
The Science of  
Analytical Reasoning

When we create a mental picture, speak of the mind’s eye, say “I see” to indicate 
understanding, or use many other vision-based metaphors, we are expressing the 
innate connection among vision, visualization, and our reasoning processes. This 
chapter describes the work needed to put this deep realization onto a useful scientific 
foundation backed by theory, predictive models, and evaluations.

This science of analytical reasoning provides the reasoning framework upon 
which one can build both strategic and tactical visual analytics technologies for 
threat analysis, prevention, and response. Analytical reasoning is central to the ana-
lyst’s task of applying human judgments to reach conclusions from a combination 
of evidence and assumptions.

Visual analytics strives to facilitate the analytical reasoning process by creating 
software that maximizes human capacity to perceive, understand, and reason about 
complex and dynamic data and situations. It must build upon an understanding of 
the reasoning process, as well as an understanding of underlying cognitive and per-
ceptual principles, to provide mission-appropriate interactions that allow analysts to 
have a true discourse with their information. The goal is to facilitate high-quality 
human judgment with a limited investment of the analysts’ time.

In emergency management and border security contexts, analytical reasoning 
provides the foundation for the abstraction of data at multiple levels to convey the 
right information at the right time and place. It provides the principles for convey-
ing context-appropriate information that can be cascaded to all levels of an organization 
to support rapid decision making. 

Analytical reasoning must be a richly collaborative process and must adhere to 
principles and models for collaboration. Collaborative analysis provides both the human 
and computational scalability necessary to support reasoning, assessment, and action.

The science of analytical reasoning underpins the research areas described in the 
rest of this book. It provides a basis and a direction for the science of visual represen-
tations and interactions described in Chapter 3. It forms a foundation for the 
principles of depicting information in meaningful and novel visual representations. 

“It is not enough to have a good mind. The main thing  
is to use it well.”
—Rene Descartes, Discourse on Method, 1637 2
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The integration of interaction at a basic level in perceptual and cognitive theory will 
explain and empower interactive visualizations, which are fundamentally different 
from static visualizations and are essential to visual analytics tools. The focus on 
analytic discourse and reasoning processes will make visual representations relevant, 
focused, and effective. The data representations and transformations described in 
Chapter 4 must be informed by the needs to support the creation of interactive 
visualizations from massive and complex data and to represent higher-level con-
cepts, such as levels of abstraction. These representations and transformations must 
also support the capture of both intermediate and final products of the analytical 
process. Analytical reasoning principles must inform the research in production, 
presentation, and dissemination described in Chapter 5, so that the resulting com-
munications can be clear and on point. As illustrated in Chapter 6, the science of 
analytical reasoning provides a practical basis for evaluation of visual analytics tools, 
as well as important insights about the training and user support necessary to facili-
tate adoption of these tools in analytical environments.

This chapter begins with an overview of the analysis process and its products, 
from the point of view of the practitioner. We then discuss the concept of analytic 
discourse, which is the interactive, computer-mediated process of applying human 
judgment to assess an issue. This discourse is at the core of the analytical process and 
is integral to threat analysis, emergency response, and borders and infrastructure 
protection. Analytic discourse represents an applied research approach to the  
analytic reasoning challenge. Next, we describe sense-making, which provides a 
more theoretical basis for understanding the reasoning process based on models of 
human information processing. Sense-making is both a working analysis approach 
and a possible framework for a broader theory of analytical reasoning and human-
information discourse. Next, we discuss the foundational perceptual and cognitive 
theory and models that provide the grounding for visual analytics tools that support 
the analytical reasoning process. We conclude with a discussion of the theoretical 
basis for successful collaborative visual analytics. Such collaboration must extend  
the principles of visual analytics to environments where humans and machines  
reason together intimately regardless of whether or not they are separated by time  
or distance.

An Overview of Analysis
The goal of visual analytics is to create software systems that will support the 

analytical reasoning process. This section describes the process and language of the 
analysis process from the practitioner’s perspective and describes the intermediate 
and final products of the analytical reasoning process.
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The Analysis Process
Analysis is both an art and a science. The goal of analysis is to make judgments 

about an issue, or larger question. Analyses are often done on smaller questions relating 
to a larger issue. Analysts must often reach their judgments under significant time 
pressure and with limited and conflicting information. Their judgments necessarily 
reflect their best understanding of a situation, complete with assumptions, supporting 
evidence, and uncertainties. Analytical outcomes are documented in the form of a 
product, which is a tangible result of an analysis that can be shared with others.

Analysis is necessary to support identification of threats and vulnerabilities, protec-
tion of borders and critical infrastructure, and emergency preparation and response. 
Analysts may be asked to perform several different types of tasks, depending upon 
the requester’s needs:

• Assess – Understand the current world around them and explain the past. The 
product of this type of analysis is an assessment. 

• Forecast – Estimate future capabilities, threats, vulnerabilities, and opportunities.
• Develop Options – Establish different optional reactions to potential events 

and assess their effectiveness and implications. For homeland security issues 
in particular, analysts may develop options to defend against, avert, or disrupt 
threats. In emergency response situations, analysis is used to understand 
response options and their implications.

Regardless of the type of analysis, analysts make judgments from evidence and 
assumptions using reasoning. They seek and process a set of information, ideally from 
multiple sources; assert and test key assumptions; and build knowledge structures 
using estimation and inferential techniques to form chains of reasoning that articu-
late and defend judgments on the issue [Chen, 2003; Clark & Brennan, 1991].

The term defend suggests that the reasoning, evidence, level of certainty, key 
gaps, and alternatives are made clear. Defensible judgments enable effective collabo-
ration, review, and communication. They also support the comparison of conclusions 
drawn from alternative techniques. The analysis practices used and standards for 
their application, including checks and balances to ensure thorough consideration 
of options, are collectively referred to as tradecraft [CIA, 1997].

Analysis is an iterative process. Not only is the process of reaching judgment 
about a single question often an iterative one, but obtaining that answer produces 
several more questions, leading to additional analyses about the larger issue.

Analysis is also a collaborative process. Information, including judgments and 
written products, are shared among analysts working on related problems. Research 
issues associated with supporting this collaboration are discussed later in this  
chapter. Collaboration must be conducted with full adherence to security and  
privacy laws and policies. Security and privacy issues are discussed in more depth  
in Chapter 6.
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Steps in the Analytical Process
The analytical process is structured and disciplined. Depending on time avail-

ability and task complexity, it is often an iterative process. The analyst’s solution 
process begins with planning. He or she must determine how to address the issue 
that has been posed, what resources to use, and how to allocate time to various parts 
of the process to meet deadlines. Next, the analyst must gather information con-
taining the relevant evidence and become familiar with it, and incorporate it with 
the knowledge he or she already has. The analyst next generates multiple candidate 
explanations, often in the form of hypotheses. The analyst evaluates these alterna-
tive explanations in light of evidence and assumptions to reach a judgment about 
the most likely explanations or outcomes. Once conclusions have been reached, 
good analytical practice dictates that the analyst engage in processes to broaden his 
or her thinking to include other explanations that were not previously considered.

At the conclusion of the analysis, the analyst creates reports, presentations, or 
other products that summarize the analytical judgments. These products are reviewed 
extensively in a collaborative process. Then they are shared with the requesters of 
information and with other audiences as appropriate. These products summarize the 
judgments made and the supporting reasoning that was developed during the ana-
lytical process. The subject of production, presentation, and dissemination of results 
is addressed in more depth in Chapter 5.

A detailed discussion of the intelligence cycle, or knowledge management process 
within which the analytic endeavor exists, is beyond the scope of this chapter but 
can be found in Tenet [1999] and Waltz [2003].

This analysis process is important to a wide variety of homeland security needs. 
Desk analysts predominantly address the analysis of threats and vulnerabilities. Their 
careers focus on daily practice of these analytical techniques. Border and infrastruc-
ture protection requires analytic effort to understand and respond to evolving 
situations. Emergency management personnel, whether first responders or person-
nel coordinating the response, pursue similar goals in order to identify and take 
appropriate actions. In emergency response contexts, however, the time available for 
analysis is generally shorter, meaning that the analysis cannot be as thorough, and 
the results must be converted directly into action.

Regardless of the situation, executing sound analysis routinely is challenging. 
This is further complicated by the fact that the pool of experienced analysts is limited. 
As Richards Heuer illustrates in his key work, Psychology of Intelligence Analysis 
[1999], analytical processes can compensate for human limitations in managing 
complex and fluid problems.

Analytic Reasoning Artifacts
The analyst collects and organizes information as he or she progresses toward 

judgment about a question. Throughout the reasoning process, the analyst identifies 
or creates tangible pieces of information that contribute to reaching defensible judg-
ments. We refer to these pieces of information here as reasoning artifacts. Products 
can be thought of as reasoning artifacts that are meant to be shared with others to 
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convey the results of the analysis. A description of common analytical reasoning 
artifacts appears in Table 2.1.

Table 2.1. Common reasoning artifacts.

Elemental artifacts: artifacts derived from isolated pieces of information
Source  
Intelligence

An individual piece of intelligence (e.g., a document, photograph, signal, sensor 
reading) that has come to the analyst’s attention through a collection or retrieval activity.

Relevant 
Information

Source intelligence that is believed to be relevant to the issue and usable for con-
structing arguments and judgments.

Assumption An asserted fact, and its basis, that will be used for reasoning. Assumptions must be 
managed separately from evidence, as sound practice demands their critical inspec-
tion. An assumption may come from the analyst’s prior knowledge, an earlier 
conclusion or product of an analysis, or a key, presently unknowable presumed fact 
that allows judgment to progress despite a gap in knowledge.

Evidence The information or assumption takes on argument value when the analyst assesses 
its quality, accuracy, strength, certainty, and utility against higher-level knowledge 
artifacts such as hypotheses and scenarios. Assessing the utility can be as simple as 
judging if the evidence is consistent or inconsistent with a hypothesis or scenario 
or if the evidence argues for or against an inference.

Pattern artifacts: artifacts derived from collections of information
Patterns and 
Structure

Relationships among many pieces of data to form evidence. Analysts often create 
tables, charts, and networks of data to detect and extract pattern or structure. 

Temporal  
and Spatial 
Patterns

Temporal relationships and spatial patterns that may be revealed through timelines 
and maps. Changes in pattern, surprising events, coincidences, and anomalous tim-
ing may all lead to evidence recognition. The simple act of placing information on a 
timeline or a map can generate clarity and profound insight. 

Higher-order knowledge constructs
Arguments Logical inferences linking evidence and other reasoning artifacts into defensible 

judgments of greater knowledge value. Extensive formal systems, such as predicate 
calculus, give a solid inferential basis.

Causality Specialized inference about time, argument, and evidence that makes the argument 
that an event or action caused a second event or action. Causality is often critical to 
assessments. It is also a source of many biases and errors, and demands careful review.

Models of 
Estimation

A means of encoding a complex problem by understanding logic and applying it to 
evidence, resulting in a higher-level judgment that estimates the significance of avail-
able evidence to the issue at hand. Some important classes of models are utility 
models (which estimate the value of a potential action to an actor using multiple 
weighted criteria), indicator models (used to estimate if outcomes of interest may be 
in the process of development), behavioral models (of individual and group dynam-
ics), economic models, and physical models. Specialized analytic activity may involve 
research using models, simulation, and gaming. A repertoire of basic problem mod-
eling and structuring techniques is invaluable to the analyst.

Complex reasoning constructs
Hypothesis A conjectured explanation, assessment, or forecast that should be supported by the 

evidence.

Scenarios  
or Scenario 
Fragments

Sequences of information with “story” value in explaining or defending part of a 
judgment chain. For example, a threat scenario might address a target, method, 
actor, motive, means, and opportunity.
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These artifacts range from the very simplest pieces of raw data to the highest-
level constructs that represent large parts of the analytic solution. The most complex 
constructs, such as hypotheses and scenarios, are used primarily to help structure the 
available knowledge, facilitate its articulation and delivery in product, test the com-
pleteness of the knowledge, and identify if additional knowledge or explanatory 
paths may be required.

Hypotheses and scenarios are used to express and explain a large collection of 
evidence, so they are valuable both as reasoning aids and to support the process of 
conducting competing evaluations. For example, the technique of alternative com-
peting hypothesis evaluation [Garfinkel, 1967] highlights the value of retaining 
competing hypotheses and seeking evidence that refutes hypotheses, or, even better, 
diagnostic evidence that supports one hypothesis but refutes another, to select the 
hypothesis that best explains the evidence.

Analytic Discourse
The analytical reasoning process described above forms the basis for the ongoing 

dialogue between analysts and their information. Enabling this discourse is at the 
heart of the visual analytics mission. This section describes the relationship of this 
discourse to the analysis process and recommends steps for advancing the state of 
the art in analytic discourse.

A Definition of Analytic Discourse
Analytic discourse is the technology-mediated dialogue between an analyst and his 

or her information to produce a judgment about an issue. This discourse is an itera-
tive and evolutionary process by which a path is built from definition of the issue to 
the assembly of evidence and assumptions to the articulation of judgments.

The analyst’s information includes:
• The issue being addressed. At the outset, the analyst refines his or her under-

standing of the question to be answered, sometimes broadening or adjusting 
the scope so as to respond to the question that was intended, rather than what 
was explicitly asked.

• Information that the analyst has gathered regarding the issue, which may or 
may not include relevant evidence. Through exploration and investigation, 
the analyst identifies and evaluates evidence within the available data and 
requests additional data as needed. 

• The analyst’s evolving knowledge about the issue, including assumptions, 
hypotheses, scenarios, models, or arguments.

In an analytic discourse, the strengths of both the computer system and the 
human are harnessed to improve the analysis process. The computer finds patterns 
in information and organizes the information in ways that are meant to be revealing 
to the analyst. The analyst supplies his or her knowledge in ways that help the com-
puter refine and organize information more appropriately.



The Science of Analytical Reasoning 39

Analytic discourse should support the goal of creating a product that articulates 
a defensible judgment in problems of assessment, forecasting, and planning. Effec-
tive solutions will require a true dialogue, mediated by technology, among the user, 
information, issue, and evolving judgment.

Supporting Analysis Through Analytic Discourse
It should be the goal of visual analytics systems to support the analyst in execut-

ing sound analytic technique routinely, facilitating insight and sound judgment in 
time-pressured environments and compensating for inexperience wherever possible. 
An effective analytic discourse must accommodate the unique characteristics of the 
analysis process, some of which are described here.

Analysis is generally not a linear process. Analysts spend time engaged in conver-
gent thinking, which involves assembling evidence to find an answer, and divergent 
thinking, which involves thinking creatively to ensure that plausible alternatives have 
not been overlooked. Many analysts engage in controlled broadening checks during 
their investigations, during which they consider the broader context of the issue and 
examine alternative explanations and data that do not fit with their current reason-
ing. Therefore, visual analytics systems must facilitate this iterative and nonlinear 
process through an active discourse.

People cannot reason effectively about hypotheses and scenarios that are unavail-
able to them [Garfinkel, 1967]. Key to good analytic discipline is early identification 
of competing explanations and chains of reasoning for the issue under study. Aware-
ness of the competing ideas must be maintained actively, so that they are kept “alive” 
as analytic possibilities. Often the most plausible explanation will be researched 
extensively, but a thorough check is to always revisit the key alternative ideas and 
ask, “If I were wrong, how would I know?” Visual analytics tools must facilitate the 
analyst’s task of actively considering competing hypotheses.

Another important analytic technique is the enumeration and testing of assump-
tions. Explicit representation of these assumptions facilitates this process. Additional 
analytical techniques include consideration of biases that may have precluded con-
sideration of important alternatives, sensitivity to potential deception in evidence, 
and in cases of high risk, devil’s advocacy processes that assume a differing interpre-
tation of data and attempt to reason in that direction, exposing potential weaknesses 
in the product. These techniques are examples of structured ways to review the prod-
uct and its supporting evidence and reasoning, and they can be greatly facilitated by 
a visual analytics system.

Analysis products are expected to clearly communicate the assessment or forecast, 
the evidence on which it is based, knowledge gaps or unknowns, the analyst’s degree 
of certainty in the judgment, and any significant alternatives and their indicators. 
Visual analytics systems must capture this information and facilitate its presentation 
in ways that meet the needs of the recipient of the information.

These tools and techniques also must allow analysts to look at their problem at 
multiple levels of abstraction and support reasoning about situations that change 
over time, sometimes very rapidly.
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Supporting Analyst Operations on Reasoning Artifacts
Analytic discourse must support a full range of operations to derive, manipulate, 

and understand reasoning artifacts. For simple elemental and pattern artifacts, visual 
analytics tools must support data retrieval, navigation, and discovery operations to 
permit data collection or foraging. For higher-level knowledge artifacts such as argu-
ments, causality, and estimative modeling, visual analytics tools must support 
construction or formulation operations.

Analytic discourse must permit the analyst to create abstractions of these arti-
facts. That is, it must be possible to obtain a simpler representation of the information 
that is more suitable for the product or collaboration.

Analysts often want to compare knowledge artifacts to find similarities and dif-
ferences in evidence, arguments, or hypotheses. The analysis process often demands 
that an argument, hypothesis, or scenario be challenged or tested to find weaknesses 
and inconsistencies. During the collaborative creation of a product, it is often critical 
to frame the questions being addressed in terms of the evidence and reasoning rather 
then in terms of a conclusion.

Visual analytics systems must support all of these needs to enable true analytic 
discourse.

State of the Art
Much has been done to study and document simple and effective analysis tech-

niques. References such as The Thinker’s Toolkit [Jones, 1995], Conceptual Blockbusting 
[Adams, 2001], and Psychology of Intelligence Analysis [Heuer, 1999] describe repre-
sentative approaches. The professional analyst is often armed with a broad repertoire 
of techniques, but these are not available to the research community as a whole.

Analysts must deal with data that are dynamic, incomplete, often deceptive, and 
evolving. The problem of coping with such diverse and changing information has 
been recognized for centuries. Descartes [1637] described a problem-solving method 
wherein data are analyzed, broken into their elements, and studied to reveal evi-
dence, and solutions are synthesized by accumulating the evidence. For the researcher, 
the concept of allowing the breakdown of information and its assembly to solutions 
remains an interesting one. For example, a single piece of source information (e.g., 
document or photograph) may contribute many different pieces of evidence to 
understanding and may support or refute many differing and competing hypotheses.

Methods of evidence navigation and discovery from available information collec-
tions, even ones of a practical scale in the problem areas of homeland security, are 
rapidly maturing. Retrieval technology is very mature; Boolean retrieval is univer-
sally in practice; and more advanced forms of retrieval, such as natural language question 
answering for simple facts, are maturing. Extraction technology, to isolate entities 
and relationships within text, is maturing, with entity extraction commonly used.

There is an excellent body of science, some in service, to support the visualization 
and navigation of information spaces of up to one million documents or so. There 
are mature capabilities to support basic analytic discourse, but work needs to be 
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done to expand the ability to respond to the analyst’s more sophisticated problem-
solving goals. Much work remains to be done to extend these techniques to 
accommodate the massive scale and dynamic nature of visual analytics tasks.

Many mathematical techniques exist for representing pattern and structure, as 
well as visualizing correlations, time patterns, metadata relationships, and networks 
of linked information. For simple patterns and structure they work well; for more 
complex reasoning tasks—particularly temporal reasoning and combined time and 
space reasoning—much work remains to be done. The existing techniques also fail 
when faced with the massive scale, rapidly changing data, and variety of information 
types we expect for visual analytics tasks.

Structured argumentation, which is the linking of evidence and assumptions 
through formal logic, has a large literature to draw on (see, for example, Schum 
[1994]). Some capabilities for structured argumentation are in limited practice, and 
a good basic body of research has been conducted. Kirschner [2003] summarizes 
current views of the relationship between visualization and argumentation. It is 
often speculated that structured argumentation could be the basis of visual analytics 
systems. More work is needed to explore this possibility. One concern is that formal-
ized systems trend towards interaction that lacks the approachability, fluidity, and 
speed needed for effective application.

In hypothesis formulation and testing, and in models of inference, there is con-
siderable science as well—some from the artificial intelligence and ontological 
modeling communities, and some from epistemology. Some promising science 
demonstration systems have been developed to generate and track hypotheses, but 
this research remains a longer-term goal for effective, tractable application.

Current techniques break down when composite reasoning processes—that is, 
the joining of many types of reasoning artifacts—are in use; when the problem 
demands harmonizing many different insights from differing artifacts; and when the 
ability to retain active competitive explanations, such as during suspected deception, 
is critical.

Current techniques also break down when applied to the massive and dynamic 
multi-type data common to the homeland security arena, as described in Chapter 1. 
Another area of weakness in existing science is that once an important piece of evi-
dence is recognized or an inference is made, it is often exceedingly difficult to capture 
and record the progress directly, forcing reliance on memory, notes, or annotations. 
Likewise, a sudden recognition, question, or insight usually cannot be recorded 
without disrupting the ongoing analysis context. Visual analytics software can and 
should maintain records of progress for the analyst as an intrinsic byproduct of 
engaging in the discourse.

An integrated science for analytic discourse does not yet exist, but its creation 
will offer tremendous benefits to analysts and the homeland security missions.

Technology Needs
To develop an integrated science for analytic discourse, we recommend two ini-

tial actions.
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Recommendation 2.1
Refine our understanding of reasoning artifacts and develop knowledge repre-
sentations to capture, store, and reuse the knowledge generated throughout 
the entire analytic process.

These knowledge representations will primarily be used to support interoperation 
among software tools used to support analytic discourse. These knowledge representa-
tions must retain the reasoning artifacts that are produced throughout the analytical 
process, as well as retain the judgment chains and links to supporting information 
associated with each analytical product. It must provide the mapping between the 
reasoning artifact and the original data used to produce it, along with information 
about both data quality and method of derivation for the reasoning artifact.

Recommendation 2.2
Develop visually based methods to support the entire analytic reasoning pro-
cess, including the analysis of data as well as structured reasoning techniques 
such as the construction of arguments, convergent-divergent investigation, and 
evaluation of alternatives. These methods must support not only the analytical 
process itself but also the progress tracking and analytical review processes.

The challenge of integrating the entire range of activity described here, in a manner 
that is usable, understandable, and time-efficient to the analyst, is substantial. We must 
enable not only the analytic processes that an individual follows to reach a judgment 
but also the communication processes that are necessary both to track the progress 
of the analytical process and to share the results of the analysis and supporting infor-
mation to facilitate reviews.

Sense-Making Methods
While the concept of analytic discourse represents a more applied research per-

spective, research in sense-making provides a theoretical basis for understanding 
many of the analytical reasoning tasks that the analyst performs.

Many analytical reasoning tasks follow a process of 
• Information gathering 
• Re-representation of the information in a form that aids analysis 
• Development of insight through the manipulation of this representation 
• Creation of some knowledge product or direct action based on the knowl-

edge insight.
As illustrated in Figure 2.1, these activities may be repeated and may come out 

of order, although there is the notion of an overall cycle. We call tasks that follow 
this sort of pattern sense-making tasks or sometimes knowledge crystallization tasks.

Examples abound in commerce, education, research, military activities, and intel-
ligence. For example, consider the sense-making process involved in choosing which 
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Figure 2.1. The analytical reasoning process.

model of laptop computer to purchase. The 
shopper may gather information from mag-
azines and the internet. The information 
collected may be re-represented by 
creating a table of computer models 
by attributes. This representation 
may be manipulated, deleting 
rows of attributes for serial and 
parallel ports, for example, and 
adding new rows for FireWire 
and graphics accelerators. The 
shopper gains insight into her choice 
by inspecting the matrix, possibly 
by rearranging the rows and columns, 
or highlighting cells. The knowledge 
product in this case is a rationalized pur-
chase decision.

State of the Art
Some variant of this sense-making process is often encountered in the analysis of 

information-intensive tasks. For example, Lederberg [1989] describes the scientific 
process as a sort of sense-making cycle with multiple feedbacks. The CIA [1995], in a 
report on the need for visualization, discusses intelligence analysis essentially as a sense-
making loop of collection tasking, data monitoring, interpretation and analysis, 
drafting/editing, and customer support. Card et al. [1999] frame information visual-
ization using the concept of a sense-making loop. Recent work has suggested a 
similar sense-making loop cycle (Figure 2.2, adapted from Pirolli & Card, 2005) for 
some types of analysis work. Boxes in the diagram represent data and arrows repre-
sent processes. An analyst filters message traffic and actively searches for information, 
collecting it in an information store (called a shoebox in the diagram). Relevant snip-
pets from this store are extracted from these documents into  evidence files, which 
may be simply text files in a word processing program. Information from the evi-
dence may be represented in some schema, or a conceptual form into which 
information is transformed for exploration and manipulation, and from which it is 
translated to produce briefings and other products. Schemas may take the form of 
representations such as timelines, or they may simply reflect the internalized mental 
representations of the expert. The evidence thus laid out may be cast into hypotheses 
or methods of structured reasoning. Finally, information is transformed into an out-
put knowledge product, such as a briefing or a report. This is an expansion of the 
process we saw in the laptop example above: the information is gathered, mapped 
into some set of core representations that encapsulate the heart of the knowledge 
domain and where operators on the knowledge are enabled, then transformed into 
the knowledge product.

The process is not a straight progression but can have many loops. For example, 
construction of an evidence file can evoke the need to go back and collect new evidence. 
Among the many possible loops, there are two especially important ones: an information 
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foraging loop, which focuses on the gathering and processing of data to create schemas, 
and the sense-making loop, which includes the processes involved in moving from 
schemas to finished products.

Other researchers have come to a similar conclusion about the nature of sense-
making for intelligence analysts and first responders. For example, Klein [2004] has 
a data/frame-based theory of sense-making, which plays a similar role to schema in 
Figure 2.2. For Klein, a frame is a mental structure that organizes the data and sense-
making is the process of fitting information into that frame. Frames are a consequence 
of developed expertise. Bodnar [2003] describes a process similar to Figure 2.2 in his 
book on warning analysis for intelligence.

Effects of time scale on sense-making
Sense-making has been studied from more varied points of view than the intel-

ligence analysis process described in Figure 2.2. Leedom [2001], for example, has 
reviewed this field with respect to its relevance to military decision making. The 
sense-making process is affected by the time scale for the process and whether the 
process involves individuals or organizations.

At the organizational level and operating on a time scale of months and years, Weick 
[1995] claims that the social dynamics of organizational processes are based on sense-
making. A set of “mental minimal sensible structures” together with goals lead to the 
creation of situational understanding and direction for members of organizations.

In situations that require action within minutes or hours, Klein [1989, 1998] has 
developed a model of recognition-primed decision making, as part of a program on 
naturalistic decision making that has been used as the basis of military command and 

Figure 2.2. Nominal sense-making loop for some types of intelligence analysts.
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control. This model emphasizes the role of the knowledge structures built from exper-
tise and experience in allowing a soldier or a firefighter to make sense of a situation 
and rapidly formulate an action. The lack of some expected features of a situation 
can also trigger sense-making and action.

In cases where action is required within seconds or minutes, Endsley [1995] and 
others have studied the notion of situational awareness for individuals, particularly in 
the context of advanced cockpit displays for combat air tasks. Situational awareness 
is the perception of the elements in the environment within a volume of space and time; 
comprehension of their meaning; the projection of their status into the near future; and 
the prediction of how various actions will affect the fulfillment of one’s goals.

It thus contains a cycle of perception, comprehension, projection, and prediction. 
A related action-oriented cycle is Boyd’s Observation-Orientation-Decision-Action 
loop [1987]. Although Boyd was a combat Air Force pilot and his ideas derive from 
the time pressure of combat, he generalized them to strategizing taking place over 
days and months by organizations.

Models of sense-making and its cost structure
Each of the processes of sense-making, from finding and extracting information to 

re-representing it for analysis, to creating an end product, has a cost. Costs could be 
thought of in terms of time investment, level of difficulty, or resources required, for exam-
ple. The collective costs and gains of the individual sense-making processes are referred 
to as its cost structure. The cost structure may strongly shape the behavior of the user.

The cost structure of the lower end of the sense-making loop in Figure 2.2 has been 
addressed in work on information foraging theory [Pirolli & Card, 1999]. The cost 
structure is characterized in terms of information gain and costs (usually measured in 
time) for obtaining and consuming 
the information. A reasonable model 
is that the user will seek to adapt to 
the information environment to 
maximize information gains per 
unit cost. Predictions can be made 
about what sorts of information users 
will exploit and when users will 
decide to move from one patch of 
information to another.

Other models have been devel-
oped to represent user strategies for 
sense-making. Patterson et al. [2001] 
show how intelligence analysts in a 
simulated situation trade off between 
widening the search for documents 
(“explore”), narrowing it (“enrich”), 
and reading documents (“exploit”) 
and how these relate to missed infor-
mation (Figure 2.3). In general, they 
show that techniques for handling 

Figure 2.3. Circles show the space of documents 
being considered. Stars indicate relevant docu-
ments. Analysts adjust their activities among 
exploring, enriching, and exploiting documents.
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context are a key to coping with 
high information loads [Woods et 
al., 2002].

Russell et al. [1993] have described 
sense-making in terms of a “learning 
loop complex” (Figure 2.4). First is a 
search for a good representation (the 
generation loop). Then there is an 
attempt to encode information in 
the representation (the data cover-
age loop). The attempt at encoding 
information in the representation 
identifies items that do not fit (“resi-
due”). This gives rise to an attempt 
to adjust the representation so that 
it has better coverage (the “represen-
tation shift loop”). The result is a 
more compact representation of the 
essence of the information relative 
to the intended task.

Another source of theory for the sense-making process comes from the study of 
scientific discovery [Shrager & Langley, 1990; Klahr, 2000]. An important theoreti-
cal concept is the Scientific Discovery through Dual Search (SDDS) model. This 
model emphasizes that sense-making or discovery in science often involves an alter-
nating dual search both through a problem space of hypotheses and through a 
problem space of data. Sometimes it is easier to make progress by looking for expla-
nations of data by generating hypotheses; other times it is easier to make progress by 
creating experiments to generate data to test hypotheses. The SDDS model was 
proposed as a general framework for behavior in any scientific reasoning task. The 
full set of possible activities is represented in Figure 2.5.

The Role of Visual Analytics in Sense-Making
Visual analytics seeks to marry techniques from information visualization with 

techniques from computational transformation and analysis of data. Information 
visualization itself forms part of the direct interface between user and machine. 
Information visualization amplifies human cognitive capabilities in six basic ways 
(Table 2.2) [Card et al., 1999]: 1) by increasing cognitive resources, such as by using a 
visual resource to expand human working memory, 2) by reducing search, such as by 
representing a large amount of data in a small space, 3) by enhancing the recognition 
of patterns, such as when information is organized in space by its time relationships, 
4) by supporting the easy perceptual inference of relationships that are otherwise more 
difficult to induce, 5) by perceptual monitoring of a large number of potential events, 
and 6) by providing a manipulable medium that, unlike static diagrams, enables the 
exploration of a space of parameter values.

Figure 2.4. Learning Loop Complex theory of 
sense-making.
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These capabilities of information visualization, combined with computational data 
analysis, can be applied to analytic reasoning to support the sense-making process.

Visual analytics could be used to facilitate any point along the sense-making 
cycle, such as accelerated search, accelerated reading, accelerated extracting and link-
ing, schema visualization, hypothesis management and structured argumentation, 
or interactive presentation. Visual analytics can enhance the scale or effectiveness of 
the analyst’s schemas, not only for expert analysts but also—and especially—for 
those below the expert tier.

Visual analytics can reduce this cost structure associated with sense-making in 
two primary ways: 1) by transforming information into forms that allow humans to 
offload cognition onto easier perceptual processes or to otherwise expand human 
cognitive capacities as detailed in Table 2.2, and 2) by allowing software agents to do 
some of the filtering, representation translation, interpretation, and even reasoning.

Visual analytics systems can be developed starting from a notion of sense-mak-
ing and adding computer-enhanced capabilities of visualization and data analytics. 
The ultimate goal is to produce a broader science of analytical reasoning built on the 
foundation of sense-making.

Figure 2.5. Klahr’s SDDS theory of scientific discovery. The dual search through hypothesis 
and experiment problem spaces is represented here as an “and/or graph” of operations. Arrow 
arcs indicate all of the sub-operations that must be performed. For sub-operations without 
an arrow arc, only one needs to be performed.
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Table 2.2. How information visualization amplifies cognition.

1. Increased resources

High-bandwidth  
hierarchical interaction

The human moving gaze system partitions limited channel capacity 
so that it combines high spatial resolution and wide aperture in sens-
ing the visual environments [Resnikoff, 1989].

Parallel perceptual processing Some attributes of visualizations can be processed in parallel com-
pared to text, which is serial.

Offload work from cognitive 
to perceptual system

Some cognitive inferences done symbolically can be recoded into 
inferences done with simple perceptual operations [Larkin & 
Simon, 1987].

Expanded working memory Visualizations can expand the working memory available for solv-
ing a problem [Norman, 1993].

Expanded storage  
of information

Visualizations can be used to store massive amounts of informa-
tion in a quickly accessible form (e.g., maps).

2. Reduced search

Locality of processing Visualizations group information used together, reducing search 
[Larkin & Simon, 1987].

High data density Visualizations can often represent a large amount of data in a small 
space [Tufte, 1983].

Spatially-indexed addressing By grouping data about an object, visualizations can avoid sym-
bolic labels [Larkin & Simon, 1987].

3. Enhanced recognition of patterns

Recognition instead of recall Recognizing information generated by a visualization is easier than 
recalling that information by the user.

Abstraction and aggregation Visualizations simplify and organize information, supplying higher 
centers with aggregated forms of information through abstraction 
and selective omission [Card et al., 1991; Resnikoff, 1989].

Visual schemata  
for organization

Visually organizing data by structural relationships (e.g., by time) 
enhances patterns.

Value, relationship, trend Visualizations can be constructed to enhance patterns at all three 
levels [Bauer et al., 1999].

4. Perceptual inference

Visual representations make 
some problems obvious

Visualizations can support a large number of perceptual inferences 
that are extremely easy for humans [Larkin & Simon, 1987].

Graphical computations Visualizations can enable complex, specialized graphical computa-
tions [Hutchins, 1996].

5. Perceptual monitoring

Visualizations can allow for the monitoring of a large number of 
potential events if the display is organized so that these stand out 
by appearance or motion.

6. Manipulable medium

Unlike static diagrams, visualizations can allow exploration of a 
space of parameter values and can amplify user operations.
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Technology Needs
Sense-making provides a basis for analytic discourse, but research is necessary 

to expand this foundation to provide the necessary theoretical grounding for  
visual analytics.

Recommendation 2.3
Characterize the sense-making process as applied to analytic discourse in 
terms of the sense-making loop or other constructs and identify leverage 
points that are opportunities for intervention. Identify laboratory analogs of 
these tasks for development and evaluation.

We need to know more about the nature of the sense-making loop. We need 
integrated characterizations of sense-making problems, the systems used, and the 
users. Such characterizations would, of course, include descriptive studies. Visual 
analytics systems that do not adequately take into account the context of the data 
and their use will likely fail. But descriptive studies alone are not adequate for system 
design. Task analysis of user problems needs to reveal the underlying problem driv-
ers, the forces shaping user behavior, the pain points, and the bottlenecks. We need 
models and theories of the situations at hand that shape the design space and predict 
a likely design result. We also need to develop problem analogs that can be used in 
the laboratory for development and testing. Andries Sanders [1984] advocated a 
“back-to-back” testing philosophy in which laboratory tests to obtain control were 
paired with field studies to assess content validity. The ability to evaluate problem 
analogs in the laboratory is especially important for applications such as analysis and 
emergency response, where access to analysts and large-scale emergency response 
scenarios may be limited.

Taxonomies of task types and data types must be developed. Studies must iden-
tify bottlenecks associated with different tasks and data characteristics. For example, 
looking for the answer to something you know, such as troop strength at a given 
point at a certain time in the context of abundant data, is different from looking for 
the same information with sparse data, which is different still from looking for 
anomalies that signal something you don’t know.

Recommendation 2.4
Identify and focus on core conceptual schemas and create visually based compo-
nents that support the analytical reasoning tasks associated with these schemas.

Because schemas are so central to the sense-making process, great benefit can be 
gained by identifying the core conceptual schemas for the intended domains and to 
create analytic visualizations to support these schemas. Certain core needs will arise 
repeatedly, such as analysis of timelines. By creating components that support the 
major analytic tasks associated with each of these conceptual schemas, we can address 
a wide range of common problems.

Several techniques have already been explored for how to map out scientific litera-
tures [Small & Griffith, 1974; Chen, 2003], techniques that could be used for analysis.
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Recommendation 2.5
Explore paradigms of human-machine interaction that treat visual analytic 
systems as mixed initiative supervisory control systems.

Visual analytics systems will have semi-automated analytic engines and user-
driven interfaces. Some of these will be mixed initiative systems, in which either the 
system or the user can initiate action and have independent access to information 
and possibly to direct action. These systems need to be studied with insights derived 
from supervisory control systems. For example, if we consider which system can 
initiate action, which has to ask permission of the other before action can be exe-
cuted, which can interrupt the other when, and which has to inform the other that 
it has taken action, we can define dozens of possible paradigms.

Perception and Cognition
Visual analytics combines analytical reasoning with interactive visualization, 

both of which are subject to the strengths and limitations of human perceptual and 
cognitive abilities. Effective tools must build on a deep understanding of how people 
sense, reason, and respond.

Many of the driving problems in Chapter 1 concern managing and understand-
ing the enormous data stream intrinsic to visual analytics. An important aspect of 
the science of analytical reasoning is to create ways to represent data in forms that 
afford interaction and enable thought processes to translate from data to informa-
tion, information to meaning, and meaning to understanding. As Herbert Simon 
[1996] said, “Solving a problem simply means representing it so that the solution is 
obvious.” There is a long history of work on interactive technologies for cognitive 
augmentation, a goal set by Vannevar Bush in his article “As We May Think” [1945] 
and first put into operation by Douglas Engelbart and colleagues at Stanford Research 
Institute [Spohrer & Englebart, 2004] and the Bootstrap Institute.

Other driving problems have to do with improving visual representation. Chapter 3 
is devoted to the science of visual representation and includes a thorough discussion 
of the state of the art in that domain, including some of the underlying perceptual 
and cognitive principles that are applied today. These principles must be better under-
stood and integrated with those principles supporting analysis and reasoning to 
create more complete models for visual analytics.

Human-information discourse is that state where the mechanics of accessing and 
manipulating the tools of visual analytics vanish into a seamless flow of problem 
solving. How to achieve this flow, and how to use it to produce the concrete prod-
ucts needed in all visual analytic domains, constitutes a major research challenge. 
The concept of flow has its roots in psychology; application of its principles to inter-
active systems has yet to be achieved.

A key problem for visual analytics arises from the limited abilities of human 
perception and cognition, e.g., limits on short-term memory. To get around these 
limits, we use external aids, as discussed in Norman’s Things That Make Us Smart. 
Heuer [1999] says, “Only by using such external memory aids am I able to cope with 
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the volume and complexity of the information I want to use.” Visual analytics is just 
such an external aid. To achieve the flow of analytic discourse, we need to better under-
stand the interaction between perception and cognition and how they are affected 
when we work with a dynamic external aid. In other words, it is the process of percep-
tion and cognition and our resulting interactions that updates our understanding.

To achieve this understanding, which is crucial for meeting the challenges posed 
in this agenda, perception and cognition research will draw from work in multiple 
disciplines, such as perceptual and cognitive psychology, neuroscience, cartography 
and geographic information science, cognitive science, human-computer interac-
tion, design, and computing. Visual analytics research must build on this work to 
forge a new and fundamental bond with interactive visualization.

State of the Art
The traditional model for human performance is a simple three-stage process, 

where some stimulus, such as a pattern of light, is processed first by the perceptual 
system to create a mental representation. In the second stage, cognitive processes 
evaluate that representation, accessing memory of other representations or schemas, 
for example, leading to some decision about the nature of the event and any response 
it requires. Finally, in stage 3, some motor action may be taken based on the decision 
reached in stage 2. Perceptual principles based on this process have been applied 
extensively to interactive visualization, as discussed further in Chapter 3. This com-
mon conceptual breakdown of mental processing forms the basis for the mass of 
experimental studies in perception, where each trial of an experiment presents a 
stimulus that is perceived and understood by the subject and the resulting motor 
response recorded as data for analysis of the nature of their perceptual and cognitive 
processes. While this is a useful conceptual breakdown for task performance (and as 
a window into the traditional literature in these fields), it is less useful as a model in 
situations such as analytic discourse where perception, cognition, and action iterate 
in a continuous flow.

Interaction must be a central concept in both perceptual and cognitive models. 
Interaction provides the mechanism of communication among users, visualizations, 
and visualization systems; it broadens the perceptual and cognitive processes by con-
trolling how information is considered, taking second and subsequent looks at 
information, and taking different perspectives on the same information. These are 
key components in reasoning, problem solving, and knowledge building. Most visual 
perception research directed to understanding and using visual information displays 
has focused on static display. Much of the power of today’s visual analytic methods, 
however, comes from their support for dynamic interaction. But the science of ana-
lytical reasoning must go beyond this. Just as it recognizes that interactive visualizations 
are fundamentally different from static visualizations, it must recognize that analytical 
reasoning coupled with interactive visualization is fundamentally different.

While scientists who conduct laboratory experiments take care to have all of 
their subjects use a consistent strategy, in practice our perceptual experience inter-
acts with cognitive processes at all levels, enabling us to vary our strategies to fit a 
given problem situation. Whereas empirical studies typically avoid giving subjects 
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feedback on their performance, in real-world tasks we are able to assess our perfor-
mance by perceiving the results of our actions. This guides our further action. We 
perceive the repercussions of our actions, which also recalibrates perception, ensur-
ing that vision, hearing, and touch maintain their agreement with each other. If we 
are to build richly interactive environments that aid cognitive processing, we must 
understand not only the levels of perception and cognition but also the framework 
that ties them together in a dynamic loop of enactive, or action-driven, cognition 
that is the cognitive architecture of human-information processing.

The literature on human abilities can be characterized roughly into three groups: 
higher-order embodied, enactive, and distributed models such as those proposed by 
Gibson [1986] and Varela et al. [1991] that describe conceptually the nature of 
processing in real-world environments; the large mass of laboratory-based psychology 
studies that establish the basic bottlenecks in human abilities to perceive, attend, and 
process information; and relatively applied work such as Bertin [1982], Norman [1993], 
Wickens and Hollands [2000], and Ware [2004] that seeks to adapt the laboratory and 
conceptual work to interaction tasks and situations of use.

Within specific domains, there are excellent examples of work that integrate per-
ceptual, cognitive, and analytical models. For example, research to optimize the design 
of cockpit displays has created models that integrate perception, cognition, and deci-
sion making [Zhang, 1997] with an explicit goal of “decision support to provide 
the right information, in the right way, and at the right time” [Taylor et al., 2002]. 
There has been extensive work in the area of cartography and geographic information 
science to understand how maps and graphics do more than “make data visible” but 
are “active instruments in the users’ thinking process” [MacEachren & Kraak, 2001]. 
MacEachren’s How Maps Work [1995] combines an understanding of visual percep-
tion and cognition (along with other cognitive theory) with a semiotic approach to 
visual representation to create an integrated model of map-based visualization.

Researchers in fields other than the analysis domain also have looked at percep-
tual and cognitive support for decision making. The fields of law and medicine both 
have “evidence-based” approaches [Patel et al., 1994; 1997] analogous to those used 
for analytical reasoning in intelligence applications.

The perceptual aspects of interaction with information displays have been 
addressed occasionally (e.g., Rheingans [1992]; Jones [2000]) and research agendas 
have pointed to both perceptual and cognitive implications of interaction as research 
challenges (e.g., MacEachren and Kraak [2001]; National Research Council [2003]). 
Limited progress has been made so far; thus, understanding the relationships between 
visual perception and user interaction with visual analytic displays represents an 
important challenge at the core of visual analytic theory.

Work relating to the perceptual and cognitive underpinnings of visual analytics 
must often be assembled from a range of conferences and journals within isolated 
academic disciplines. However, there are a number of recent journals and confer-
ences that attempt to integrate work from a number of disciplines. ACM Transactions 
on Applied Perception is just such a journal (http://www.acm.org/tap). The Sympo-
sium on Applied Perception in Graphics and Visualization (http://isg.cs.tcd.ie/gap/) 
alternates between a vision conference, such as the European Conference on Visual 
Perception, and SIGGRAPH, with papers that apply perceptual science to the design 
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of visual interfaces. The Workshop on Smart Graphics (http://www.smartgraphics.org/) 
attempts to bring together researchers from Computer Graphics, Visualization, Art 
& Graphics Design, Cognitive Psychology, and Artificial Intelligence for multiple 
perspectives on computer-generated graphics. An increased number of applied 
papers are appearing at vision conferences, most notably the annual Vision Sciences 
conference (http://www.vision-sciences.org/). At the cognitive end of the spectrum, 
recent interest in augmented cognition (http://www.augmentedcognition.org) exam-
ines methods for supporting cognitive processing with interactive technologies.

The temptation here is to concentrate on applied work, which is most accessible 
to the design practitioner. It is important, however, to recognize that the complexity 
of the representations, tasks, and activities of analytic discourse will require us to 
delve further into the more abstract conceptualization of human performance as 
well as into research into bottlenecks in human abilities derived from laboratory 
studies. We are aided in this effort by recent work in the more global structure of 
human information processing, the cognitive architecture of task performance. 
Pylyshyn’s Seeing and Visualizing, It’s Not What You Think [2003] provides one example 
of this level of analysis.

Technology Needs
The science of visual analytics must be built on a deep understanding of how 

people sense, reason, and respond. This understanding is essential if we are to create 
tools, systems, and processes that complement the strengths and compensate for the 
weaknesses of the human beings involved.

Previous research towards applying perceptual and cognitive principles to the 
design of interactive systems has identified many of the fundamental perceptual and 
cognitive limits of the human mind. These limits are important, as they can help 
identify bottlenecks in the use of tools for interaction, visualization, and analytic 
reasoning. However, our goal must go beyond the identification of limits to the 
creation of predictive models, which inspire entirely new approaches to the prob-
lems of visual analytics. Such models permit the narrowing and focusing of the 
design space, and they make tenable the problems of efficient design that would 
otherwise be intractable. The foundation of a theory-based model is what gives 
power to the sense-making approach described previously. 

Recommendation 2.6
Develop a supporting science for visual analytics, integrating research in ana-
lytical reasoning and sense-making as well as the principles of perception and 
cognition that underlie interactive visualization.

This science must be built on integrated perceptual and cognitive theories that 
embrace the dynamic interaction among cognition, perception, and action. It must 
provide insight on fundamental cognitive concepts such as attention and memory. 
It must build basic knowledge about the psychological foundations of concepts such 
as meaning, flow, confidence, and abstraction.
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To be effective, the science of visual analytics must be developed within the con-
text of the demands of visual analytics systems. This research will be different from 
and much more than task analysis. It will be an integration of basic research with a 
specific task domain to create robust and practical results that advance both visual 
analytics and efforts to understand the fundamental workings of the human mind.

The goal of a supporting science for visual analytics is large, but research must 
focus on particular components of the visual analytics domain to meet the home-
land security challenge. Key components are analytic reasoning (discussed in this 
chapter) and interactive visualization (discussed in Chapter 3).

To achieve this objective, we must develop a supporting science for the analytical 
reasoning process itself. Heuer [1999] contributes an important summary of the 
aspects of perception, memory, and cognitive biases that affect analysis. He focuses 
on the fundamental limits that constrain the process of analysis and provides ana-
lytical methods for compensating for these limits. However, a fully developed science 
must include constructive theories and models as well as such guidelines.

With the ever-increasing complexity of the challenge, it is important to better 
understand abstraction and how people create, evaluate, and compare such “mental 
models” to first make sense and then take action based on these models. Understanding 
abstraction clearly supports not only the design of tools to create (or help users create) 
abstractions but also the ability to capture the reasoning process and its artifacts.

In visual analytics, the process of analytical reasoning, or deriving meaning from 
masses of data, is supported by interactive visualization. “Using pictures to think” is 
a primary component of visual analytics, but analysis is a process that must involve 
action, and thus interaction, at all its stages. Thus, the supporting science for visual 
analytics must also include the development of theories and principles for how inter-
active visualization works both perceptually and cognitively to support analytical 
reasoning. An integrated model of visualization, especially visualization as mediated 
by interaction, could be used in a constructive and evaluative form on a broad range 
of visualization tasks and data.

Recommendation 2.7
Research how visual analytic systems function at the micro levels of percep-
tion and cognition, especially in focusing user attention and facilitating 
cognitive shifts.

There is a great need to study visual analytic systems at the micro level. In visual 
analytic systems, visual form is given to conceptual abstractions. While in some 
cases automated reasoning techniques may be used within analytical tools as an aid 
to the analyst, in many cases visual analytics tools instead use well-chosen data rep-
resentations and transformations that help the analyst to recognize and discover 
information. The success of an analytical tool can be strongly affected by low-level 
visual attention phenomena.

A detailed-level understanding of how visualizations work at the perceptual and 
cognitive level does not exist yet. This understanding is an important foundation 
that must be established to support the construction of visual analytics systems. We 
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must better understand how to capture and focus attention and how to facilitate 
cognitive shifts, especially to avoid missing alternative hypotheses and solutions. An 
accurate model of attention would have a profound impact on analysis, but it would 
also have relevance to other issues ranging from the effectiveness of multimodal 
interfaces to general support for multi-tasking.

Collaborative Visual Analytics
As the scenarios in Chapter 1 illustrate, homeland security challenges are so com-

plex and dynamic that they cannot be addressed by individuals working in isolation. 
Threat analysis, border protection, and emergency management and response efforts 
are of sufficiently large scale and importance that they must be addressed through 
the coordinated action of multiple groups of people, often with different back-
grounds and working in disparate locations with differing information. Here, the issue 
of human scalability plays a critical role, as systems must support the communications 
needs of these groups of people working together across space and time, in high-
stress and time-sensitive environments, to make critical decisions.

According to the Intelligence Community Collaboration Baseline Study Report [Hall, 
1999], “Collaboration is broadly defined as the interaction among two or more indi-
viduals and can encompass a variety of behaviors, including communication, 
information sharing, coordination, cooperation, problem solving, and negotiation.”

In relation to knowledge management in the context of intelligence, Waltz [2003] 
lists the following functions for collaboration:

• Coordinate tasking and workflow to meet shared goals.
• Share information, beliefs, and concepts.
• Perform cooperative problem-solving analysis and synthesis.
• Perform cooperative decision making.
• Author team reports of decisions and rationale.
Advances in collaborative visual analytics have the potential to enable each of 

these functions for teams of individuals as well as for organizations; they are central 
to the problem-solving analysis and synthesis function. Enabling joint work requires 
support for both cooperative-competitive dialogue (in which team members or differ-
ent teams work toward the same goals but pose competitive explanations and 
solutions) and collaborative dialogue (in which team members share a problem con-
ceptualization, share responsibilities, and coordinate). Both types of dialogue are 
typically needed within the same analytical reasoning task, as analysts cycle between 
focused attention and controlled broadening components of the analytic discourse 
and sense-making processes described earlier in this chapter.

In an emergency, collaboration among agencies and with the first responder com-
munities is essential. Agencies, including neighboring state and local governments, 
collaborate to share available resources. They must maintain a clear shared understand-
ing of the capabilities and status of available resources, whether they are fire trucks 
or hospital beds. In an emergency, decisions must be made quickly using the best 
available information. The role of visual analytics is to assist in sharing information 
with the best available minds so that informed decisions can be made. Information 
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must be shared with experts to answer difficult and previously unanticipated ques-
tions, such as how to protect the public in the event of a chemical explosion.

State of the Art
Collaborative situations can be categorized with respect to space and time as 

shown in Figure 2.6 [Waltz, 2003]. This time and space matrix distinguishes between 
support of local and distributed (space) working contexts and between synchronous 
or asynchronous (time) work situations [Johansen, 1988]. There has been extensive 
research in Computer Supported Collaborative Work (CSCW) and other commu-
nities in all four quadrants of 
this diagram. However, atten-
tion to the role of visualization 
in cooperative work and to the 
process of cooperative-competi-
tive (or collaborative) analytical 
reasoning has been limited. 
Below, we briefly highlight key 
aspects of the current state of the 
art and identify critical gaps in 
both knowledge and analytic 
methods relevant to development 
and application of collaborative 
visual analytics.

Supporting same place, synchronous work
Same place, synchronous work involves groups of people meeting face to face. 

This has been extensively studied, both to improve the productivity of group inter-
actions and to define a baseline for the other quadrants of collaborative situations. It 
is clear that people working together use speech, gesture, gaze, and nonverbal cues 
to attempt to communicate in the clearest possible fashion. In addition, real objects 
and interactions with the real world can also play an important role in face-to-face 
collaboration. Garfinkel [1967, 1970], Schegloff and Sacks [1973], and Mehan and 
Wood [1975] all report that people use the resources of the real world to establish 
shared understanding. In addition, Suchman [1988] reports that writing and draw-
ing activities could be used to display understanding and facilitate turn taking in 
much the same way that other non-verbal conversational cues do. In collaborative 
teamwork, team members coordinate their actions around the artifacts and the 
spaces they occupy [Hollan, 1992].

To advance collaborative visual analytics, it is essential to understand and support 
group reasoning with a range of analytic reasoning artifacts. McNeese and colleagues 
[2000a, 2000b] have investigated the use of perceptual anchors, or externalized rep-
resentations that map to mental models, in individual and team problem solving 
related to search and rescue. They have identified interactions between individual 

Figure 2.6. Typology of collaborative situations.
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and team problem-solving strategies and studied the transfer of successful strategies 
to other problem contexts. They are working toward collaborative tools that alleviate 
problem-solving weaknesses for both individual and group problem solving.

Although technology can be used to enhance face-to-face collaboration, it can 
also negatively affect the communication cues transmitted between collaborators. 
The effect of mediating technology can be better understood through the use of 
communication models, such as Clark and Brennan’s theory of “grounding” [1991]. 
In this case, conversational participants attempt to reach shared understanding using 
the available communication channels modified by the available technology. Olson 
and Olson [2001] provide a list of 10 key characteristics of face-to-face interaction that 
can be used as a guide for comparing the effect of technologies on collaboration.

Visually based analysis tools encourage problem solving and brainstorming in 
team environments, but research is required in order to take full advantage of the 
power that these tools can provide in a team setting.

Supporting different place, synchronous work
Another class of collaborative technologies supports distributed, synchronous 

work. The most common example is distributed meetings. Synchronized audio and 
shared presentations are now commonly used in business meetings. For example, 
NetMeeting, Placeware, and WebEx are applications that allow several participants to 
teleconference while simultaneously viewing a slide presentation or sharing a computer 
demonstration. Shared chat rooms are another example of a popular CSCW applica-
tion. These applications are beginning to have a large impact on business practices.

Emergency response situations clearly demand support for distributed teams of 
people working together synchronously. Communication must take place among 
the responders in the field, the emergency operations centers involved, and the inci-
dent commander, who is the decision maker in the field. Information must be shared 
to the level necessary to support decision making, and information must be preserved 
to illustrate why decisions were made. This history becomes extremely important if 
an emergency grows in size and jurisdiction so that additional agencies become 
involved and control for the overall emergency response transfers from one organi-
zation to another.

Two-way communication must be supported. Responders in the field provide 
real-time sharing of information about what is happening at the scene, while opera-
tions centers provide direction and response. Communication in the field is primarily 
through tools such as cell phones and web-based applications for information sharing. 
Although the emphasis is on portable communication, these devices are vulnerable 
to disruptions in connectivity.

Each emergency is unique, so the team’s focus must be on applying their training 
and experience to the new situation. The tools used to support emergency response 
must take into account the highly stressful nature of the situation. Tools must be 
extremely simple and clear to use, because user attention must be focused on the 
emergency rather than the mechanics of the software.
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Visual analytic methods can be extended (or invented) to support distributed 
synchronous work such as emergency response. The challenges include:

• Developing effective interfaces to visual displays and visual analytics tools 
operating on multiple kinds and sizes of devices in varied circumstances (for 
example, mobile devices used in field operations) 

• Supporting analysis of continually updating geospatially referenced informa-
tion of heterogeneous form (for example, map-based field annotations, 
streaming video, photos and remote imagery, sensor networks)

• Supporting coordinated reasoning and command-control through the com-
plex, multi-scale organizational structures of emergency response.

In general, CSCW research suggests that a remote communications space should 
have three elements: high-quality audio communication, visual representations of 
the users, and an underlying spatial model. These elements correspond to the three 
available communication channels: audio, visual, and environmental. The affor-
dances of the communications technology used will modulate the cues carried by 
each of these channels [Gaver, 1992]. The unique stress and urgency of many analy-
sis and emergency response situations may pose special demands on the remote, 
real-time collaborations. Research is needed to determine whether the general rules 
of thumb in typical collaborative situations hold true in high-pressure analysis and 
emergency response situations as well.

To understand the effect of technology on remote collaboration, many experi-
ments have been conducted comparing face-to-face, audio-and-video, and audio-only 
communication. Not unexpectedly, when visual cues are removed, the communica-
tion behavior changes; however, performance in an audio-only condition may be 
unchanged. Even with no video delay, video-mediated conversation doesn’t produce 
the same conversational style as face-to-face interaction. These results suggest that 
technology may not be able to replace the experience of shared presence and that 
research should focus on ways to provide experiences that go “beyond being there” 
[Hollan, 1992]. Examples include a tool that allows a remote expert to look through 
the eyes of a novice and place virtual annotations in his or her environment to 
improve performance on a real-world task [Bauer et al., 1999] or a tool that allows 
the novice to access a context-sensitive, expert-derived template for application of a 
visual analytic method.

Supporting different place, asynchronous work
In a distributed organization, work takes place at different places and at different 

times. In emergency preparedness activities, for example, distributed and asynchro-
nous collaboration is feasible and valuable. Longer-term analytical efforts can also be 
supported through distributed and asynchronous collaboration.

Sharing information across place and time is one of the main reasons the inter-
net is so popular. But the internet has spawned many technologies besides dynamic, 
linked documents. Wikis are collaborative documents that anyone may edit. They 
incorporate version control and simple editing and formatting protocols such as 
structured text so that a group of people can easily and safely edit a collection of web 
pages. Wikis are commonly used to organize complex projects. Web logs, or blogs, 
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and remote syndication services, or RSS, are other examples of online technology 
that are rapidly spreading. Blogs provide simple interfaces for maintaining online 
diaries. RSS notifies interested parties when new content is available. Web-based 
collaboration technologies are among the fastest growing internet applications.

Over the past decade, scientific attention and resources have been directed to 
development of scientific collaboratories. This work can be leveraged to develop meth-
ods and tools that support collaborative visual analytics. The concept of national 
collaboratories to enable science was articulated in a 1993 National Research Council 
report [Cerf et al., 1993]. This report characterizes a collaboratory as a “... center 
without walls, in which the nation’s researchers can perform research without regard 
to geographical location—interacting with colleagues, accessing instrumentation, 
sharing data and computational resources, and accessing information from digital 
libraries.” Considerable progress has been made toward the report goals (e.g., Kouzes 
et al. [1996], Olson et al. [2001]), particularly for collaboratories that facilitate 
research in physical or medical sciences and on real-time data collection or control 
of experiments.

These efforts have shown that there are several requirements for supporting remote 
asynchronous work [Maher & Rutherford, 1997; Dufner et al., 1994], including:

• Support for a shared workspace, enabling easy distribution and access of data
• Access to an application domain with all the shared applications needed
• A data management system, ensuring data consistency and concurrency control
• Access to a reference area with links to relevant online material
• Tools/support structures for asynchronous messaging and communication
• A focus on data-centric (rather than connection-centric) collaboration
• Tools for recording collaboration history and data changes
• Security and privacy control.

Supporting same place, asynchronous work
Co-located, asynchronous collaboration is focused on place-based communica-

tion among members of an analytic or command and control team. Continuous 
operations in emergency operations centers represent a good example of co-located 
asynchronous communication. Individuals from an earlier work shift must preserve 
relevant information and decisions made for their colleagues who are working suc-
ceeding shifts. Although there is some overlapping time during the shift change 
process so that important information can be transferred in person, much of the 
communication still takes place asynchronously.

Collaborative work in this category often centers on large shared displays, or 
collections of such displays, sometimes called interactive workspaces [Johansen, 1988; 
Streitz et al., 1999]. The displays are used in such environments to replace flipcharts 
and whiteboards, as well as large computer screens visible to collaborative teams 
[Pedersen et al., 1993; Abowd et al., 1998]. By extending these technologies, the 
work process may be captured and annotated, making it possible to capture histories 
of collaborative analysis.
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One example is the MERBoard, which has a large, shared display used as the por-
tal into a repository of shared information and which can be accessed by different users 
at different times. MERBoard was designed at the Jet Propulsion Laboratory (JPL) 
in collaboration with International Business Machines Corporation (IBM) to support 
the planning, decision making, and execution of the Mars Exploration Rovers. Per-
sonnel at the National Aeronautics and Space Administration (NASA) use a large, 
interactive display to share and access mission data. Remote users can view and inter-
act with the display using a shared desktop protocol such as Virtual Network 
Computing (VNC). The MERBoard is an outgrowth of the IBM BlueBoard, which 
was originally designed for walk-up meetings and collaborations. However, current 
research on this system is focused on interactive, shared visualizations, such as the 
status of IBM’s 200+ servers, presented in a form easily accessible by systems admin-
istration staff. An overview of both systems is provided in Russell et al. [2004]. 
Unlike traditional command and control centers, systems such as MERBoard and 
BlueBoard are designed for easy, walk-up use.

The role of visual display for cooperative/competitive analytical reasoning
Dynamic visual analytics environments have at least three distinct roles in sup-

port of cooperative/competitive analytical reasoning:
1. As a representation of the features in the world that are the object of focus, 

thus as a model of the physical world (e.g., maps depict aspects of the world 
critical to situation assessment and planning of actions associated with emer-
gency management) and as a mechanism to assemble a view into an information 
space populated by an array of information artifacts 

2. As a support for analytic discourse among collaborators as they reason (indi-
vidually, cooperatively, and competitively) about strategies for information 
analysis, situation assessment (and the strength of evidence that underlies the 
assessment), hypotheses about future developments, and plans for action 

3. As a support for coordinated activity (e.g., helping to synchronize the actions 
of multiple participants in that activity). See MacEachren [1995].

Considerable attention has been directed to the role of external (usually visual) 
representations in enabling collaboration generally. This attention, however, is frag-
mented, appearing in a range of disciplines from CSCW through diagrammatic 
reasoning and argument visualization [Johansen, 1988], to multimodal interfaces 
for geospatial information [McGee et al., 2001]. For example, Suthers has imple-
mented concepts from diagrammatic reasoning in an open-source toolkit for 
collaborative learning (http://sourceforge.net/projects/belvedere/) and has con-
ducted several empirical studies of the impact of abstract visual representations on 
reasoning and hypothesis generation. In one study, Suthers et al. [2003] found that 
visually structured representations (graph, matrix) influenced representation and 
discussion of evidential relations, with a matrix increasing discussion but graphs 
producing more focused consideration of evidence. Complementary to these efforts 
to understand the role of particular kinds of visual representation on collaboration, 
progress has been made in understanding the general role of external (usually visual) 
representations and artifacts in the cognitive process of groups [Zhang, 2001].
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Sharing information and perspective
In an effort to describe features of the world and manage associated knowledge, 

domains that range from computational sciences and artificial intelligence (e.g., 
Gaver [1992]) to the environmental and social sciences (e.g., Fonesca et al. [2002]) 
have developed knowledge representation languages and constructed ontologies that 
use them. This prior work, however, is missing a key element that is critical to sup-
porting collaborative visual analytics in the intelligence analysis and emergency 
management domains: consideration of how knowledge is generated, revised, pro-
mulgated, shared, built upon, and retired. Formal representation of knowledge 
typically focuses on recording propositions and rules about a domain without 
attempting to situate knowledge in the context of its creation or use. As discussed 
for sense-making above, knowledge representation and management to support col-
laborative visual analytics requires that knowledge is situated in the context of its 
creation, use, sharing, and re-use.

Many have described human-computer interaction as a conversation or dialogue—
with oneself, with one’s current collaborators, with future actors, with a machine 
[Nake & Grabowski, 2001; Winograd & Flores, 1986; MacEachren, 2004]. We 
propose extending the notion of human-information dialogue, or analytic discourse, 
as the vehicle to help analysts uncover the lineage and basis of shared ideas as they 
move from one analyst to another, from one information source to another, from 
one geographic context to another, and from one time to another. This approach 
complements recent efforts in visualization of argumentation to support science 
work [Shum et al., 2003].

Supporting distributed cognition/common ground 
In his study of shipboard navigation on Navy vessels, Edwin Hutchins [1996] 

illustrated that critical insights about coordinated team activity can be achieved by 
applying a distributed cognition perspective. From this perspective, teamwork is 
viewed as a process in which aspects of cognition are distributed across the collabo-
rating agents, which in this case are individuals with different roles and tasks, and 
the artifacts through which the agents acquire, construct, and share knowledge. A 
distributed cognition perspective has been adopted as a framework for understand-
ing group work in contexts that include complex team problem solving in shared 
information spaces, the development of team situation awareness for emergency 
operations and military action, and the process of collaborative urban design.

A successful distributed cognition process, whether distributed among individuals 
and artifacts that are co-located or geographically distributed, requires that partici-
pants establish common ground through a set of shared pertinent knowledge, beliefs, 
and assumptions [Klein et al., 2004]. Chuah & Roth [2003] contend that visualiza-
tion tools can be used to help collaborators establish common ground and have 
developed an environment within their Command Post of the Future project for 
creating collaborative information analysis and decision-making applications. Com-
mon ground in this system is established through a combination of explicitly shared 
objects and events, representations of level of attention directed to objects, depiction 
of goals for analyzing objects and events, representation of interpretations and 
thoughts through annotations and sketches, and representation of object history.



62 Illuminating the Path

Theory, Knowledge, and Technology Needs
Current visual analytic methods and tools are designed for use by individuals. 

However, the homeland security challenges facing the nation require concerted, coop-
erative, and coordinated efforts by teams and sets of teams that bring a range of expertise 
to the task. Our goals range from developing fundamental knowledge about the role 
of visual analytics in enabling team cognition to advancing the technology to facili-
tate coordinated, distributed analytical reasoning. Key goals include the following:

• Develop a better understanding of how interactive visualization is used for 
coordination, for collaborative analysis together across space and time, and 
for establishing and managing group dynamics.

• Take advantage of knowledge of perception and cognition and advances in 
display technology to apply the new display technology productively to sup-
port co-located and distributed work teams.

• Learn from, apply, and extend developments in collaborative visualization, group 
games and simulation models, and multi-criteria decision-support systems.

• Develop strategies for connecting visualization and semantic frameworks that 
underpin analytic discourse.

• Understand how the analytic sense-making, reasoning, and judgment process dif-
fers for teams—and develop methods and tools to meet the needs of teams and to 
enable analytic reasoning outcomes that are more than the sum of the parts, thus 
generating key insights through juxtaposition and/or integration of perspectives.

• Understand and support the role of team-enabled visual analytics in each 
stage of the sense-making processes in threat analysis and emergency response.

• Apply knowledge from addressing the above goals to developing visual analytics 
systems that enable analytic discourse and coordinated action within teams.

These goals lead to the following recommendation.

Recommendation 2.8
Develop a theory and approaches to characterize and enhance the ways visual 
analytics is used for coordination and collaboration, especially in situations of 
high stress and great urgency; more specifically, discover how analytic pro-
cesses can be enabled by interactive visualization so that distributed expertise 
is better exploited and clear communication is enabled.

Visual analytics methods and tools must support the work of analyst/decision-maker 
teams, ranging from small work groups applying collective expertise to relatively nar-
row analytic problems to cross-organizational, distributed teams faced with complex 
information sifting and analysis tasks. In emergency situations, where information 
is ambiguous and collaboration is taking place with a wide range of people under 
extreme time pressure and at great consequence, collaboration is paramount.

Visual analytics tools must also support seamless interaction with information of het-
erogeneous forms, derived from heterogeneous sources, and having varied ontological 
structures. A key goal is to develop methods that support capture, encoding, and sharing 
of both explicit and tacit knowledge derived from integrated exploration of diverse 
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sources and that support use of encoded knowledge from these diverse sources to gen-
erate and mediate among alternative interpretations of evidence and plans for action.

Summary
The goal of visual analytics is to facilitate the analytical reasoning process through 

the creation of software that maximizes human capacity to perceive, understand, 
and reason about complex and dynamic data and situations. It builds upon an under-
standing of the reasoning process, as well as an understanding of underlying cognitive 
and perceptual principles, to provide mission-appropriate interactions that allow 
analysts to have a true discourse with their information. This discourse is essential to 
facilitating informed judgment with a limited investment of the analysts’ time.

Summary Recommendations 
The following high-level recommendations summarize the detailed recommen-

dations from this chapter. These actions are necessary to advance the science of 
analytical reasoning in support of visual analytics. 

Recommendation:
Build upon theoretical foundations of reasoning, sense-making, cognition, and 
perception to create visually enabled tools to support collaborative analytic 
reasoning about complex and dynamic problems.

To support the analytical reasoning process, we must enable the analyst to focus 
on what is truly important. We must support the processes involved in making 
sense of information and developing and evaluating alternative explanations. Tools 
and techniques must support both convergent thinking and divergent thinking. 
These tools and techniques also must allow analysts to look at their problem at 
multiple levels of abstraction and support reasoning about situations that change 
over time, sometimes very rapidly. They must support collaboration and teamwork, 
often among people with very different backgrounds and levels of expertise. Accom-
plishing this will require the development of theory to describe how interactive visual 
discourse works, both perceptually and cognitively, in support of analytical reasoning.

Recommendation:
Conduct research to address the challenges and seize the opportunities posed 
by the scale of the analytic problem. The issues of scale are manifested in 
many ways, including the complexity and urgency of the analytical task, the 
massive volume of diverse and dynamic data involved in the analysis, and 
challenges of collaborating among groups of people involved in the analysis, 
prevention, and response efforts.

The sheer volume and scale of data involved in the analytical process offer as many 
opportunities as they do challenges for visual analytics. A science of scalable, visually 
based analytical reasoning, or visual analytic discourse, must take the issue of scale into 
consideration. Different types of analytic discourse will be appropriate to different ana-
lytical tasks, based on the level of complexity of the task, the speed with which a conclusion 
must be reached, the data volumes and types, and the level of collaboration involved.
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