transfer. Hence a Lambda Station needs to control
allocation of local resources to avoid creating traffic congestion. However, it is difficult

13

or impossible for complex applications to predict their actual consumption of bandwidth.
Real-world systems experience contention for disk access, memory, and CPU, even if
their ideal network behavior is well understood. The resources Lambda Station is
allocating are WAN paths connected to the site network.

 Definitions and description of resources.

 A Lambda Station resource definition is presented in table below.

Name Type Description Example

name string Name of link StarLight10G

slotLength integer
time quantum (in seconds) for

path allocations
900 for 15min interval

futureSlots integer
how many slots to reserve for

advance BW reservations
2000

pastSlots integer
how many slots of history to

keep
33600

BWout string
BW of outbound link, units K-

Kbps, M-Mbps, G-Gbps
10G, 622M, 10000000

BWin string
BW of inbound link, units K-

Kbps, M-Mbps, G-Gbps
10G, 622M, 10000000

maxBWout integer
percentage allowed over

subscription for Bwout on per
slot basis

25

maxBWin integer
the same as above but for

inbound traffic
25

slotsOverMax integer
percentage allowed

oversubscribed slots per
request

20

A resource's status is described by three tables for each traffic direction (BWin, BWout):

● reserved – reserved BW by all granted requests

● requested – all requested BW if all requests are granted, links with infinite BW

● actual – real-time monitoring and forecasting (not yet in use)

 Specification of API for resource monitoring service.

● allocate

14

● deallocate

● updateResource

● showResource

● reserved2sql

allocate/deallocate – Methods to request BW allocation or release

Input parameters (named):

Name Type Description

BWout string requested outbound BW

BWin string request inbound BW

startTime integer unix time

endTime integer unix time

Output:

True if granted or successfully released

False if no resource available

reserved2sql - store operational table in SQL database

showResource – print operation tables to STDOUT

Flow Descriptions

The term flow is often used in context of this document. Its definition was given in the

Terminology section. Flow information needs to be moved among different components
of Lambda Station software and exchanged with a remote Lambda Station. Two different
formats for representing flows are in use by Lambda Station software. The first format is
used to define PBR-Clients, to exchange flow information between applications and the
local Lambda Station, and between Lambda Stations. In that format flows are defined by
a structure of several named strings describing source and destination IP blocks, transport
protocol and ports, and DSCP codes:

srcIP => “SRC_CIDR_BLOCK1, SRC_CIDR_BLOCK2,...”,

srcPort => “protocol1 [operator1 srcPorts1], protocol2 [operator2 srcPorts2],... ”

dstIP => “DST_CIDR_BLOCK1, DST_CIDR_BLOCK2,...”,

15

dstPort => “protocol1 operator1 dstPorts1, protocol2 operator2 dstPorts2,... ”,

dscpOut => code,

dscpIn => code.

Example:

srcIP => [“131.225.2.1/24, 131.225.252.0/25”],

srcPort => ['tcp range 5000-6000','udp range 3000-3020', 'tcp eq 35'],

dstIP => [“131.215.2.1/23”],

dstPort => ['tcp range 5000-7000', 'udp range 3000-3020', 'tcp eq 35', 'udp le 2000'],

dscpOut => 1,

dscpOut => 0x16

For the purpose of network configuration and comparison of flows it is more convenient
to represent it in an extended format which is a set of records like below:

Name Description Example

protocol protocol tcp,udp

srcBase source network 131.225.2.0

srcWild source wildcard, or reverse netmask 0.0.0.255

srcOperator operator applied to source ports range, le, lt, ge, gt, eq

srcPort source ports if defined for selected protocol,
range of port is described as minPort-maxPort

2000 - 3000

dstBase destination base network 131.215.207.0

dstWild destination reverse netmask 0.0.0.127

dstOperator operator applied to destination ports if
applicable

range, le, lt, ge, gt, eq

dstPort destination ports if defined for selected
protocol, range of port is described as minPort-

maxPort

5000 - 6000

dscpOut DSCP code in outbound traffic 4

dscpIn DSCP code in inbound traffic 6

Thus, when converted, one record in the first format will result in multiple records with
consecutive indexes in the second format.

16

LAMBDA STATION INTERFACE SPECIFICATION
 This section provides functional specification of the Lambda Station interface. It does
not mean to be a programming language specific that is why we need to agree on
definition of some basic data types. An XML Schema data types specification will be
taken as basis. Also we will be using built-in primitive or derived data types and leave
constraining facets as implementation details. Main data types used in description of this
specification are:
● integer
● boolean
● string
● enumeration
● named pattern
● token
● union
● lists

Functional calls to LSUI are divided into several groups: information, service, and
internal.

Information Methods

● whoami – return identity of lambdastation.

● sayHello – a request message to test reachability of remote lambdastation

● ip2client – convert IP address into ID-string of PBR client

● checkIP4client – check whether IP belongs to specified PBR client

● getPBRid (current name getCPRGId) – return association of IP address with PBR
clients IDs

● getKnownLambdas – get list of known lambdastations

● getStationParameters – get parameters of specified lambdastation

● getKnownClients – get known PBR clients at specified site

● getClientInfo – get client's parameters

● NetConfigMode – return mode for configuring of network (dynamic, static)

17

Here and below $soap is a reference to object created by SOAP::Lite to communication

via SOAP protocol:

my $soap = SOAP::Lite

 -> uri($myStations->{$station}->{uri})

 -> proxy($myStations->{$station}->{proxy}, timeout => $HTTPTIMEOUT)

 -> on_fault(

 sub { my ($soap,$res) = @_;

 $SOAP_ERROR = (ref $res)? $res->faultstring : $soap->transport->status . "\n";

 LogIt('SOAPFaults@lambda',"$SOAP_ERROR\n",$logopt);

 });

A parameter named by $lsIntf is reference to object create to communicate with

Lambda Station Interface $lsIntf = new lsui ();

whoami - Return lambdastation identity

Input : NONE

Output : two strings

the first string is name of site (lambdastation)

the second is IP address

Errors:

Example:

$arrayRef = $soap->whoami()->result;

$mylambdaName = $arrayRef->[0];

$ipaddr = $arrayRef->[1];

sayHello – Request/response message to test reachability of remote
site.

Input:

name - any string

18

Output:

string – Hello, {name}. Where name is input name or ANONYMOUS if not

defined.

Errors: NONE returned by method itself. All errors conditions are returned by SOAP
transport layer

Example:

$arrayRef = $soap->whoami()->result;

$mylambdaName = $arrayRef->[0];

$reply = $soap->sayHello($mylambdaName)->result;

ip2client – Determine PBR client's identity for specified IP address.

Input:

ipaddr - a named string with IP address

Output:

a string of CSV: Site1,Client1,Site2,Client2....

Errors: If string is empty – no PBR clients are found for that address.

Example:

my $arrayRef = $soap->ip2client(ipaddr => $Ipaddr)->result;

checkIP4client – Check whether specified IP address belongs to
specified PBR client.

Input:

ipaddr – a named string with IP address

Site - a named string with Site ID

Client – a named string with Client ID

Output:

1 (true) if specified IP address belongs to specified client at

0 (false) – if not

Errors:

NONE returned by this method itself.

19

Example:

 my $res = $lsIntf->checkIP4client(
ipaddr => $ip,
Site => $MySiteName,
Client => $MyClientName);

Service group of methods.

 The service group consists of the following calls:

● openSvcTicket2

● openSvcTicket

● cancelTicket

● completeTicket

● getTicket

● getTicketStatus

● getMyRemoteID

● getFlowsSpec

● updateFlowsSpec

● updateDscp

openSvcTicket2 – Request alternate network path for flows

Input Parameters (all input parameters are named). Parameters of data type 'string'

have multiple constrain facets: length, pattern, enumeration. See explanation below
regarding required and optional parameters):

Name Type Description Example

srcSite string Source site ID Fermilab

srcClient string Source PBR client ID CMS

srcIP string CSV-list of source IP addresses in
CIDR format

“131.225.207.0/25,
131.225.207.133,
131.225.207.134”

20

Name Type Description Example

srcPort string CSV-list of source ports in the format

{protocol operator ports}Known

operators are as defined in
Cisco's named ACLs

“tcp eq 25, tcp range 5000 –
6000, udp le 32000”.

dsSite string Destination site ID Caltec

dstClient string Destination PBR Client ID CMS-SRM

dstIP string CSV-list of destination IP addresses in
CIDR format

“131.215.207.2, 131.225.207.3,
131.207.128/25”

dstPort string CSV list of destination ports (the same
format as srcPort)

“tcp eq 25, tcp range 5000 –
6000, udp le 32000”.

localPath string ID of local path StarLight10G

remotePath string ID of remote path MyFastPathToTheWorld

BWout string requested outbound bandwidth to
reserve

5G – 5 Gigabit per second,
500M – 500 Mbps

BWin string requested inbound bandwidth to
reserve

same as above

dscpReqOut string request for outbound DSCP tagging.
Possible options are YES,NO,
DESIRABLE

dscpReqIn string request for inbound DSCP tagging.
Possible options are YES,NO,
DESIRABLE

boardTime unsigned integer Boarding time a number of seconds
since the EPOCH, a time when
lambdastation will start provisioning
of the requested alternative path

startTime unsigned integer Start time when an alternative path
needs to be ready. Application may
anticipate connectivity problems
between boardTime and startTime.
However, in practice startTime =
boardTime. Due to the discrete nature
of network configuring startTime can
not be guaranteed very precisely
anyway

21

Name Type Description Example

endTime unsigned integer Time (a number of seconds since
EPOCH) when ticket needs to be
expired.

Output:

Type Description Example

integer The localID of ticket. If ticket with same flow is
existing already it will returned its localID (join
operation) otherwise new ticket will be created

integer corresponding ID at remote site or 0 if not yet
assigned. At remote site it will be localID of
corresponding ticket, and localID above will be its
remoteID

integer actual end time. Two modes are considered:
returning endTime of existing ticket or extend
endTime as specified in the latest request.

Errors: Many error conditions can occur. Errors are reported via object reference object-

>{error}

Comments:

 It is not necessary to specify all parameters in request. Most of them can be determined
automatically based on definition of PBR clients or taken as default values.

openSvcTicket – Request alternate network path for specific flows.

 This method is an earlier form of openSvcTicket2 and can still be used. It gets all same
input parameters but returns only localID assigned to the request by site lambdastation. It
does not search already opened tickets for the duplicate flows.

Input Parameters (all input parameters are named strings. See explanation below

regarding required and optional parameters):

Name Description Example

srcSite Source site ID Fermilab

22

Name Description Example

srcClient Source PBR client ID CMS

srcIP CSV-list of source IP addresses in CIDR
format

“131.225.207.0/25,
131.225.207.133, 131.225.207.134”

srcPort CSV-list of source ports in the format

{protocol operator ports}Known operators

are as defined in Cisco's named
ACLs

“tcp eq 25, tcp range 5000 – 6000,
udp le 32000”.

dstSite Destination site ID SiteA

dstClient Destination PBR client ID CMS-SRM

dstIP CSV-list of destination IP addresses in CIDR
format

“131.215.207.2, 131.225.207.3,
131.207.128/25”

dstPort CSV list of destination ports (the same format
as srcPort)

“tcp eq 25, tcp range 5000 – 6000,
udp le 32000”.

localPath ID of local path StarLight10G

remotePath ID of remote path MyFastPathToTheWorld

BWout requested outbound bandwidth to reserve 5G – 5 Gigabit per second, 500M –
500 Mbps

BWin requested inbound bandwidth to reserve same as above

dscpReqOut request for outbound DSCP tagging. Possible
options are YES,NO, DESIRABLE

dscpReqIn request for inbound DSCP tagging. Possible
options are YES,NO, DESIRABLE

boardTime Boarding time a number of seconds since the
EPOCH, a time when lambdastation will
start provisioning of the requested alternative
path

startTime Start time when an alternative path needs to be
ready. Application may anticipate connectivity
problems between boardTime and startTime.
However, in practice startTime = boardTime.
Due to the discrete nature of network
configuring startTime can not be guaranteed
very precisely anyway

endTime Time (a number of seconds since EPOCH)
when ticket needs to be expired.

23

Output:

Description Example

integer The localID of ticket.

The openSvcTicket2 and openSvcTicket methods are most complex and important

methods of the LSI. Let us follow for the steps implemented in openSvcTicket2 method
for a simplest form of its call. Suppose application places request and provides only
source and destination IP addresses.

1. The LSUI will try to determine PBR-Client definitions for both addresses because
PBR could be applied only to these which are defined by network administrators and
what there is required network infrastructure. If no PBR-Clients are found it is error .

2. It will convert flow into internal canonical form that could be easily converted into
form understandable by routers. At this time we deal with Cisco routers only. It is
known that basically the same form can be used for Force10Networks router.

3. It will search requests database for already opened tickets with exactly the same flow
or subset. If found openSvcTicket2 method will return ID of already opened ticket. An
opened ticket is a ticket in any of following states: bookedLocally, bookedRemotely,
booked, active

4. If no opened ticket is found it will create a new one and returns assigned localID.

24

cancelTicket – Method to cancel specified ticket.

Description: This method is updating local status of ticket to 'cancelLocal'

Input :

Name Type Description Example

localID integer The local ID assigned to ticket

Output:

1 (true) if successful

0(false) if errors

Errors:

25

Figure 4

 If called via SOAP the errors will be returned via faultcode and faultstring. If called in

perl run-time environments faultcode and faultstrings are accessible via object reference
$self->{cancelTicket}{faultcode} and $self->{cancelTicket}{faultstring}

faultcode faultstring Comments

parameter.error The localID needs to be specified for
cancelTicket request

db.error Cannot connect to DB by $DSN

completeTicket – Method to complete specified ticket gracefully.

Description: This method is updating local status of ticket to 'activeExpire'. From

functional point of view it is very similar with cancelTicket. Lambdastation goes through

same steps as in case of cancelTicket while complete it. The main reason to have two

different methods is only to distinguish causes and keep track of it.

Input :

Name Type Description Example

localID integer local ID assigned to ticket

Output:

1 (true) if successful

0(false) if errors

Errors:

 If called via SOAP errors will be returned via faultcode and faultstring. If called in perl

run-time environments faultcode and faultstrings are accessible via object reference $self-
>{cancelTicket}{faultcode} and $self->{cancelTicket}{faultstring}

faultcode faultstring Comments

parameter.error localID needs to be specified for
completeTicket request

db.error Cannot connect to DB by $DSN

26

getTicket – Method to select tickets based on various selection
criterion and return only specified portion of ticket's information.

Description: This method selects tickets based on multiple selection criteria combined

by logical AND operation. At least one criterion needs to be specified. Tickets are
described by multiple fields. By optional parameter header only certain fields can be
selected.

Input (all input parameters are named):

Name Type Descriptions Default/Comments

header list of strings Select data fields to be returned if not specified then the full
ticket's header will be taken.
The full header is
@TICKET_HEADER in
lsDefs.pm

localID integer The localID of ticket to return

information about.

If specified all other selection
criterion are ignored. No
Default.

localStatus list of strings select tickets that are in any of
listed status.

All statuses are defined by
@TICKET_STATUS in
lsDefs.pm

remoteStatus list of strings similar as localStatus but for
remoteStatus.

All statuses are defined by
@TICKET_STATUS in
lsDefs.pm

dstSite list of strings select tickets for any site
specified in the list

from unsigned integer select tickets with boardTime

(unixTime) between 'from' and

'to'

none

to unsigned integer If any of these parameters is not
specified the current clock is
taken

none

endTimeFrom unsigned integer similar with 'from' and 'to' but

applied to endTime ticket's
parameter

endTimeTo unsigned integer

27

Name Type Descriptions Default/Comments

age unsigned integer Select tickets with 'boardTime'

created less then 'age' seconds

ago. If any of 'from' and ' to' is

specified then 'age' is ignored.

none

Output: reference to array of arrays of values.

The first array (index 0) will be the list of fields returned for every tickets. It duplicates

input header parameter, except it may add mandatory localID field. All following arrays

will return values in order specified by actual header of all selected tickets. If no tickets
are selected the reference will be to empty array.

Errors:

 For SOAP calls errors are reported via faultcode and faultsring mechanism. If lsui.pm

interface is used directly in PERLRE these errors are reported via object reference $self->
{getTicket}{faultcode} and $self->{getTicket}{faultstring}

Example:

 my $refAofA = $lsIntf->getTicket(

 dstSite => [$remoteStation],

 localStatus => ['bookedLocal'],

 from => time() - 300);

 print "There is(are) ", $#{@$refAofA}, " ticket(s) for remoteSite $remoteStation\n"

 if ($options{debug});

 next if ($#{@$refAofA} <= 0);

getTicketStatus – Method to return status of ticket specified by its
localID.

Description: This method is a shortcut for getTicket method described above to return

only status information for specified by localID ticket.

Input (named parameters):

28

Name Type Description

localID integer The localID of ticket.

Output:

A string with localStatus. The list of known statuses is specified by
@TICKET_STATUS in lsDefs.pm.

Errors:

 For SOAP calls errors are reported via faultcode and faultsring mechanism. If lsui.pm

interface is used directly in PERLRE these errors are reported via object reference $self->
{getTicketStatus}{faultcode} and $self->{getTicketStatus}{faultstring}

faultcode faultstring Comments

parameter.error The localID needs to be specified for
getTicketStatus method

parameter.error Unknown status of ticket

db.error * Cannot connect to DB via specified DSN

• - not yet implemented.

getMyRemoteID – Method to return remoteID associated with local
ticket.

Description: This method is a shortcut for getTicket method to return ID of ticket at

remote site associated with ticket's local ID.

Input (named parameters):

Name Type Description

localID integer The localID of ticket.

29

Output:

Parameter Type Comments

remoteID integer Returns remoteID. 0 – valid remoteID which means it is not yet
assigned by remote Lambda Station

Errors:

 For SOAP calls errors are reported via faultcode and faultsring mechanism. If lsui.pm

interface is used directly in PERLRE these errors are reported via object reference $self->
{getMyRemoteID}{faultcode} and $self->{getMyRemoteID}{faultstring}

faultcode faultstring Comments

parameter.error The localID needs to be specified for
getMyRemoteID method

parameter.error Unknown status of ticket

db.error * Cannot connect to DB via specified DSN

getFlowsSpec – Method to return specification of flows associated with
ticket.

Description: This method returns specification of flows associated with ticket in the

format used by applications.

Input:

Name Type Descriptions Default/Comments

header list of strings Select data fields to be returned if not specified then the full
flows header will be taken.
The full header is
@FLOWSSPEC_HEADER in
lsDefs.pm

localID integer The localID of ticket to return

information about.

If specified all other selection
criterion are ignored. No
Default.

30

Output: list of lists of strings

Parameter Type Comments

actualHeader list of
strings

 Returns the list of fields that were selected, usually it is a

duplication of input parameter header.

FlowsSpec list of
strings

Values for selected fields of flows specification

The fields that can be selected are localID, srcIP, dstIP, srcPort, dstPort, dscpOut,
dscpIn. They are described in openSvcTicket2 method.

Errors:

 For SOAP calls errors are reported via faultcode and faultsring mechanism. If lsui.pm

interface is used directly in PERLRE these errors are reported via object reference $self->
{getFlowsSpec}{faultcode} and $self->{getFlowsSpec}{faultstring}

faultcode faultstring Comments

parameter.error The localID needs to be specified for
getFlowsSpec method

db.error * Cannot connect to DB via specified DSN

updateFlowsSpec – Method to modify flows specification of ticket.

Input Parameters (all input parameters are named). Parameters of datatype 'string' may

have multiple constraing facets, length, pattern, enumeration. See explanation below
regarding required and optional parameters):

Name Type Description Example

localID integer The localID of ticket

srcIP string CSV-list of source IP addresses in
CIDR format

“131.225.207.0/25,
131.225.207.133,
131.225.207.134”

31

Name Type Description Example

srcPort string CSV-list of source ports in the format

{protocol operator ports}Known

operators are as defined in
Cisco's named ACLs

“tcp eq 25, tcp range 5000 –
6000, udp le 32000”.

dstIP string CSV-list of destination IP addresses in
CIDR format

“131.215.207.2, 131.225.207.3,
131.207.128/25”

dstPort string CSV list of destination ports (the same
format as srcPort)

“tcp eq 25, tcp range 5000 –
6000, udp le 32000”.

dscpOut integer DSCP code assigned for outbound
traffic

dscpIn integer DSCP assigned for inbound traffic.
This is actually DSCP used at remote
site and assigned by remote
lambdastation. In campus network
with complex topology we may need
to know it for correct PBR of inbound
traffic.

Output:

Type Description Example

boolean The result of update. True if successful otherwise
is false. Detailed errors returned as described
below.

Errors:

 For SOAP calls errors are reported via faultcode and faultsring mechanism. If lsui.pm

interface is used directly in PERLRE these errors are reported via object reference $self->
{updateFlowsSpec}{faultcode} and $self->{updateFlowsSpec}{faultstring}

faultcode faultstring Comments

parameter.error The localID needs to be specified for
getFlowsSpec method

db.error * Cannot connect to DB via specified DSN

32

Example:

getDscp – Method to return DSCPout associated with ticket.

Description: This method returns DSCP (outbound) associated with ticket in the format

used by applications.

Input:

Name Type Descriptions Default/Comments

localID integer The localID of ticket to return

information about.

If specified all other selection
criterion are ignored. No
Default.

Output:

Type Description Example

integer DSCP for outbound traffic

Errors:

 For SOAP calls errors are reported via faultcode and faultsring mechanism. If lsui.pm

interface is used directly in PERLRE these errors are reported via object reference $self->
{getDscp}{faultcode} and $self->{getDscp}{faultstring}

faultcode faultstring Comments

parameter.error The localID needs to be specified for
getDscp method

db.error * Cannot connect to DB via specified DSN

updateDscp – Method to update either DSCPout or DSCPin or both of
them for flows associated with ticket.

Input Parameters (all input parameters are named). Parameters of datatype 'string' may

have multiple constraing facets, length, pattern, enumeration. See explanation below
regarding required and optional parameters):

33

Name Type Description Example

localID integer The localID of ticket

dscpOut integer DSCP for outbound traffic

dscpIn integer DSCP assigned for inbound traffic.
This is actually DSCP used at remote
site and assigned by remote
lambdastation. In campus network
with complex topology we may need
to know it for correct PBR of inbound
traffic.

Output:

Type Description Example

boolean The result of update. True if successful otherwise
is false. Detailed errors returned as described
below.

Errors:

 For SOAP calls errors are reported via faultcode and faultsring mechanism. If lsui.pm

interface is used directly in PERLRE these errors are reported via object reference $self->
{updateFlowsSpec}{faultcode} and $self->{updateFlowsSpec}{faultstring}

faultcode faultstring Comments

parameter.error The localID needs to be specified for
updateDSCP method

db.error * Cannot connect to DB via specified DSN

34

DIAGRAM OF TICKET's STATES.

Each request for service is associated with created ticket. In fact, a request for service

typically results (if no error conditions are detected) in creation of two tickets, one at the
local site and another at the remote site. Some actions on configuring local networks
neeed to be synchronized with certain level of accuracy. A LSC module is responsible for
updating local information about the status of the corresponding ticket at remote site. Its
activity diagram is depicted in figure

● bookedLocal – application placed request to local Lambda Station and got assigned
localID.

● bookedRemote – similar to bookedLocal but request was placed by remote Lambda
Station

● booked – both sites are agree on parameters of sessions, all local assignments were
completed successful (e.g. DSCP) and exchange between sites

● active – local area network was successfully configured (for dynamic mode)

● canceledLocal/canceledRemote – ticket was canceled (e.g. CTRL/C signal to
application) by local application or remote Lambda Station in the response to its
application

● activeExpired – ticket has expired but local network is still configured

● revokedLocal – local site was configured but remote was not successful to do so
within waiting idle timeout, local site needs to back off

● revoked, canceled, completed – the final ticket's state which results from revoking,
canceling and graceful completion of ticket correspondently. From prospective of the
final network configuration they are the same but we need to keep track of reasons
causing final state.

35

36

Figure 5

 The activity diagram of Lambda Station controller is shown figure 6 below.

37

Figure 6

A dedicated process watches status of tickets and make actions corresponding to its
status:

NETWORK CONFIGURATION MODULE.

 The NetConfig module is used to dynamically modify the configuration of local
network devices. This module has a vendor dependent components. At this time we
support only Cisco routers with IOS version supporting sequencing type of ACLs. A
policy based routing is used as technology for selective flows forwarding. There are
several tasks that need to be completed to configure PBR in Cisco devices:

● interface on which PBR is applied needs to be configured with “ip policy route-map”

statement

● route map needs to be configured as ordered list of match/action statements

● match criteria need to be associated with ACLs

Currently NetConfig module implements the least disruptive approach (from our point
of view) to modify PBR dynamically by updating ACLs associated with match criteria.
It means that basic PBR configuration needs to be prepared by network administrators
based on site's specific and needs. Thus actual PBR configuration needs to be described
in LS configuration file ($LAMBDA/src/lsKnownPBRCLients). Devices with same
policy rules are grouped together to simplify management. A work to implement the
feature to auto discover site's PBR configuration is in progress but not yet available in

38

Figure 7

the current version of NetConfig module.

 External methods:

● new

● addFlows

● defFlows

Internal methods (only brief description is provided):

● showFlows – print in a canonical format current flows associated with object

● delByIndex – delete flows from canonical table by specifying index in the internal
table. It is used when addFlows failed for some routers in group

● makeACL – assembly ACL from frames based on static definitions and generated
from templates

● buildTemplate – generate an ACL frame from template

● TemplateError – Processing of errors in template

● cmpFlow2all - verify whether new flows are already existing

● getAllSameFlows - find all the same flows

● preserve – save current status of lsNetConfig module

● restore – restore previously saved status of lsNetConfig module.

● SaveNetConfig – save routers's configurations on TFTP server

new – Method to define flow object

 Input parameters:

Name Type Description

routerGroup string ID of device group (from PBR Client definition)

routerList string CSV list of IP addresses of routers that need to be configured. If

empty configure all routers defined by routerGroup

policyOut string CSV list of outbound policies

policyIn string CSV list of inbound policies

dataHeader string CSV list of flow field to be presented in data, If not defined then
all fields

39

Name Type Description

data integer reference to buffer with data

snmpRW string SNMP-RW community string

snmpTimeout integer SNMP timeout

snmpRetries integer a count of SNMP retries before consider request as failed

netconfigState string a file name to store status of objects maintained yb NetConfig
module

tftpserver string An IP address of TFTP server used to update routers

tftpdir string A relative location on TFTP server

reload boolean restore status of lsNetConfig module from file defined by
netconfigState

uploadConfig boolean send snmpSET request to all routers that need to be configured
to download their configuration updates (Cisco specific,
Force10Networks should also work)

Output: True if successful, False if any errors

Errors: Errors are reported via object reference object->{error}

addFlows – Method to add flows from PBR configuration

Name Type Description

routerList string CSV list of IP addresses of routers that need to be configured. If
not specified take from object definition by method new

dataHeader string CSV list of flow field to be presented in data, If not defined then
take it from object definition

data integer reference to data

policyOut string CSV list of outbound policies. If not defined then as defined for
whole object by method new

policyIn string CSV list of inbound policies. If not defined then as defined for
whole object by method new

Output:

40

Errors:

delFlows – Method to delete flows from PBR configuration

Same as for addFlows

A sequencing ACL model.

 The current version of Lambda Station software does support only Cisco IOS
sequencing type of ACLs. The reconstruction of ACLs from active routers's
configurations is not yet available. That is why the structure of ACLs used in PBR
configuration needs to be defined. At large sites network administrators typically
organize ACLs in some logical way to simplify their management. To address this issue
rather then to use simple numbering of entries we consider an ACL as consisting of
several frames. The frames can be either static or dynamic and they are stored in
separate files under subdirectory $CFGDIR/Template/Name_of_ACL. In static frames
ACL statements are explicitly configured. Dynamic frames are defined by templates.
Administrators can defined several modes to assembly complete ACL by specifying the
sequence in which frames need to put taken. Figure 8 below illustrates it.

41

Figure 8

IMPLEMENTATION DETAILS.

 The diagram in figure 9 shows implementation details of Lambda Station software
version 1.0.

 The current Lambda Station software runs on Linux 2.4.x platform. The shared
memory support needs to be enabled if not enabled already by default. A Lambda Station
consists of SOAP Server, HTTP Server, mySQL server, TFTP server, Lambda Station
controller LSC (Perl program called LAMBDA which starts multiple processes to
perform their specific tasks) and Lambda Station interface LSUI. Authorization, resource
monitoring, network configuring and other functions are implemented in separate
modules. The SOAP Server is based on Apache HTTP 2.0.55 software, SOAP::Lite
PERL module and CGI script lambdaSrv.cgi. See SOAP::Lite docs for information on
how to setup SOAP Server with SOAP::Lite and existing HTTP Server. We used
SOAP::Lite 0.60 module although there are already newer version.

 A mySQL database server is used to hold ticket's queue, maintain information about

42

Figure 9

parameters of flows and state of individual tickets. The database server does not need to
be network accessible if it runs on the same host as SOAP Server. In this case all
queries between SOAP server and mySQL database server will be local to host.

 A TFTP server is used by NetConfig module to upload configuration changes in routers.
This way of configuring is probably Cisco specific. We did not research equipment of
other manufacturers but Force10Networks routers should work as well. The
configuration updates for routers are generated by NetConfig module and stored on
TFTP server. Then SNMP-set requests with information about location and names of
updates are sent to all routers required changes. Routers will initiate a process to
download configuration changes from TFTP server. In average it takes 20-40 secs to
update multiple Cisco routers because IOS does not allow to do TFTP updates too often.

INSTALLATION NOTES.

 Because the current version of Lambda Station software is still in development only

the brief installation notes are available.

In first you have to install and configure the following software required by LSv01:

1. Linux 2.4.x, enable SysV support of shared memory if not enabled by default in your

distribution. If enabled you should see device /dev/shm when type command “df”.

2. PERL 5.8.7 (there is no a strong dependency on the version of Perl but it is a good
idea to use reasonable recent one. In our setup it is 5.8.7).

3. ls_bundle_YYYYMMDDD.pm is bundle of all CPAN modules currently installed in
our setup. You can use CPAN utility to add it in your host.

4. Apache HTTP Server 2.55. If you intend to use X.509 digital certificates for
authentication of access you may need to apply patch for ssl_engine.c file. It seems
that there is a long staying bug in Apache HTTP 2.x software that prevents method
POST to work correctly with mutual authentication based on digital certificates. In
some Apache's ChangeLog file a few releases back it was mentioned that this bug has
been fixed. However, seems it is still there and in our case patch solved the problem.
The patch is included in LSv1.0 distribution tree under Apache subdirectory.

5. Install and configure mySQL database server and create tables Requests and Flows.

You can use script $LAMBDA/sql/lsReqTablesInnoDB.sql

 The names of database and tables are in lsDefs.pm. The default name of database

43

is lsdb, table for requests is Requests, and table for flows is Flows.

mysql < $LAMBDA/sql/lsReqTablesInnoDB.sql

You also may want to create a table for each resource you are going to monitor.
The script $LAMBDA/sql/lsResourceInnoDB.sql is a sample of such a script.
The name of tables for resource monitoring is the same as in the resource
definition file lsTopology.pm .

6. Authentication of access to mySQL Database Server, HTTP Server and SNMP-RW
access to routers

 To access mySQL Database Server, Apache HTTP Server, SOAP Server and routers
with SNMP-RW it is necessary to provide userid/password information. That
information is kept encrypted in file defined by $LSPASSWORDS (modify
lsLocations.pm if needed). The format of line when decrypted is

selector:userid:password. The CPAN module Crypt::Simple was used to implement it.

The script $LAMBDA/src/lsEncrypt (see lsEncrypt –help) can help to maintain and view
this information. You also will need to have the same password phrase for all programs

that will be using same authentication data. A password phrase is stored in file lsSecret.

It does not matter what garbage you will put in that file, just share same one for all

programs. By default, the statement: use Crypt::Simple passfile => "$ENV{HOME}/

etc/lambda/lsSecret" is included in all LSv1.0 programs that required authentication

data. You can modify it according to your preference. Make sure both files lsSecret and

$LSPASSWORDS have as restrictive access permission as possible. In general it should

be accessible only for user which runs Lambda Station software. Create userid/password

for the following selectors: htaccess, db, SNMPRW. As mentioned above name of

database and tables are defined in lsDefs.pm. In some most recent pieces of code we
started to use DSN to access mySQL server defined in the XML configuration file
$CFGDIR/lsMyLambdaConfig.xml (see section <Database> </Database>). Make sure
these settings are consistent with these which are in lsDefs.pm).

7. Configure SOAP Server. To build up a SOAP Server we used SOAP::Lite and Apache
HTTP Server 2.55. See SOAP::Lite instructions how to setup SOAP Server by using
existing HTTP server. Copy $LAMBDA/cgi/*.cgi files in location for CGI scripts
according to configuration of your HTTP server.

44

EXAMPLE OF A LAMBDA STATION SETUP.

In this section we will guide you through the major steps to setup Lambda Stations for
two sites and start communication between them. Here is what we will try to setup:

SiteA, PBR Clients : CMS, WORKER. An alternative network topology is starlight10G

SiteB, PBR Clients: STORAGE, SRM. An alternative topology is highway.

We will assume that mySQL, Apache 2.55, Perl, all required CPAN modules are installed
and configured. Lambda Station software is extracted in some directory defined by
environment variable $LAMBDA.

 In this example location for CGI scripts on the Lambda Station of SiteA will be

~netadmin/public_html/ls and ~netadmin/secure_html/lssl on Lambda Station of SiteB.

The userid dbadmin will be used to access SQL tables in lsdb database.

mysql> show GRANTS for 'dbadmin'@'localhost.localdomain';

+--+

| Grants for dbadmin@localhost.localdomain |

+--+

GRANT ALL PRIVILEGES ON `lsdb`.* TO 'dbadmin'@'localhost.localdomain'

|GRANT USAGE ON *.* TO 'dbadmin'@'localhost.localdomain' IDENTIFIED BY PASSWORD

'*2E2918FDHTW71O4EY2Y3Y231' |

In the LS_V1.0 directory $LAMBDA/cfg there are several examples of configuration

files with extension SiteA and SiteB (e.g. myLambdaConfig.xml.SiteA and

myLambdaConfig.xml.SiteB). Rename it to $LAMBDA/cfg/myLambdaConfig.xml

1. In first, inspect $LAMBDA/src/lsLocations.pm whether you need to modify any
parameters. Most locations are defined relatively to $LAMBDA but you may want to
change some of them or modify names for password and authorization files.

2. Setup SOAP Server (see SOAP::Lite docs for more details) and placed CGI script
located in $LAMBDA/cgi/lambdaSrv.cgi under ~netadmin/public_html/ls directory.
You may need to edit this script for actual path as defined by $LAMBDA environment
variable.

3. Copy CGI script $LAMBDA/cgi/lsReqs.cgi in the ~netadmin/public_html/ls . By
using script $LAMBDA/sql/lsReqTablesInnoDB.sql create tables for requests and

45

flows specification. The selector db (in lower case) is used to select userid/password

from encrypted file for accessing mySQL tables as described in the previous section.
Use script $LAMBDA/src/lsEncrypt –verbose to see, add and modify if needed access
parameters. Although there are no yet any requests in the database you should be able

to use script lsReqs.cgi to access Request and Flows tables via URL

http://lambdaStation_at_siteB/~netadmin/ls/lsReqs.cgi

4. Create definitions for at least two Lambda Stations in file
$LAMBDA/src/lsKnownLambdaStations.pm. Use existing file as an example. At
each site you will have to define two stations, local one and at least one remote station.
These stations will need to know how to reach each other. At each station you can add
information about other stations not known to all other remote stations. Once
communication channel between two stations is established they will exchange
information about all known other stations and PBR clients.

5. Create file with definitions of PBR clients. The existing file
$LAMBDA/src/lsKnownPBRClients.pm provides example of such definition. Keep in
mind that if you are going to switch path of selected flows generated by applications
on these cluster the definitions should reflect topology of the real network. Network
infrastructure should be capable of doing policy based routing for that cluster. In
first try to generate dynamic updates for network without actual uploading it in
routers. It is safer if you do not have yet correct snmpRW in encrypted password file
to prevent that changes are placed in routers accidentally. Certainly if uploaded ACLs

46

are not involved into active configuration they should make no harm.

6. Start $LAMBDA/src/lambda –debug –verbose and check HTTP Server's log

files for any errors. You may see something like that:
$VAR1 = {
 'sc05' => {

 'active' => 0,

 'name' => 'sc05',

 'proxy' => 'https://a33.302.sc05.org/~netadmin/ls/lambdaSrv.cgi',

 'uri' => 'lsui',

 'ipaddr' => '140.221.183.33'

 },

 'SiteA' => {

 'active' => 0,

 'name' => 'SiteA',

 'proxy' => 'http://10.225.247.162/~netadmin/ls/lambdaSrv.cgi',

 'ipaddr' => '10.225.247.162',

 'uri' => 'lsui'

 },

 As you can see SiteA does not appear to be active which typically indicates some
access permission problems. A periodical gathering of information about lambda stations
and their parameters goes via SOAP calls. Check $LAMBDA/logs for additional
messages in LS log files.

 Now try to place request by $LAMBDA/tapi/lsreq test program. See available options
lsreq –help. Rather then specify multiple input parameters you may want to modify

defaults in Perl code directly. Open lsReqs.cgi in web browser to see information about

requests. At this point you might expect errors because of conflicts in definitions or

remote.Ticket error because there is no yet a second Lambda Station to communicate to.

Additionally you may want to use other test scripts located at $LAMBDA/tapi such as
lsGetKnownPBRClients,lsGetKnownLambdas, lsGetKnownLinks.

To set up a second lambda station follow the same steps as above. Once two Lambda
Stations are configured and know how to communicate each to other
(lsKnownLambdaStations.pm) you should see periodical exchange of information about
known PBR clients and Lambda Stations (if configured more then two) known at each
site.

47

1138507794 01/28/2006 22.09:54|updateClients@SiteA|Known clients at the Fermilab are

DCN,CMS,CDF.

1138507801 01/28/2006 22.10:01|updateClients@SiteA|Known clients at the Caltech are CMS.

1138507802 01/28/2006 22.10:02|statusWatch|Count of concurrent synRemStatus processes is 0.

1138507806 01/28/2006 22.10:06|updateClients@SiteA|Skipping inactive station sc05

1138507807 01/28/2006 22.10:07|updateClients@SiteA|Known clients at the SiteA are WORKER,CMS.

1138507811 01/28/2006 22.10:11|updateClients@SiteA|Known clients at the SiteB are SRM,STORAGE.

1138507815 01/28/2006 22.10:15|updateClients@SiteA|Skipping inactive station mylaptop

1138507815 01/28/2006 22.10:15|main|There is(are) 0 ticket(s) for remoteSite Fermilab

1138507816 01/28/2006 22.10:16|main|There is(are) 0 ticket(s) for remoteSite Caltech

1138507816 01/28/2006 22.10:16|main|There is(are) 0 ticket(s) for remoteSite SiteB

7. Place another request with $LAMBDA/tapi/lsreq script. If status of ticket goes through
bookedLocal, booked states then you get communication between stations. The next

step is to generate and update network configuration. If NetConfigMode is dynamic

in $LAMBDA/cfg/myLambdaConfig.xml then Lambda Station will generate ACLs
for PBR as defined in lsKnownPBRClients.pm. Make sure that in

$LAMBDA/cfg/Template there are templates named the same as policy in PBR Client

definitions. The names are case sensitive. Also if uploadConfig is not 'yes' or not

defined then Lambda Station will skip actual uploading of configuration changes in

routers assuming that it is successfully completed (dry run mode). Configurations are

stored under $TFTPDIR, in subdirectory called by name of device groups defined in

lsKnownPBRClients. The subdirectories are NOT created automatically. You need

to create it. If NetConfigMode is static Lambda Station will skip generating of

network configuration updates. In this case network need to be statically configured to
switch flows based on DSCP tagging initiated on host site. Applications control
whole switching process of flows.

8. Now you can try to test program that communicate with Lambda Station via SOAP
protocol, e.g. $LAMBDA/tapi/lsSoapReq . Check parameters of communication and
modify them according to your settings.

EXPERIMENTING WITH LAMBDA STATION.

 The current LS software was used to built a Lambda Station testbed to use network
aware applications between Fermilab and Caltech. The ESNet was our production path

48

and two high bandwidth networks, UltraScienceNet and UltraLight were used as
alternative network topologies. This software was also used during SuperComputing
2005 to demonstrate flow based switching between SciNet and Fermilab. Two
applications were used in both experiments, lsiperf which is an example of Lambda
Station aware application, and SRM with modified version of gridFTP supporting DSCP
tagging.

The graph below represents the results of throughput measurements for selective
switching of flows between two alternative paths. The tests were conducted between

Fermilab and Caltech for memory to memory data transferring by using lsiperf tool, 1

stream, 10MB buffer size. Path switching is based on policy based routing configured at
both sites for pairs of source/destination addresses marked by DSCP. A path switching is
initiated on host site by turning DSCP tagging on or off for specific flows. In our tests

we used iptables to do actual tagging for traffic associated with certain UID (user

identifier) or PID (process identifier). The test was started via ESNet path with five
streams. Throughput has reached about 350Mbps. To avoid saturation of the OC12 link at
Fermilab the number of streams was reduced to only one. In about 3 mins hosts on both
ends started DSCP tagging of traffic to switch forwarding via USN path, and then, in
about 5 mins tagging was switched off to forward packets via ESNet path again.

49

The graphs below demonstrates Lambda Station control of forwarding path for two
applications, lsiperf and SRM during SuperComputing 2005, November 2005, Seattle,
WA. A path to Fermilab was dynamically switched between commodity Internet and a
dedicated 10G link from SC05 booth in Seattle to Fermilab.

50

REFERENCES

1. A Lambda Station Project Web site http://www.lambdastation.org/

2. Donald L.Petravic, Fermilab, LambdaStation: Exploring Advanced Networks in Data
Intensive High Energy Physics Applications, Project Proposal,

http://www.lambdastation.org/omnibus-text.pdf

3. Phil DeMar, Donald L.Petravic. LambdaStation: A forwarding and admission control
service to interface production network facilities with advanced research network
paths, CHEP2004 International Conference on Super Computing, Interlaken,
Switzerland, 27th September - 1st October 2004.

51

