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Abstract

High energy electron cooling with a circulated electron bunch could
significantly increase the luminosity of hadron colliders. One of the sig-
nificant obstacles is high horizontal temperature of electron bunches, sup-
pressing dramatically calculated cooling rates. Recently, a transformation
of betatron coordinates and angles for elimination of the radial temper-
ature was found. In our paper, we present a simple scheme to make up
this transformation by thin quadruples, drifts and a solenoid.

1 Introduction

A possibility to use circulating electron bunches for electron cooling in hadron
colliders is an attractive idea, meeting several obstacles for realization (see e. g.
[1] with a vast list of references). One of the difficulties is that high radial tem-
perature of the electron bunch in a storage ring would strongly suppress cooling
rates. In electron storage rings, bunches are practically flat: their horizontal
emittance is orders of magnitude higher than vertical one. A way to eliminate
the horizontal temperature for such bunches was recently suggested in [2]. A
matrix, which transforms the flat distribution into a distribution without trans-
verse angles, was found there. It should be noted, that such a transformation
does not contradict to the Liouville’s theorem: the 4D transverse phase volume
(xx′yy′) for the flat bunch is zero, as well as for the bunch with zero angles.
With this transformation, the calculated cooling rates are strongly shifted to a
practically interesting range of values.

In the following chapter, this transformation is discussed. Then, its practical
realization on the base of thin quadruples, drifts and a solenoid is considered.
∗On leave from Budker INP, 630090, Novosibirsk, Russia.
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2 Transformation Matrix

Let us consider a distribution where vertical coordinates and angles are con-
nected in a particular way with the horizontal ones:[

y
y′

]
=
[

0 −β
1/β 0

] [
x
x′

]
≡ F ·

[
x
x′

]
, (1)

where β is an arbitrary parameter; x, x′ and y, y′ stand for horizontal and ver-
tical coordinates and angles correspondently. Note that F 2 = −I, where I is an
unity matrix. With this condition, the distribution is vortex. The 2D velocity
is transverse to radius-vector and their values are proportional to each other:

xx′ + yy′ = 0, x′
2 + y′

2 = (x2 + y2)/β2. (2)

In this case, the transverse velocity can be eliminated by solenoid with lon-
gitudinal field Bs, which is inversely proportional to parameter β in (1):

Bs = −2pc/eβ, (3)

where p is a momentum of particles, c is a velocity of light, e is a proton’s
charge. In the result, the particles have no angles inside this solenoid.

So, the problem reduces to building a transformation satisfying the relation
(1). To start, an uncoupled 2D transformation can be introduced:

UMN =
[
M 0
0 N

]
, (4)

where M,N are 2 × 2 matrices of horizontal and vertical motion. Rotated on
45◦, it transforms in a skew block:

C = R−1
4 (α) ·UMN ·R4(α) = 1/2

[
M +N M −N
M −N M +N

]
. (5)

Here R4(α) is a 4× 4 matrix of rotation on the angle α = 45◦:

R4(α) =
[

I cosα I sinα
−I sinα I cosα

]
=

1√
2

[
I I
−I I

]
, (6)

with I as a unit 2× 2 matrix.
The inverse matrix to (5) is obtained by a substitution M ↔ N :

C−1 = R−1
4 (α) · UNM ·R4(α) =

R4(α) · UMN ·R−1
4 (α) = 1/2

[
N +M N −M
N −M M +N

]
. (7)
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As it was noted, vertical coordinate and angle can be taken as zeroes at the
entrance; so, the skew transformation results in:[

x
x′

]
= 1/2 [M +N ]

[
x0

x′0

]
(8)

and

[
y
y′

]
= 1/2 [M −N ]

[
x0

x′0

]
(9)

where x0, x
′
0 are horizontal coordinate and angle at the entrance of this trans-

formation. It can be seen that the required condition (1) is satisfied when
M −N = F · (M +N), which gives

N = −F ·M. (10)

Thus, any transformation (5) turns the flat distribution into the vortex one
(2), as soon as the last condition (10) is satisfied.

If applied to the cooling purposes, a sequence of transformations for the
electron bunch can be following [2]:

• the skew block C transforms the flat distribution into the vortex one;

• the solenoid entrance kick eliminates electron velocity;

• a drift inside the solenoid needed for the cooling itself;

• the solenoid exit kick restores the vortex distribution;

• the inverse skew block C−1 returns the flat distribution.

In the following section, it is shown how the required transformation can be
constructed on the elementary base of thin lenses and drifts.

3 Scheme with quadruples and drift spaces

The horizontal matrix M can be taken in the simplest form

M =
[

cos(µ) β sin(µ)
−1/β sin(µ) cos(µ)

]
, (11)

where β is a parameter, that determines the magnetic field of the solenoid (3);
a phase advance µ is a free parameter. The form of the vertical matrix N is
followed from (1):

N =
[
− sin(µ) β cos(µ)
−1/β cos(µ) − sin(µ)

]
. (12)
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Figure 1: General scheme of the insertion.

For these matrices, the coordinate and velocity parts of the vortex transfor-
mation C write: [

x
y

]
=

1√
2
R2(−µ − π/4)

[
x0

−βx′0

]
, (13)

[
x′

y′

]
=

1√
2β
R2(−µ − 3π/4)

[
x0

−βx′0

]
, (14)

R2(α) is the rotation matrix 2× 2 similar to (6):

R2(α) =
[

cosα sinα
− sinα cosα

]
. (15)

The vortex distribution has a round shape when the beta-function at the
entrance is equal to the vortex parameter β, and the derivative of the beta-
function is zero. The radius of such round beam is

√
2 times smaller than the

half of horizontal size of the input flat beam.
In Fig. 1 the general scheme of the insertion is shown. It consists of

• the three quads with drift spaces in between (symmetric triplet), twisted
on the angle 45◦ around the beam velocity direction;

• solenoid;

• the same triplet, twisted on opposite angle -45◦ for making the inverse
transformation.

Note that the storage ring has no coupling due to this insertion. So, we have to
create uncoupled betatron transformation with special relation 1 between the
horizontal and vertical matrices.

The matrix M is given by

M = L(s1)F (f1)L(s2)F (f2)L(s2)F (f1)L(s1),

where L is a matrix of drift space, F is a matrix of a thin quadrupole, s1, s2 are
lengths of the outer and the inner drift spaces; f1, f2 are focal lengths of the
outer and the inner quads. The vertical matrix N is given by the same formula
but with opposite sign of quadrupole’s strength:

N = L(s1)F (−f1)L(s2)F (−f2)L(s2)F (−f1)L(s1).
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Figure 2: Length of the insertion vs. µ.

The solution for s1, s2 and f1, f2 was found numerically as a function of the
free parameter µ. The solution exists for .18 < µ < 2.08, it does not beyond this
interval. The solution can be found for every parameter β: it just gives a scale
for length. All the parameters with the dimension of length are proportional to
it, the magnetic field is inversely proportional.

The length of triplet versus parameter µ is presented in Fig.2. The most
economical solution corresponds to small µ. For µ = .38, assuming the scale
parameter β = 3.33 m and the energy of electron beam E = 500MeV , the
triplet parameters are found: s1 = 4.5 cm, s2 = 107.2 cm, longitudinal field
Bs = 10.29 KGs, and the focal lengths of two lenses are −1.373 m and 1.172
m. For 10 cm of the quadruple length, this corresponds to −1.214 KGs/cm and
1.423 KGs/cm of the field gradient inside the quadruples. The total length of
the triplet is about 2m, that looks reasonable for insertions of such a kind.

The beam transformation inside the triplet is illustrated in Fig. (3), kindly
presented to the authors by A. Sery. Vectors show the velocities (x′, y′) for some
random coordinates (x, y). The coordinates and angles are normalized by β.

4 Conclusion

It was proved, that the transformation for a radial temperature elimination can
be made by a triplet with reasonable parameters. In fact, this plane-vortex
transformation of the electron distributions can be considered as an instrument
of a general accelerator usage.
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Figure 3: Distribution transformation inside the triplet. Vectors show normal-
ized velocities (x′, y′)/β for some random coordinates (x, y) (presented by A.
Sery).
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