A Computer Program for Analysis of Smoke Control Systems

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
National Engineering Laboratory
Center for Fire Research
Washington, DC 20234

June 1982
Final Report

[^0]
A COMPUTER PROGRAM FOR ANALYSIS OF SMOKE CONTROL SYSTEMS

John H. Klote

U.S. DEPARTMENT OF COMMERCE
 National Bureau of Standards
 National Engineering Laboratory
 Center for Fire Research
 Washington, DC 20234

June 1982

Final Report

Sponsored in part by:
Department of Health and Human Services
Washington, DC 20201

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

PREFACE

This report is an interim product of a joint effort of the Department of Health and Human Services and the National Bureau of Standards (NBS), Center for Fire Research. The program is a multi-year activity initiated in 1975. It consists of projects in the areas of: decision analysis, fire and smoke detection, smoke movement and control, automatic extinguishment, and behavior of institutional populations in fire situations.

This report describes a computer program which analyzes pressurized stairwells and pressurized elevators. The program was initially intended as a research tool to investigate the feasibility of specific systems. However, this program may be of interest to design engineers responsible for pressurized stairwells or pressurized elevators.

TABLE OF CONTENTS

Page
PREFACE iii
LISTOFFIGURE v
Abstract 1

1. INTRODUCTION 1
2. PROGRAMCONCEPT 2
3. ASSUMPTIONS AND LIMITATIONS 3
4. EQUATIONS. 3
5. PROGRAM DESCRIPTION 6
5.1 Main Program 7
5.2 INPUT Subroutine 7 7
5.3 CORR Subroutine 7
5.4 INIT Subroutine 7
5.5 BLDGP Subroutine 9
5.6 SHAFTP Subroutine 9
5.7 PZAD Subroutine 9
5.8 OUT Subroutine 9
6. FUTUREDIRECTION 9
7. REFERENCES 10
APPENDIX A. DATA INPUT DESCRIPTION FOR COMPUTER PROGRAM 11
APPENDIX B. INPUT EXAMPLES 18
APPENDIX C. EXAMPLE OUTPUT 21
APPENDIX D. PROGRAM LISTING 26

LIST OF FIGURE

Figure 1. Flow chart for main program 8

John H. Klote

Abstract

This paper describes a computer program developed to analyze systems intended to control smoke in building fires. These systems include pressurized stairwells, pressurized elevator shafts, zone smoke control systems, and pressurized corridors. This program calculates air flows and differential pressures throughout a building in which a smoke control system is operating. The basic assumptions and limitations of the program are also discussed. The appendices contain a program listing and examples.

Key words: Air movement; computer programs; egress; elevator shafts; escape means; modeling; pressurization; simulation; smoke control; stairwells.

1. INTRODUCTION

The majority of fire fatalities result from smoke inhalation. As a result of this, a number of systems have been designed and built to control smoke movement in building fires. The most common smoke control systems are pressurized stairwells and zone smoke control systems ${ }^{1}$. These systems are intended to control smoke movement in a building by use of air flows and by differential pressures. The computer program described in this paper provides a means to calculate the air flows and differential pressures throughout a building (either real or conceptual) in which a smoke control system is operating.

A number of computer programs have been developed which are applicable to smoke control. Some of these programs calculate steady state air flow and pressures throughout a building $[1,2]^{2}$. Other programs go beyond this to calculate smoke concentrations throughout a building that would be produced in the event of a fire [3-73. In general, most of these programs are capable of analyzing smoke control

[^1]systems. However, the program described in this paper has been specifically written for analysis of smoke control systems, and is an extension of a program specifically written for analysis of pressurized stairwells and elevators [8]. While the basic theory of this program is the same as that of the stairwell program it has been extended to include analysis of (1) stairwells with vestibules, (2) elevators with elevator lobbies, (3) zone smoke control systems, and (4) pressurized corridors. The data input has been designed to minimize the quantity of required data and still maintain a high level' of generality in the model. The output consists of the pressure differences across all of the building shafts, as well as the flows and pressures throughout the building.

This program was originally intended primarily as a research tool to investigate the feasibility of specific smoke control systems and to determine the interaction between these systems and the rest of the building. The predecessor [8] of this program has already been used to analyze pressurized stairwells without vestibules and to evaluate factors which affect the performance of these systems [9]. And, this program has been used to generate data for an National Bureau of Standards (NBS) Handbook on Smoke Control Design which is being developed. This paper is not intended to be a design guide for smoke control systems. The state-of-the-art of these systems is still under development and designers of these systems should seek the most current data available.

2. PROGRAM CONCEPT

In this computer program a building is represented by a network of spaces or nodes each at a specific pressure and temperature. The stairwells and other shafts are modeled by a vertical series of spaces, one for each floor. Air flows through leakage paths from regions of high pressure to regions of low pressure. These leakage paths are doors and windows which may be opened or closed. Leakage can also occur through partitions, floors, exterior walls and roofs. The air flow through a leakage path is a function of the pressure difference across the leakage path.

In this computer model air from outside the building can be introduced by a pressurization system into any level of a shaft or even into other building spaces. This allows simulation of stairwell pressurization, elevator shaft pressurization, stairwell vestibule pressurization, and pressurization of any other building space. In addition, any building space can be exhausted. This allows analysis of zone smoke control systems where the fire zone is exhausted and other zones are pressurized. The pressures throughout the building and flow rates through all the flow paths are obtained by solving the air flow network including the driving forces such as the wind, the pressurization system or an inside to outside temperature difference.

3. ASSUMPTIONS AND LIMITATIONS

1. Each space is considered to be at one specific pressure and one specific temperature.
2. The flows and leakage paths are assumed to occur at mid-height of each level.
3. The net air supplied by the air handling system or by the pressurization system is assumed to be constant and independent of building pressure.
4. The outside air temperature is assumed to be constant.
5. The barometer pressure at ground level is assumed to be standard atmospheric pressure $\left(101325 \mathrm{P}_{\mathrm{a}}\right)^{3}$.

4. EQUATIONS

A. Flow equation

$$
F=C A \sqrt{2 \rho \Delta P}
$$

(3.1)
where:

$$
\begin{aligned}
\bar{F} & =\text { mass flow rate } \\
\mathrm{C} & =\text { flow coefficient } \\
\mathrm{A} & =\text { flow area } \\
\rho & =\text { density of air in flow path } \\
\mathbf{A P} & =\text { pressure difference across flow path }
\end{aligned}
$$

The flow coefficient is dimensionless and for smoke control analysis it is generally taken to be in the range of 0.6 to 0.7 . Because of the large number of flow calculations performed during the computer analysis the flow equation is rewritten in the program as $F=C^{\prime} \sqrt{\Delta P}$. Using the ideal gas law, the adjusted flow coefficient ${ }_{r} C^{\prime}$, can be expressed as

$$
\begin{equation*}
C^{\prime}=C A \sqrt{\frac{{ }^{2 P_{a t m}}}{R T}} \tag{3.2}
\end{equation*}
$$

where:
$p_{a t m}=$ absolute barometric pressure at ground level
$R=$ gas constant of air
$T=$ absolute temperature of air in flow path

[^2]B. Mass Balance Equations

For building compartment ${ }^{4}$ i

$$
\begin{equation*}
\sum_{j=1}^{N_{c}} F_{(i, j)}+\sum_{k=1}^{N_{o}} F_{o(i, k)}+F_{f(i)}=0 \tag{3.3}
\end{equation*}
$$

and for shafts

$$
\begin{equation*}
\sum_{i=N_{1}}^{N_{2}}\left|\sum_{j-1}^{N_{c}} F_{(i, j)}+\sum_{k=1}^{N_{o}} F_{o(i, k)}+F_{f(i)}\right|=0 \tag{3.4}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathbf{F}_{(i, j)}=\text { mass flow rate from space } j \text { to space i. For building } \\
& \text { compartments this flow can be either horizontal or vertical, } \\
& \text { however for shafts this flow can only be horizontal. } \\
& F_{o(i, k)}=\underset{\text { to space } i .}{ } \text { flow rate from direction } k \text { outside of the building } \\
& \mathrm{F}_{\mathrm{f}(\mathrm{i})}=\text { net mass flow rate of air due to the air handling system } \\
& \text { or due to a pressurization system. } \\
& N_{c}=\text { number of building spaces connected to space i. } \\
& N_{0}=\text { number of connections to the outside from space } i \text {. } \\
& N_{1} \text { is the space number at the bottom level of the shaft and the spaces in the } \\
& \text { shaft are numbered consecutively up to } N_{2} \text { which is the space number at the top of } \\
& \text { the shaft. }
\end{aligned}
$$

The following relationship is used to calculate the gage pressure, ${ }^{(}(\mathbf{i)}$, at floor i of a shaft in terms of $P_{(i-1)}$ at floor i-1.

$$
\begin{equation*}
P_{(i)}=P_{(i-1)}-P_{z}-P_{f} \tag{3.5}
\end{equation*}
$$

where:
$P_{z}=$ hydrostatic pressure difference
$P_{f}=$ pressure loss due to friction

The following equation is used to calculate the hydrostatic pressure difference.

[^3]\[

$$
\begin{equation*}
P_{z}=\frac{g \bar{P}}{R \bar{T}} \quad h_{(i)}-h_{(i-1)} \tag{3.6}
\end{equation*}
$$

\]

where :

$$
\begin{aligned}
h_{(i)} & =\text { height of point } i \\
h_{(i-1)} & =\text { height of point } i-1 \\
g & =\text { gravitational acceleration } \\
R & =\text { gas constant } \\
\bar{T} & =\frac{T_{(i)}+T(i-1)}{2} \\
\bar{P} & =\frac{P_{(i)}+P_{(i-1)}}{2}+P_{b}
\end{aligned}
$$

P_{b} is a constant used to convert an average gage pressure to the average absolute pressure, $\overline{\mathrm{P}}$.

The following equation is used to calculate the pressure loss due to friction.

$$
\begin{equation*}
P_{f}=S\left(\frac{\dot{m}_{u}}{C_{s}}\right)^{2} \tag{3.7}
\end{equation*}
$$

where:

$$
\begin{aligned}
\dot{\mathrm{m}}_{\mathrm{u}} & =\text { upward flow from i-1 to } i \text { in shaft } \\
\mathrm{C}_{\mathrm{S}} & =\text { shaft flow coefficient } \\
\mathrm{S} & =\operatorname{sign} \text { of } \dot{m}_{u}
\end{aligned}
$$

D. Outside Pressures

Outside pressures can either be entered by the user or can be calculated by the following method.

$$
\begin{equation*}
P_{o(i)}=P_{h(i)}+C_{w} P_{v(i)} \tag{3.8}
\end{equation*}
$$

where :

$$
\begin{aligned}
\mathrm{P}_{\mathrm{O}(\mathrm{i})}= & \text { outside gage pressure at height } \mathrm{h}(\mathrm{i}) \text { above absolute pressure } \\
& \text { at ground level } \\
\mathrm{P}_{\mathrm{h}(\mathrm{i})}= & \text { hydrostatic pressure difference between } \mathrm{h}(\mathrm{i}) \text { and ground level } \\
\mathrm{P}_{\mathrm{V}(\mathrm{i})}= & \text { velocity pressure due to the wind at height } \mathrm{h}(\mathrm{i}) \\
\mathrm{C}_{\mathrm{W}} & =\text { pressure coefficient }
\end{aligned}
$$

Because the outside temperature is constant

$$
\begin{equation*}
P_{h(i)}=P_{a t m} \exp \left(-\frac{g h(i)}{R T}\right)-P_{b} \tag{3.9}
\end{equation*}
$$

where :

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{atm}}=\text { absolute barometric pre,zure at ground level } \\
& \mathrm{T}_{\text {out }}=\text { outside absolute temperature }
\end{aligned}
$$

When the outside pressures are calculated by the computer the wind velocities are assumed to be described by the power law.

$$
v=v_{o}\left(\frac{h}{h_{o}}\right)^{n}
$$

where:
$Y_{0}=$ wind velocity at height h_{0}
$\mathrm{n}=$ wind exponent

This relationship has been extensively used to describe the boundary-layer velocity profile of the wind near the surface of the earth. It assumes that the terrain surrounding the building is homogeneous. That is, that there are no large obstructions near the building which could produce local wind effects. A value of 0.16 for the wind exponent is appropriate for flat terrain. The wind exponent increases with rougher terrain. For very rough terrain such as urban areas a value of 0.40 would be appropriate.

The equation for the velocity pressure at height $h(i)$ is obtained by substituting the velocity from the power law into the usual relation for velocity pressure ($\mathrm{P}_{\mathrm{y}}=$ $\left.\frac{1}{2} \rho v^{2}\right)$.

$$
\begin{equation*}
P_{v}=\frac{\rho v_{o}^{2}}{2}\left(\frac{h_{(i)}}{h_{0}}\right) \tag{3.10}
\end{equation*}
$$

where ρ is the outside air density.

The pressure coefficients are in the range of -0.8 to 0.8 where positive values are for windward walls and negative values are for leeward walls. The z pressure coefficient depends upon building geometry and varies locally over the wall surface. Numerical values for C_{w} and n as well as practical engineering information are available from a number of sources [lo-131.

5. PROGRAM DESCRIPTION

This program is written in ANSI FORTRAN on the UNIVAC 1100/82 and a program listing is provided in appendix D. The following is a detailed description of the main program and the major subroutines.

5.1 Main Program

The main program calls the subroutines which read the data, calculate the adjusted flow coefficients, calculates the initial values of pressures and interatively solves for the pressures according to the logic illustrated in the flow chart of figure 1.

5.2 INPUT Subroutine

This routine reads the data that are necessary for a flow analysis of the stairwell or elevator, including an analysis of the rest of the building. These data consist of the following:

1. Outside temperature.
2. Temperature throughout the building,
3. Outside pressures. These can be entered or calculated as described earlier,
4. Description of the flow network including flow coefficients and flow areas for all connections and the net air flows to each space due to the air conditioning system or due to a pressurization system.

The data above can be entered in either SI units or in engineering units. Appendix A contains a detailed description of the data input method.

In addition to reading data, this subroutine provides temperature and pressure data as well as a complete description of the flow network. This routine also calculates initial estimates of the hydrostatic pressure differences. When data is entered in engineering units the subroutine UNITS is called which converts all units to the SI system.

5.3 CORR Subroutine

This routine calculates adjusted flow coefficients for all flow paths using eq. (3.2). Two sets of these coefficients are calculated for each flow path to allow for flow in either direction.

5.4 INIT Subroutine

nis routine calculates initial estimates of the building pressures by a technique used by Sander [1]. In this technique, mass flows are considered linear functions of differential pressure and therefore the flow equations can be expressed and solved in matrix form. In this estimate, shaft pressures are considered hydrostatic. The resulting pressures form a starting point for the iterative solution which follows.

Figure 1. Flow chart for main program

5.5 BLDGP Subroutine

The iterative solution for the building pressures and flows consists of the three subroutines BLDGP, SHAFTP and PZAD. The subroutine BLDGP operates on the building compartments sequentially. The sum of all the mass flows into compartment i is calculated. If the absolute value of this sum is less than a convergence limit then eq. (3.3) is considered satisfied and the computer proceeds to the next compartment or returns to the main program. However, if the absolute value of the sum is greater than the convergence limit, then an improved estimate of the pressure at compartment i is obtained by the regula falsi method [14]. When none of the pressures need to be modified this routine passes a convergence signal to the main program.

5.6 SHAFTP Subroutine

The structure of this routine is very similar to that of BLDGP except that it operates on shafts sequentially. The sum of all the mass flows into shaft i is calculated. If the absolute value of this sum is less than the convergence limit then eq. (3.4) is also considered satisfied and the computer proceeds to the next shaft or returns to the main program. However, if the absolute value of the sum is greater than the convergence limit, then improved estimates of the shaft pressure are calculated. This is done by changing the pressures at the bottom of the shaft and then recalculating the shaft pressure by eq. (3.5). Again the regula falsi method is used, and if none of the shaft pressures require modification a convergence signal is passed to the main program. It can be seen from figure $\mathbf{1}$ that if convergence is achieved in both BLDGP and SHAETP, then the subroutine OUT will print the solution. Otherwise, the hydrostatic pressure differences are adjusted in the subroutine PZAD.

5.7 PZAD Subroutine

This routine calculates hydrostatic pressure differences by eq. (3.6) using the most recent pressure estimates.

5.8 OUT Subroutine

This routine outputs mass flows and pressures for the flow network as well as the differential pressures across each shaft. If the data input was in engineering units then appropriate variables are converted to the engineering system before output.

6. FUTURE DIRECTION

It is planned to use this computer program in a project at NBS to study the feasibility of protected elevators as a means of fire escape for handicapped individuals. Consideration is being given to further development of the program for use as a design tool. Also, a program may be developed for microcomputers which can be used interactively.

7. REFERENCES

[1] Sander, D. M., FORTRAN IV Program to Calculate Air Infiltration in Buildings, National Research Council Canada, DBR Computer Program No. 37, May 1974.
[2] Sander, D. M. and Tamura, G. T., FORTRAN IV Program to Simulate Air Movement in Multi-Story Buildings, National Research Council Canada, DBR Computer Program No. 35, March 1973.
(3) Yoshida, H., Shaw, C. Y. and Tamura, G. T., A FORTRAN IV Program to Calculate Smoke Concentrations in a Multi-Story Building, National Research Council Canada, DBR Computer Program No. 45, June 1979.
[4] Butcher, E. G., Farde11, P. J. and Jackman, P. J., Prediction of the Behaviour of Smoke in a Building using a Computer, Symposium on Movement of Smoke on Escape Routes in Buildings, Watford College of Technology, Watford, Herts, England, pp. 70-75, 1969.
[5] Barrett, R. E. and Locklin, D. W., A Computer Technique for Predicting Smoke Movement in Tall Buildings, Symposium on Movement of Smoke on Escape Routes in Buildings, Watford College of Technology, Watford, Herts, England, pp. 78-87, 1969.
[6] Evers, E. and Waterhouse, A., A Computer Model for Analyzing Smoke Movement in Buildings, BRE Fire Research Station, Borehamwood, Hertsfordshire, England, November 1978.
[7] Wakamatsu, T., Calculation Methods for Predicting Smoke Movement in Building Fires and Designing Smoke Control Systems, Fire Standards and Safety, ASTM STP 614, A. F. Robertson, Ed., American Society for Testing and Materials, pp. 188-193, 1977.
[8] Klote, J. H., A Computer Program for Analysis of Pressurized Stairwells and Pressurized Elevator Shafts, Nat. Bur. Stand. (U.S.), NBSIR 80-2157, January 1981.
(9) Klote, J. H. , Smoke Control by Stairwell Pressurization, Engineering Applications of Fire Technology, SFPE and Nat. Bur. Stand., April 1980.
[10] Sachs, P., Wind Forces in Engineering, Pergamon Press, New York, 1972.
[11] Houghton, E. L. and Carruther, N. B., Wind Forces on Buildings and Structures, John Wiley \& Sons, New York, 1976.
[12] Simiu, E. and Scanlan, R. H., Wind Effects on Structures: An Introduction to Wind Engineering, John Wiley \& Sons, New York, 1978.
[13] MacDonald, A. J., Wind Loading on Buildings, John Wiley \& Sons, New York, 1975.
[14] Carnahan, B., Luther, H. A. and Wilkes, J. O., Applied Numerical Methods, John Wiley \& Sons, Inc., New York, 1969.

APPENDIX A. DATA INPUT DESCRIPTION FOR COMPUTER PROGRAM

Data input consists of the following elements:

1. Initial data
2. Building heights
3. Temperature profiles
4. Outside pressure profiles
5. Building data
6. Shaft data

Each of these input elements is described in detail in the following sections. Elements 1 through 6 are always required. In the following sections the input required for each of the six data elements is described in detail. Each block or group of blocks below represent an input card. Unless otherwise stated these cards are unformatted; that is, the numbers do not have to be placed in specific columns and integers can be written with or without decimal points. However, separate pieces of numerical data must be separated by one or more spaces. Examples of input data are provided in Appendix B.

1. Initial data

project title,(co1. 1-72)

tempiside $\quad\left({ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right)$
unithindication

\square

[^4]
2. Building heights

$$
N_{h^{\prime}} \text { no. of building } \begin{aligned}
& \text { levels }
\end{aligned}
$$

input parameter
(either 0 or 1)

If input parameter $=0$, then heights for each building level are to be individually entered as follows:
${ }^{h}$ (1)

${ }^{h}(2)$
${ }^{h}$ (3)
$h_{\text {(i) }}$
${ }^{h}\left(N_{h}\right)$

\square
where $h_{(i)}$ is the height of the center of level i above the ground (m, ft).

If input parameter $=\mathbf{1}$, then the following card must be entered.

$\mathrm{h}(1) \quad$	distance between
floors $(\mathrm{m}, \mathbf{f t)}$	

3. Temperature profiles
no. of temperature profiles

For each temperature profile the following data must be supplied.

4. Outside pressure profiles
$\mathbf{N}_{\text {po }}$
no. of outside
pressure profiles
input parameter
(either 0 or 1)
\square
\square

If the input parameter $=0$, each outside pressure profile is entered as follows:
$\mathrm{P}_{\mathrm{O}(1)}$
$\mathrm{P}_{\mathrm{O}}(2)$
$P_{o(3)}$
$\mathrm{P}_{\mathrm{O}}(\mathrm{i})$
$\mathrm{P}_{\mathrm{O}}\left(\mathrm{N}_{\mathrm{h}}\right)$

\square - 0 \square
where $P_{o(i)}$ is the outside pressure at the center of level i.

If the input parameter $=1$, the outside pressures are calculated and the following data are required.
V_{o}
wind velocity (mph)
ho
height at which velocity is measured

n
wind exponent

pressure coefficients for each pressure profile

$\mathrm{C}_{\mathrm{W}(2)}$
$\mathrm{C}_{\mathrm{W} \text { (Npo) }}$
\square
\square - ○ ○ \square

5. Building data

\square
N_{f}
no. of levels (or floors)

All of the following data in this input element are supplied for each level, or consecutive groups of similar levels.

$\mathbf{I}_{\mathbf{l}}$			
Starting floor	\mathbf{I}_{2}		
Ending floor		\quad	$\mathbf{N}_{\text {com }}$
:---:			
of compartments per floor			

(Floor data is entered in ascending order of levels or floors. When data is for only one level then $I_{1}=I_{2}$, and the same number is supplied for both.)

For each compartment on a level the following data are supplied:
\square
\square
\square
\square

For each connection between this compartment and another on the same floor the following data are required.

> Other compartment number on the same level
flow coefficient
A
flow area
$\left(m^{2}, f t^{2}\right)$
\square

For each connection between this compartment and one on the level above the following data are required.

[^5]| Other compartment | C | A |
| :--- | :---: | :---: |
| number on floor | flow coefficient | flow area |
| above | | $\left(m^{2}, f t^{2}\right)$ |

\square

For each connection to the outside the following data are required.
outside pressure profile number
C
A
flow coefficient
flow area
$\left(m^{2}, f t^{2}\right)$

6. Shaft data

```
no. of shafts
```


All of the following data in this input element are required for each shaft.

```
shaft title (col 1-20)
```


Enter the following typical data which applies to each level of the shaft.

Exceptions can be entered later.
no. of connections between typical level of shaft and outside

```
                                    F
                                    net flow into
                                    typical level
                                    of shaft
                                    (1/s, cfm)
```


The connection data to the building for a typical level are required.

compartment no.	C	A
to which shaft is	flow coefficient	flow area
connected		$\left(m^{2}, f t^{2}\right)$

For each connection to the outside, the connection data for a typical floor are required.

```
outside pressure profile
```

C
flow coefficient

$$
\begin{aligned}
& \text { flow area } \\
& \left(\mathrm{m}^{2}, f t^{2}\right)
\end{aligned}
$$

The number of exceptions to the typical data is required.
no. of exceptions

All of the following data in this input element are required for each exception.
exception type level of shaft
$(1,2$ or $\mathbf{3})$

\square

The next card depends on the exception type. For exception type $=$. to the net flow into the floor of the shaft is defined.

$$
\begin{aligned}
& { }^{\mathrm{F}_{\mathrm{f}}} \\
& \text { net flow } \\
& (\mathrm{l} / \mathrm{s}, \mathrm{cfm})
\end{aligned}
$$

For exception type $=\mathbf{2}$, an exception to an outside connection for this shaft is defined.

outside pressure	C	A
profile number	flow coefficient	flow area $\left(m^{2}, f t^{2}\right)$

\square

For exception type $=\mathbf{3}$, an exception to the connection between the shaft and the building is defined.
compartment no.
to which shaft is connected

C
flow coefficient
flow area
$\left(\mathrm{m}^{2}\right.$,
$\left.f t^{2}\right)$

\square

1. Example 1

A ten story building with a pressurized stairwell and no vertical leakage within the building is heated to $70^{\circ} \mathrm{F}$ when the outside temperature is $\mathbf{- 2 0}{ }^{\circ} \mathrm{F}$. The stairwell temperature is $60^{\circ} \mathrm{F}$ at the tenth floor and $50^{\circ} \mathrm{F}$ at the bottom floor. The stairwell is pressurized by a net $550 \mathrm{cfm}^{1}$ per floor. The wind is 30 mph at a height of 30 ft and the wind exponent is 0.14 . This building has connections to the outside in two directions. The wind pressure coefficients are 0.7 for the windward wall and -0.7 for the leayard wall. The flow areas are the same vertically and are listed in Table B1. The flow coefficient is taken to be 0.65 for all connections.

Table B1. Flow areas for example 1
Connection location Area (ft ${ }^{2}$)
Between stairwell \& building 0.42

Between building \& outside into the wind 0.75

Between building \& outside away from the wind 0.75

1.1 Data for Computer Input

[^6]

2. Example 2

This is a 10 story building which is $70^{\circ} \mathrm{F}$ inside. Outside the air temperature is $-5^{\circ} \mathrm{F}$ and there is no wind. This building has a stairwell and an elevator. The flow areas which are generally the same vertically are listed in table B2 and the flow exponents are taken to be 0.5. The stairwell is pressurized by a net 550 cfm per floor. The elevator shaft has a $4 \mathrm{ft}^{2}$ vent to the outside at the top. On floors 2 through 10 the elevator lobby separated from the building by doors that automatically close in the event of a fire. The flow coefficient is taken as 0.65 in all connections.

Table B2. Flow areas for example 2
Connection location Area (ft ${ }^{2}$)

Between stairwell \& building	0.42
Between building \& outside	1.5
Between elevator \& elevator lobby	0.65
Between elevator lobby \& building	0.55

2.1 Data for Computer Input

buiZding data
1 st
f Zoor $\quad\left\{\begin{array}{ccccc}1 & 1 & 1 & & \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0.65 & 0.75 & & \end{array}\right.$
2nd
through
10th floors $\left\{\begin{array}{ccccc}\mathbf{2} & \mathbf{1 0} & \mathbf{2} & & \\ \mathbf{1} & \mathbf{0} & 1 & 0 & \mathbf{1} \\ 2 & 0.65 & 0.55 & & \\ \mathbf{1} & 0.65 & 0.75 & & \\ 0 & 0 & 0 & 0 & \mathbf{1}\end{array}\right.$
shaft
dautat

```\(\{2\)
```

shaft $て$	STAIRWELL		
	0	550	
	1 0	. 65	. 42
shaft 2	(ELEVATOR		
	2.7E6	1	10
	0	0	
	2	. 65	. 65
	< 2		
) 2	10	
	1	. 65	4.0
	3	1	
	(1	. 65	. 65

2.2 Example 2 Output

The output for example 2 case 1 (the data above not including modifications for Cases 2 and 3) is given in appendix C.

APPENDIX C. EXAMPLE OUTPUT

EXAMPLE CUTPUT

APPENDIX D. PROGRAM LISTING

aNBS*PLIES.SHOW A.MAIN		
C		
C COMPLTER PROGRAM FOR AR FLOW ANALYS IS IN BUILD INGS		
C SPECIFICALLY FOR ANALYSIS OF SMOKE CGNTROL SYSTEMS		
C		
C		
C	PROGRAM VARIABLES	
C	A 1	EAKAGE AREA OF INTERNAL CONNECTION
C	AO	LEAKAGE AERA OF CCNNECTICN TO OUTSIDE
C	C	FLOW COEFFICIENT EETWEEN BUILDING POINTS
C	CO	FLOW COEFFICIENT TO OUTSIOE
C	CS	FLOW COEFFICIENT OF SHAFT
C	E	LIMIT WITHIN WHICH CCNVERGENCE IS ACCEPTABLE
C	F	NET FLOW INTO POINT !
C	$F C$	FLOW BETWEEN INTEFNAL FOINTS
C	FF	FIXED FLOW INTO PCINT !
C	FO	FLOW TO OUTSIOE
C	FSS	NET FLOW INTO SHAFT IS
C	-	-EIGHT FROM GROUND TO MIDPOINT OF FLOOR
C	İug	OUTPUT VARIABLE
c	ICONV	INTEGER USED IN SUBROUTINES BLDGP AND SHAFTP
C		IF ICONV $=0$ THEN ThE PRESSURES WERE UNCHANGED
C	IFLCCR	FLOOR LEVEL Wrere point is located
C	1 T	POINTER TO TEMP PROFILE FOR POINT 【
C	1 TS	POINTER TO TEMPERATURE PROFILE OF SHAFT
C	JC	POINT NO. CCNNECTED TO POINT 【
C	Joc	DIRECTION OF OUTSIOE CONNECTION
C	N	NC. OF BUILOING CCMPARTMENTS
C	NC	NO. OF INTERNAL POINTS CCNNECTED TO POINT I
C	NCO	NO. OF OUTSIDE CONNECTICNS
C	NFSI	BOTTOM FLOOR OF Sraft
C	NFS2	TOP FLOOR OF SHAFT
C	NH	NO. OF FLOORS
c	NPO	NO. OF OUTSIDE FRESSURE PROFILES
C	NS	N00 OF SHAFTS
C	NS 1	! Value for start of shaft
c	NS2	- VALUE FOR END OF SHAFT
C	NT	TOTAL NO. OF POINTS (BLDG AND SHAFT)
C	NTP	NO. OF TEMPERATURE PROF ILES
C	F	PRESSURE AT POINT I
C	FFO	OUTSIDE FRESSURE PROFILES
c	FO	OUTSIDE PRESSURE
C	PS	PRESSURE PROFILE OF SHAFT - WORKSPACE
C	PZ	PRESSURE DUE TO ELEVATICN DIFFERENCE
C	T	temperature frofile array
c	Title	PROJECT TITLE
c	TITSt	SHAFT TITLE
C		
c		
C	FROGFAM PARAMETERS	
c	MB	MAX NOO OF BUILDING COMPARTMENTS
c	NM	MAX NO. OF POINTS
C	MS	MAX NO. CF SHAFTS
c	MC	MAX NO. OF CONNECTIONS FOR ANY POINT
c	MPO	MAX NO. OF OUTSIDE PRESSURE PRCFILES
c	MT P	MAX NO. CF TEMPERATURE PROFILES
C	MFL	MAX NO. OF FLOORS

```
C
C
C
C
C
C
20
C
C
C
C
    AZZ=C
    AMAX=0
    GO 10 1=1.NT
    CO 8 J=1.MC
    61(I,J)=AI(I,J)
    IF(AI(I,J) .GT.AMAX)AMAX=AI(I,J)
    CONTINLE
    DO 9 J=1,MPO
    E2(l,J)=AO( L, J)
    IF(AC(I,J) .GT. AMAX)AMAX=AO(I,J)
    CONTINUE
    COFTINUE
C
C
C
    PARANETER (MM=140,MS=8,MC=9,MFC=2,MTP=2,MFL=25,MB=50)
    CCMMCN NT, P(MM),C(MM,MC),NC(MM),JC(MM,MC),ITS(MS).
    1 FC(MM,MC),PZ(MM,MC),PO(MM,MPO),CO(MM,MPO),F(MM),PFO(MFL,MPO),
    2 FF(NM),FO(MM,MFO),CS(NS),PS(MFL),NS1(MS),NS2(MS),
    3 FSS(MS),N,NS,NPO, ICONV,E,IBUG,AI(MM,MC),AO(MM,MPO),TITSH(MS,5),
    4 NH, F(MFL), IFLOOR(MM),T(MTP,MFL),NFSI(MS),NFS2(MS),IT(MB),NTP
    5,NCC(MM),JOC(MM,MFO),TOUT
    DOUELE PRECISION P.PO.PS
    COMMCN /RUN/IRUN
    CIMENSION E1(MM,MC),B2(MM,MFO)
    NITEF=5000
    IRUN=1
        CALL INPUT TO READ CATA
    CALL INPUT
    E=0.2
    ICS=1
```



```
C
    SPVE AI(I,J) IN BI(I,J) AND FINO
        MAX VALUE OF AI(I.,ゝ)
    IF(ANAX .LT. O.3)GO TO 25
    AZZ=1
    AM=0.2/( (MMAX-0.01)
    EB=0.1*(1.0-AM)
    GO 1E I= 1,NT
    CO 15 J=1,MC
    IF(AI(I,J) .LT. O.1)GO TO 12
    A|( H,J)=AM*AI(I,J)+BB
    COhTINUE
    DO 14 J=1,MPO
    IF(AC(I,J) .LT. O.1)GO TO 14
    AO(I,J)=AM*AO(I,J)+BB
    CONTINUE
    cont inve
        TENPERATURE CORRECTICN
    CALL CCRR
```

```
OO
C CALL INIT TO INITIALIZE PRESSURE ARRAY : P
C
22
    CALL INIT
C
C
C
C
24
C
C
C
c
C
C
C
C
AI(I,J)=B1(I,J)
    DC EE J=1,MPO
    AO(I,J)=B2(I,J)
    CONTINLE
    CALL CCRR
    GO TC 24
        CALL OUT TO UUTPLT SOLUTION
    CALL OUT
    WRITE(6,805)
        stof
C
C
c
&00 FORMAT(/////5X,35(1H1)//5X,
    +35hFAILURE OF MAIN PROGRAM TO CCNVERGE //5X,35(1H1)//)
```


MAIN PFOGRAM

ع01 FORMAT 10X,I5,5X.1IHITERATIONS)

E05 FORMAT (1+1)
END
aHDG•P
SUBROUTINE INPUT•L,1

```
aNBS*PLIB$.SHOW A.INFUT
    SUERCUTINE INPUT
C
C ThIS ROUTINE HEADS AND PRINTS OATA
C
C
ANC INITIALIZES PZ ARRPY
    FARANETER (MM=140,MS=8,MC=9,MFQ=2,MTP=2.MFL=25,MB=50)
    COMMCN /PZZ/ PGZ
    COMMCN /IO/TITLE(18),IOUT,IUNIT,NCOMP(MFL),SNCOMP(MFL)
    COMMCN NT, P(MM),C(MM,MC),NC(MM),JC(MM,MC),ITS(MS),
    1 FC(NM,MC), PZ(MM,MC),PC(NN,MPC),CO(MM,MPO),F(MM), PFO(MFL,MPO).
    FF(NM),FO(MM,MPO),CS(NS),PS(MFL),NS1(MS),NS2(MS),
    FSS(NS),N,NS,NPO,ICONVIE, EUUC,AI(MM,MC),AO(MM,MPU),T ITSH(MS,5),
    4 NH,F(MFL) IIFLOOR(NM),T(MTP,MFL),NFS1(MS),NFS2(MS),IT(ME),NTP
    5,NCC(MM), JOC(MM,MPC),TOLT
    COLELE PRECISICN P,FO.PS
    CHARPCTER PAR }8
    DIMENSION |E(MFL),TT(MFL),PAR(7),CW(MPO),PH(MFL),NZZ(MM)
    CATA FAR/' MM',' MS',' MC','MFO','MTP','MFL',' MB'/
    IBUG=0
RECO AND WRITE PROJECT TITLE
    REAC(5,600)(TITLE(I),I=1,18)
    WRITE(C.EO1)(TITLE(I),I=1,1&)
    REAC GENERAL OATA
        TOLT = OUTSIDE TEMPEFATURE
        IUNIT = 1 FOR SI UNITS
            =2 FOR ENG UNITS
        ICLT = O FOR NO SUMNARY OUTPUT
        OTHERWISE IOUT IS FILE NO. TO
        WHICH SUMMARY OUTPUT IS WRITTEN
    REAC(5.700)TOUT,IUNIT.IQUT
    WRITE(E,411)TOUT, IUNIT,ICUT
    IF(ILNIT.GT. 2 .OR.IUNIT.&LT. 1)GO TO 105
C
C READ FEIGHTS
    NN=O FOR INPUT OF ALL FEIGHTS
    NN=1 FOR CALCULATICN OF HEIGHTS
    READ(5,700)NH,NN
    WRITE(E.412)NH,NN
    IF(NF .LE. MFL)GO TO }8
    IPAR=6
    GO TC 110
    IF(NA -EG. 1)GO TO ST
    READ (5,700)(H(I),I=1,NH)
    WRITE(E,413)(H(I),I=1,NH)
    GC TC S9
    REAC(5,700)H(1),DH
    WRITE(E.41+)H(1),DH
    CO && I=&,NH
```


SUBROUTINE INPUT

e READ (5,700) PGZ.(PFO(J,I),J=1,NH) WRITE(E,418)PGZ, (PFO(J,I), J=1,NH) GOTC 85

REAC(5.700)NPO, NN
URITE(6.417)NPC,NN
IF (NFO •LE. MPO)GO TO SI
$I P A R=4$
GOTC 110
IF(NA EEG. 1)GO TO e\&
READ ALL OUTSIDE PRESSURES
CO $6 \quad 1=1$,NPO

```
IM=I-1
H(I)=F(IM)+DH
```

CALCLLATE OUTSIDE PRESSURES
PATMCS IS ATMUSPRERIC PRESSURE (PA)

REAC 45, 700) Ww, hw, XW, (CW(I), $I=1, N P O)$ WRITE(E, 419)VW,HW, XW, (CW(I), I=1,NPO) IF (ILNIT •EQ. 1)VW=VW*0.2778 IF(ILNIT.EQ. 2)VW=VW*0.4470 PATMCS =1013250 TOQ = 1OLT+273. IF(IUNIT •EQ. 2)TOO=(TOUT+460.)/108 PVA=176.4*VW*VW/TQC

```
    2=-0.03417/T00
    IF(ILNIT.EQ. 2)Z=0.3048*Z
    CWM=CW(1)
    IF(NFO .EQ. 1)GO TO 212
    DO 211 I=1,NPO
    IF(CW(I) -LT.CWM)CWM=CW(I)
211 CONTINUE
212 PGZ=FATMCS*EXP(H(NH)*Z) +CWiN*PVA*((H(NH)/Hw)**(2.*XW))-100.
    CO 210 I=1.NH
    PH(I)=PATMOS*EXP(H(I)*Z)
510 CONTINLE
    OO &E I=1.NPO
    CO 8z J=1,NH
    PFC(J,I)=PH(J)+CW(I)*PVA*((H(J)/HW)**(2.*XW))-PGZ
    CUNTINUE
C
C
C
C
C
C
C
C
C
e5
7
    IF(IT(I) .GT. NTP .OR.IT(I) .LT. 1)GO TO 102
NC(I)=NN
IF(N2 •EQ. O)GU TO 63
C
C
C
    ELILDING DATA INPUT
    NFLS = NO. OF FLOORS IN BUILDING
    IF1 = LOWER FLOOR IN SERIES OF SIMILAR FLOORS
    IF2 = UPPER FLOOR IN SERIES OF SIMILAR FLOORS
    NCC = NO. OF COMPARTMENTS PER FLOOR
    NZ = NO. OF CONNECTIONS TO COMPARTMENTS ON SAME FLOOR
    NA = NO. OF CCNNECTICNS TO COMPARTMENTS ON FLOOR ABOVE
    1=0
    SNCLNF(1)=0.
    REAC(5,700)NFLS
    WRITE(6,420)NFLS
    IF(NFLS.GT. NH)GO TO 106
    REAC(5,700)IF1,IF 2,NOC
    WRITE(6,400)IF1,IF2,NOC
    IF(IF1 .GT. IFE)GO TO 107
    NCOMF(IF1)=NOC
    IFP=1F 1+1
    SNCONF(IFP)=SNCOMP(IF1)+NOC
    CO 1C 12=1,NOC
    |##1
    READ(59700)NZ,NA,NNO,FF(I),IT(I)
    WRITE(\epsilon,401)NZ,NA,NNO,FF(I),IT(I)
    NZZ(I)=NZ
    NN=\Z+NA
    IFLOCR(I)=1F1
    IF(NA .LE. MC)GO TO 111
    IPAR=3
    GO TC 110
    IF(NNO .LE. MPO)GO TO 112
    IPAR=4
    GO TC 110
    INFUT CONNECTIONS TO COMPARTMENTS ON SAME FLOOR
REAC(5,7CO)(JC(I,J),C(I,J),AI(I,J),J=1,NZ)
WRITE(6.402)
MRITE(6,403)(JC(I,J),C(I,J),AI(I,J),J=1,NZ)
```

```
\epsilon2
e 3
C
C
C
CO \(\boldsymbol{\epsilon} \mathbf{Z} \mathrm{J}=\mathbf{1}, \mathrm{NZ}\)
```

```
    JC (\,J)=JC\I,J)+SNCOMF(IF 1)
    IF(NA .EG. O)GOTO &
    INFUT CONNECTIUNS TO CCMPARTMENTS GN FLOOR ABOVE
    NF=N2+1
    REAC(5,700)(JC(I,J),C(I,J),AI(I,J),J=NP,NN)
    HRITE(E,404)
    WRITE(6,403)(JC(I,J),C(I,J),AI(I,J),J=NP,NN)
    DC EE J=NP,NN
    JC(I,J)=JC(I,J)+NCCMP(IF1)+SNCOMP(IF1)
    NCC(1)=NNO
    IF(NNO .EQ. O)GO TO 10
    INFUT CONNECTION TO OLTSIOE
        REAC(5,700)(JOC(I,JJ),CO(I,JJ),AO(L,JJ),JJ=1,NNO)
        MRITE(6,405)
        WRITE(\epsilon,403)(JCC(I,JJ),CO(I,JJ),AO(IrJJ),JJ=1,NNO)
        CO 9 JJ=1,NNO
        j= Joc(I,JJ)
        FO(I.JJ)=PFO(IF1,J)
        CONTINUE
        IF(IF1 .NE. IF2)GO TO 11
        IF(IF1 .EQ. NFLS)GO TO 20
        GO TC 19
            ASIGN CATA FOR FLOORS SIMILAR TO FLOOR IFI
        IFP=IF1+1
        00 17 IFF=IFP,IF2
        NCOMF(IFF)=NOC
        IFFP=IFF+1
        SNCONP(IFFP)=SNCOMP(IFF)+NOC
        CO 1\epsilon IZ=1,NOC
        I= \1-
        I 1= | + ONCOMP( F=1)
        IFLOCR(I)= IFF
        FF(I)=FF(II)
        IT(I)=IT(II)
        NN=NC(11)
        NNO=ACO(II)
        NC( I)=NN
        NCC(I)=NNO
        IF(IFF.NE.NFLS)GO TO 23
        NN=NZZ(I1)
        NC(I)=NN
    IF(NN .EG. O)GC TO 14
        DO 12 J=1,NN
        C(I,.,)=C(11,J)
        A|(I,J)=AI(I1,J)
        JC(1,J)=JC(I1,J)+SNCOMP(IFF)-SNCOMP(EF1)
        cOhTINUE
        IF(NNO .EQ. O)GO TO 16
        DO 1E JJ=1,NNO
        JOC(1,JJ)=JOC(11,JJ)
        J=JOC(I,JJ)
```


SUBROLTINE INPUT

```
    CO(I,JJ)=CO(I1.JJ)
    AO(I,JJ)=AO(II,JJ)
    FO(I,JJ)=PFO(IFF,J)
    CONTINLE
    CONT INUE
    IF(IF2 .EQ. NFLS)GC TO 20
    CONTINUE
    GO TC 7
    N=I
    N2=N
    IF(N .LE. MB)GO TO 114
    IPAR=7
    GO TC 110
        SHAFT [ATA INPUT
114 REAC(5,700)NS
    IF(NS .LE. MS)GC TC 113
    IPAF=2
    GO TC 110
    DO 1CO IS=1.NS
    REAC(5,603)(TITSH(IS,I),I=1,5)
    WRITE(G,406)(TITSH(IS.I),I=1,5)
    READ(5,700)CS(Id),NFS1(IS),NFS2(IS),ITS(IS)
    HRITE(E.407)CS(IS),NFSI(IS),NFS2(IS),ITS(IS)
    N1=Nz_+1
    N2=N1+NFS2(IS)-NFS1(IS)
    NS1(IS)=N1
    NS2(IS)=N2
    IFF=NFSI(IS)-1
    REAC (5,700)NNO,FFF,JCP,CC,AA
    WR ITE(6,408)NNC,FFF,JCP eCC,AA
    IF(NNO .EQ. O)GC TO 21
    REAC(5,7CO)(JOC(N1,J),CO(N1,J),AO(N1,J),J=1,NNO)
    WRITE(6,403)(JOC(N1,J),CO(N1,J),AO(N1, 3),J=1,NNO)
    DO 24 I=N1,N2
    NC(I)=1
    NCC(I)=NNO
    IFF=1FF+1
    IFLOCR(I)=IFF
    IF(IFF.GT.NFLS)GO TO 25
    FF(I)=FFF
    IF(JCP .ET. NCOMP(IFF))GO TO 25
    JC(I,1)=JCP+SNCOMP(IFF)
    C(I, 1) =CC
    AI (I,1)=AA
    IF(NNO.EQ. O)GO TC 24
    CO 2& J=1.NNO
    JJ=JCC(N1,J)
    FO(I,J)=PFO(IFF,JJ)
    JOC(I,J)=JJ
    CO(I,J)=CO(N1,J)
    AO(I,J)=AO(N1,J)
    CO TC 24
    NC(I)=0
    CO TC 26
    continue
C
```

```
\(\operatorname{CO}(\mathrm{I} \cdot \mathrm{JJ})=\mathrm{CO}(\mathrm{I} 1 \cdot \mathrm{JJ})\)
\(A O(I, J J)=A O(I 1, J J)\)
FO(I.JJ) \(=\) PFO(IFF,J)
CONTINLE
IF(IF2.EQ. NFLS)GC TO 20
CONTINUE
CO TC 7
\(N=1\)
IF(N •LE. MB)GO TO 114
IPAR=7
GO TC 110
SHAFT [ATA INPUT
REAC (5.700)NS
IF(NS .LE. MS)GC TC 113
GO TC 110
1S=1.NS
REAC (5,603)(TITSH(IS,I), I=1,5)
WRITE(E, 406)(TITSH(IS•I), \(1=1,5)\)
HRITE(E.407)CS(IS),NFSI(IS),NFS2(IS),ITS(IS)
\(N 1=N \bar{C}+1\)
N2=N1+NFS2(IS)-NFS1(IS)
NS 1 (IS) \(=N 1\)
NFFAFSI
WR ITE (6, 408)NNC,FFF,JCP eCC, AA
IF (NNO .EQ. O)GC TO 21
REAC (5,7CO)(JOC(N1,J),CO(N1,J),AO(N1,J),J=1,NNO)
WRITE(6, 403)(JOC(N1, J), CC(N1,J), AO(N1, 3), J=1, NNO)
N1,N2
NCC(I)=NNO
IFF=1FF+1
(FOCR \((1)=1 F F\)
FF(I)=FFF
JC (I, 1) = JCP + SNCOMP(IFF)
\(C(I, 1)=C C\)
\(A I(1,1)=A A\)
IF(NAO •EQ. O)GO TC 24
CO 2 2 \(J=1\).NNO
JJ=JCC(N1,J)
JOC(I, J) = JJ
CO (I,J) \(=\operatorname{CO}\left(\mathrm{N}_{1}, \mathrm{~J}\right)\)
\(A O(I, J)=A O(N 1, J)\)
OTC 24
GO TC 26
continue
```


subrcutine input

```
n
C
    EXCEPTIONS TO gEnERAL SHAFT INPUT
    NAN = NO. OF EXCEPTIONS
    KE = 1 FOR FF EXCEPTICN
    KE = 2 FOR OUTSIDE CONNECTION
    KE = 3 FOR INTERNAL CCNNJECTIGN
    READ(5.700)NNN
    IF(NAN .EQ. O)GO TO 100
    OO 6S IK=1,NNN
    REAC(5,700)KE,IFF
    WR TEE(6,409)KE,IFF
    I=NSI(IS)+IFF-NFSI(IS)
    IF(KE .EQ. 1)GO TO 41
    IF(KE .EQ. 2)GO TO 42
    IF(KE .EG. 3)GC TO 51
    GO TC 104
    REAC(5,700)FF(I)
    WRITE(6,410)FF(I)
    GO TC EQ
    REAC(5,700)J,CCC,AAO
    WRITE(6,405)
    HRITE(6,403)J,CCO,AAO
    NNC=ACO(1)
    IF(NNC.EQ. O)GO TO 44
    CO 4 E K=1,NNC
    IF(JCC(I.K) .EQ. J)GO TO 46
    CONTINUE
43 CONTINUE
    NCO(1)=NJO
    PO(I,NJO)=PFO(IFF,J)
    JOC(1,NJO)=J
    CO(I,NJO)=CCO
    AO( L,NJO)=AAO
    GO TC ES
    NJO =K
    KK=K+1
    IF(CCO .NE.O)GO TO 47
    NJC=NNC-1
    NCC(1)=NJO
    IF(NJO .EQ. O)GO TO 69
    DO 4& K=KK,NNC
    KM=K-1
    FO( [,KM)=PO( LK)
    JOC( |,KM)=JOC( l,K)
    O(I,KM)=CO(IeK)
    AO(I,KN)=AO(I,K)
    GO TC 69
    READ(5,700)JCP,CC,AA
    WRITE(E,402)
    MRITE(E,403)JCP,CC,AA
    J=JCF+SNCOMP(IFF)
    NN=NC(I)
    IF(NA .EG. O)GO TO 53
    DO 52 k=1,NN
    IF(JC(I,K) .EQ. J)GO TO 55
    CONT INUE
    IF(CC .NE. O.)GC TO 53
    WRITE(E,520)।S,KE,IFF
```

```
        GO TC ES
E3 NJ=NN+1
    NC(I)=NJ
E4 JC(I,NJ)=J
    C(I,NJ)=CC
        A | ( |,NJ) =A A
        GO TC 69
    NJ=K
        KK=K+1
        IF(AA .NE. O.)GO TO 54
        NJ=NA-1
        NC(|)=NJ
        IF(NJ.EG. O)GO TO 65
        CO 61 K=KK,NN
        KM=K-1
        JC(I,KN)=JC(I,K)
        C( I,KM)=C(I,K)
\epsilon1 A|(I,KM)=AK G,K)
E9 CONTINLE
100 COhTINLE
        NT=N 2
        IF(NT .LE. MM)GO TO 160
        IPAR=1
        GCl TC 110
C
C FRINT OUTSIDE TEMPERATURE
C
160 WRITE(E,601)(TITLE(|),I=1,12)
    IF(ILNIT .EQ. 1)WRITE(6,800)TOUT
    IF(ILNIT .EQ. 2)WRITE(E,5CO)TOUT
    IF(ILNIT .EQ. 2)TOUT=(TOLT-32.)/1.8
    TOLT = TCUT +273.
    PRINT rEIGHT AND TEMFERATURE PROFILES
        IF(ILNIT •EQ. 1)WRITE(6,811)(IP,IP=1,NTP)
        IF(ILNIT .EQ. 2)WRITE(G,511)(IP,IP=1,NTD)
        WRITE(\epsilon,8 13)
        CD 3C 1FF=1,NH
        WRITE(E,812)H(IFF),(T(IF,IFF),IP=1,NTP)
            CCNVERT TEMPERATURES TO DEG K
        DO 3ミ IFF=1,NH
        CO 3ミ IF=1,NTP
        IF(ILNIT.EQ. 2)T(IP,IFF)=(T(IP,IFF)-32.)/1.8
        T(IF,IFF)=T(IP,IFF)+273。
C
    PKINT OUTSIDE PRESSURE FFOFILES
        IF{ILNIT •EQ. 1)GOTO 79
        WRITE(E,514)(IP,IP=1,NPC)
        WRITE(E,&13)
        LO 7E IFF=1,NH
        DO 77 J=1,NPO
        PFO(1FF,J)=PFU(IFF,J)/248.8
        WRITE(E,515)H(IFF),(PFO(IFF,J),J=1,NPO)
        CO 7E J=1,NPO
```


SUBROUTINE INPUT

```
7 0
    PFC(IFF,J)=PFO(IFF,J)*24&.8
76 CONT INUE
GO TC e3
79 WRITE(E,814)(IP,IP=1,NPO)
WRITE(E,&13)
OO 31 IFF=1,NH
WRITE(E,&15)H(IFF),(PFO(IFF,J),J=1,NPO)
CONTINLE
    CCFRECT FOR CONNECTICNS ONLY INPUTED ONCE
    OO \inC I=1,NT
    NN=NC(1)
    IF(NA .EG. O)GO TO 60
    CO 5\varepsilon JJ=1,NN
    J=JC(1 sJJ)
    IF(J.EQ. O)GO TO 58
    NNJ=NC(J)
    IF(NNJ.EEQ. O)GO TO 57
    DO 5E IA=1,NNJ
    IF(JC(J,IA) .EG. I)GO TO 58
56
E7
    CON7 INLE
    NNJ=ANJ+1
    IF(NAJ.LE. MC)GO TO 5s
    IPAR=3
    GO TC 110
    NC(J)=NNJ
    JC(J,NNJ)=1
    C(J,^NJ)=C(IrJJ)
    AI(J,NNJ)=AI( IfJJ)
    IF(J.GT. N .OR. |.GT. N)GO TO 58
    PZ(J,NNJ)=-PZ(I,JJ)
    CONT INUE
    CONTINLE
    CCRRECT UNITS
    IF(ILNIT •EQ. 2)CALL UNITS
C INITIALIZE PZ FOR BUILO COMPARTMENTS
C
\epsilon7 CO 4C I=1,N
    NN=NC(I)
    IF(NA .EG. O)GO TO 40
    IA=I1(I)
    IFI=IFLOCR(I)
    CO 3E JJ=1,NN
    J=JC(1.JJ)
    IFJ=IFLOCR(J)
    IF(IFI .EQ. IFJ)GO TO 3e
    IB=IT(J)
    TEMPA=0.5*(T(IA,IFI)+T(IE,IFJ))
    PZ(I,JJ)=3462.*(H(IFJ)-H(IFI))/TEMPA
    CONTINUE
    CGNT INLE
    INITIALIZE PZ FOR SHAFTS
```

```
        OC EC IS=1,NS
        N1=NS1(IS)
        N2=N\leq2(IS)-1
        ITT=ITS(IS)
        OC 4E I=N1,N2
        IF|IFIOCR(I)
        IFJ=IF|-
        TEMPA=0.5*(T(ITT,IFI)+T(ITT,IFJ))
        PZ(1,1)=5462.*(H(IFJ)-H(IFI))/TEMPA
        CONTINLE
EO CONT INLE
<
CHECK SHAFT CCNNECTIONS
    CO 240 IS=1,NS
        N1=N\leqslant1(IS)
        N2=N\leq2(IS)
        CO 2ミ9 I=N1,N2
        NN=NC(1)
        IF(NM .EG. O)GO TO 23S
        CO 2\Xi6 J=1.NN
        JJ=JC(I,d)
        IF(IFLCOR(I) .NE. IFLOOR(JJ))GO TO 103
236 CONTINLE
239 CONTINUE
240 CONTINLE
    gETLRN
C
C
C DIAGNOSTIC OUTPUT
C
102 WRITE(E,902)I.IT(I)
        CC TC 109
103 4R TE E(E,903)
        GO TC 109
104 WRITE(E,904)
        CO TC 109
105 WR 1HE(E.905)
        GO TC }10
106 WRITE(E,906)
        CO TC }10
1C7 KRITE(6,S07)
        GO TC 109
        WRITE(E.S 10)PAR(IPAR)
110
C
C
109 WRITE(E.S40)
    DO 7C I=1,N
    NN=NC(I)
    IF(NN .GT. O)GO TO 180
        WRITE(E.941)I,IFLOOR(I),IT(I),FF(I)
        GO TC 182
180 WRITE(E,S42)I,IFLOCR(I),IT(I),FF(I),JC(I,1),C(I,1),AI(I,1)
        IF(NN EEG. 1)GC TO 182
        WRITE(E,S4\Xi)(JC(I,J),C(I,J),AI(I,J),J=2,NN)
    182 NNC=NCE(I)
        IF(NAO .EQ. O)GO TC }7
```

WRITE(E, ¢44)(JOC(I,J),CO(I,J),AO(I,J),J=1,NNO) CONTINLE

```
PRINT CORRECTED SHAFT INPUT OATA
```

Co 8 C IS $=1$,NS
WRITE(6.816)(TITSH(IS,I),I=1,5)
CRITE(E, عO6)IS, CS(IS), ITS(IS)
$N 1=N \leqslant 1(I S)$
N2 $=\mathrm{N} \leqslant 2$ (IS)
WRITE(E.807)
CO 7E I=N1.N2
$N N=N C(1)$
IF (NA .GT. O)GU TO 72
WRITE(E, 801)IFLCOR(I), FF(I)
COTC 74
WRITE(C,80B)IFLCOR(I),FF(I),JC(Is1),C(L1),AI(I,1)
IF(NA EEG. 1)GO TO 74
WRITE($\epsilon, 809)(J C(I, J), C(4, J), A \llbracket(1,3), J=2, N N)$
NNC=NCC(I)
IF (NAO •EQ. O)GO TO 75
WRITE(E, 810)(JOC($1, J), C O(I, J), A O(I, J), J=1, N N O)$
CONTINLE
CONT INLE
STOP
FORMAT STATEMENTS
FORMAT (5X, 5HIF1 $=13,7 \mathrm{H}, \mathrm{IF} 2=, 13.7 \mathrm{H}, \mathrm{NOC}=.13$)

$+7 \mathrm{kr} \quad 1 \mathrm{~T}=\mathbf{1 3} \mathrm{I}$
FORMAT $(5 X, 25 H C O N N E C T I O N$ ON SAME FLOOR)
FORNAT (5X,3HJ =, I3,5H, C =, F10.3.5H, A =, F9.4)
FORMAT (5X,26HCONNECTION TO FLOOR ABOVE)
FORMCT ($5 \times, 22$ HCONNECTION TO OUTSIOE ?
FORMAT (5X,5A4)
FORMAT ($5 \times, 4 \mathrm{HCS}=, F 9,1,8 \mathrm{H}, \mathrm{NFSI}=, 13,8 \mathrm{H}, \mathrm{NFS} 2=, 13,7 \mathrm{H}, \mathrm{ITS}=, 13$)
FORMAT (5X, 5HNNO =, I3.7H, FFF =, F8.1,5H, $3=13.5 H, C=, F 10.3$,
+ EH. $A=, F 9.4)$
FORMAT (5X,4HKE =, I3, 7H, IFF =, I3)
FORMAT $(5 \times, 4 H F F=, F 8.1)$
FORMLT ($5 \times, 6 \mathrm{HTOUT}=, F 6.0$, SH, IUNIT $=, I 3,8 \mathrm{H}, \mathrm{IOUT}=, I 3$)
FORMAT $(5 X, 4 H N H=, I 3,6 H, N N=, 13)$
FORMAT (5X, 7 HHEIGHTS /(10FE.2))

FORMAT $(6 x, 5 H N T P=, I 3)$
FORMAT (5X, 2OHTENPERATURE PROFILE /I5, (10(I4.F7.1)))
FOFMAT $(5 X, 5$ HNPO $=, 13,6$. $\mathrm{HN}=$, I 3)
FORMAT ($5 \mathrm{X}, 5 \mathrm{HPGZ}=, \mathrm{F} 12.1 / 17$ HPRESSURE PROFILE /(10F12.1))
FORMAT ($5 \times, 4 \mathrm{HVW}=, F \in .1,6 \mathrm{H}, \mathrm{HW}=, F 6.1 .6 \mathrm{H}, \mathrm{XW}=, F 4.2 .6 \mathrm{H}, \mathrm{CW}=0$
$+(10 F 4.2)$)
FORMAT ($/ 5 X$, 6HNFLS $=, I 3$)
FCFMAT (//10X,2OHOUTSIDE TEMPERATURE ,F6.1.2HF)
FORMAT (///5X,GHFEIGHT. $5 X$, 29HTEMPERATURE PROFILES (DEG F) /
$+7 X, 2 \vdash F T, 3 X, 1916)$
FOFMAT (/////5X, GHHEIGHT , 5X, 26 HOUTSIDE PRESSURE PROFILES
111 (IN H2O) /7X,2HFT.3X.8110)
FORMAT (F11.2,3X,8F1003)

```
t20
    FORMAT(///5X.15FERROR IN SHAFT ,I2.15HEXCEPTION KE = .I2,
    + 2X,EHFLOOR , 13//)
€00 FORNAT(18A4)
€01 FORMAT(1F1///10X,18A4///)
e03
700
€00
\varepsilonO1
€06
807
808
ECS
E10
\varepsilon11
E12
€13
e14
E15
816
e17
SO2
FORMAT(// 10X
S40
    FORMAT(IOX,15HBUILOING DATA //34X,11HTEMPERATURE ,4X,5HFIXED,
    1 12X,2(11X,4HFLOW)/10X,11HCOMPARTMENT ,4X,5HFLOOR,6X,7HPROFILE.
    2 6X,4HFLOW,5X,1 IHCCNNECTION TO , 4X,11HCOEFFICIENT, 4X,
    3 8r AREA )
S41 FORMAT(/4X.3I12,F14.1)
S42 FORMIT(/4X,3I12.F14.1,4X,5HFOINT,I7,F1102,F15.4)
C43 FOFMAT(58X,5HPCINT,I7,F11.2,F15.4)
¢44 FORMAT(58X,9HOUTSIDE ,I3,F11.2,F1504)
    ENC
```

aNBS*PLIES.SFCW A. CORR
SUERCUTIN€ CORR
C
PARANETER (MM=140,MS=8,MC=9,MFO=2,MTP=2,MFL=25,MB=50)
CCMMCN /CORR/C1(MM,MC),C2(MM,MC),CO1(MM,MPO),CO2(MM,MPO)
COMMCN NT, P(MM),C(MM,MC),NC(MM),JC(MM,MC),ITS(MS),
1 FC(NM,MC),PZ(MM,MC),PO(MM,MPO),CO(MM,MPO),F(MM),PFO(MFL,MPO),
FF(MM),FO(MM,MFO),CS(MS),PS(MFL),NS1(MS),NS2(MS).
3 FSS(MS),N,NS,NPO,ICONV,E,IBUG,AI(MM,MC),AO(MM,MPO),TITSH(MS,5),
4 NH,H(NFL), IFLOOR(MM),T(MTP,MFL),NFS1(MS),NFS2(MS),IT(ME),NTP
5 ,NCC(NM),JOC(MN,MFC),TOUT
COUELE PRECISION P,FO,PS
CO 1E I=1,NT
C
C
C
PATMC S=101325.
EB=1COO.*SQRT(2.*PATMOS/287.)/1.2
NN=NC(I)
IF(I .GT.N)GO 70 1
IP=IT(I)
CO TC 4
CO 2 IS=1,NS
IF(I -LE.NS2(IS) .ANC. |.GE. NSI(IS))GO TO 3
COhTINCE
WRITE(E. 700)
STOP
IP=11S(IS)
IFF=IFLOOR(I)
T1=T(IF,IFF)
IF(NA .EQ. O)GO TO 10
CO 9 J=1,NN
JJ=JC(1,J)
C1(I,J)= EB*C(|sJ)*AI(I,J)/SORT(T1)
IF(JJ.GT. N)GO TO 5
IP=IT(JJ)
GO TC 8
CO \in IS=1,NS
IF(JJ -LE.NS2(IS) •ANO. JJ .GE. NSI(IS))GO TJ 7
e CGNTINLE
WRITE(E,700)
STOF
IP=ITS(IS)
IFF=1FLOCR(JJ)
T2=T(IP,IFF)
C2(I,J)=8B*C(H.J)*AI(I,J)/SQRT(T2)
CONT INCE
CERRECT CO
ANC=ACC(I)
IF(NNC .EQ. O)GC TO 12
CO 11 J=1,NNC
CO1(I,J)=BB*CO(I,J)*AO(| sJ)/SGRT(T1)

```

\section*{SUBROUTINE CORR}

```

幺NBS*PLIE\&.SHCM A.INIT
SUEFCUTINE INIT
C
C
C
C
PARANETER (MM=140,MS=8,MC=9,MFO=2,MTP=2,MFL=25,MB=50)
PAFANETER (MEP =ME+1)
COMMCN/CORR/C1(MM,MC),C2(MM,MC),CO1(MM,MPO),CO2(MM,MPO)
COMMCN NT, P(MM),C(MM,MC),NC(MM),JC(NM,MC),ITS(MS).
1 FC(NM,MC),PZ(MM,MC),PC(NM,MPC),CO(MM,MPO),F(MM),PFO(MFL,MPO).
2FF(MM),FO(MM,MPO),CS(NS),PS(MFL),NS1 (NS),NS2(MS).
FSS(MS),N,NS,NPO,ICONV,E,IEUG.AI(MM,MC),AO(MM,MPO),TITSH(MS,5),
4 NH,F(MFL), IFLOOR(MM),T(MTP,MFL),NFS1(MS),NFS2(MS), IT(ME),NTP
5,NCC(NM),JOC(MM.MFC),TOUT
COUELE PRECISICA F.FQ.FS
CIMENSION SC(MS), SCO(MS)
CONMCN /MAT/A(ME.MEP),XX(NB).NNN
COUELE PRECISION A,XX
NNN=\
C
C CALCULATE AVERAGE OUTSIDE PRESSURE
C
SUM=C.
CO 1C J=1,NPO
CO 1C I=1,NH
10SUM=SUM+PFO(I, J)
FA=SLM/(NPO*NH)
C
C
C
C
C
C
C CALCULATE SHAFT PRESSURE CIFFERENCE D DP
C
SUN=C
SUMN=0.
N1=N@1(|S)
N2=NS2(IS)
CO 1\& I=N1,N2
SUM=SUM+FF(I)
NN=NC(I)
IF(NA \&EG. O.)GO TO 16
DO 1E J=1,NN
SUMN=SUMA+C1(I,J)
CONT INLE
SC(IS)=SUMN
NNC=ACC(I)
IF(NNO .EQ.O)GO TO 18
DO 17 J=1.NNO
SUMN = SUMN+CO1 (I,J)
CONT INLE
SCO(IS)= SUMN-SC(IS)
18 CONTINLE

```
```

 CP2=SUN/SUMN
 SIGM=1.
 IF(CF2 .LT. O.)SIGN=-1.
 DP=S1GN*(SIGN*DP2)**2
 C
C ES'IIYATE PRESSURE AT BCTTOM OF SHAFT . PBOT
<
c
C
NP1=A+1
OO 50 I=1,N
NN=NC(1)
SUMII=0.
SUMNF=O.
IF(NA .EG. O.)GC TO 42
CO 4C JJ=1.NN
J=JC(I,JJ)
IF(J.ET.NIGO TO }3
A(I,.)=C1(I,JJ)
SUM II=SUMII-C1(\&JJ)
SUMNF=SUMNP-C1(I,JJ)*PZ(I,JJ)
GO TC 40
SUMII=SUMII-C1(I,JJ)
SUMNF=SUMNP-C1(I,JJ)*F(J)
CONT INUE
NNC=NCC(1)
IF(NNO .EQ. O)GO TO 46
DO 4E K=1,NNO
SUMII=SUMII-CO1(I,K)
SLMNF=SUMNP-COI(I,K)*FO(I,K)
A(I, 1)=SUMII
A(I,NF1)=SUMNP-FF(I)
CONT INUE

```

\section*{SUBROUTINE INIT}
```

C WRITE MATRIX
C
IF(IEUG .EQ. O)GO TO 84
WRITE(G,802)
CO E2 I=1,N
e2
C
C
C
e4
C
C
C
IF(IEUG .EQ. O)GO TO 8S
WRITE(E,800)
WRITE(E,\&OI)(I,XX(I),I=1,N)
NN=NE1(1)
WRITE(E, \&OI)(I,P(I),I=NN,NT)
C
C
C ASSIGN EUILDING PRESSURES
C
\epsilon9 DO SC I=1.N
so P(I)=XX(I)
FETURN
800 FORMAT(///8(6X,1HI,4X,3HP)/)
€01 FORMAT(8(17,F7.1))
€02 FORMAT(///10X,20HMATRIX COEFFICIENTS /)
EC3 FCRMAT(10X,11F11.1)
ENC
arDG.P SUBROUTINE BLDGP.L.1

```
```

ANBS*PLIE\$.SHOW A.BLDGP
SUERCUTINE BLDGP
C
C
C
C
C
C
C
FARANETER (MM=140,MS=8,MC=9,MPC=2,MTP=2,MFL=25,MB=50)
COMNCN NT, P(MM),C(MM,MC),NC(MM),JC(MM,MC),ITS(MS).
1 FC(MM,MC),PZ(MM,MC),PO(MM,MPO),CO(MM,MPO),F(MM),PFO(MFL,MPO),
2 FF(NM),FO(MM,MPO),CS(NS),PS(MFL),NS1(NS),NS2(MS),
3 FSE(MS),N,NS,NFO,ICONV,E,IBUG,AI(MM,MC),AO(MM,MPO),TITSH(MS,5),
4 NH,H(NFL),IFLOQR(MM),T(MTP,MFL),NFS1(MS),NFS2(MS),IT(ME),NTP
5 ,NCC(MM), JOC(MM,MFC),TOUT
COUELE PRECISION P,FO,PS,PI
IF(IEUG.GT. O)WRITE(6.806)
ITM=100
ICONV=0
CO 1E I=1,N
C
C CALCLLATE NET FLOW ,FI, INTO POINT I
FI=PFLCW(I,P(I))
C
C CHECK YAGNITUDE OF F!
IF(AES(FI) .LT.E)GO TO 15
ICCNV=ICONV+1
C
C SET LP PARAMETERS FOR ITERATION
CP=1.0
IPHASE=1
CPI=C o
EE=0.2*AES(FI)
IF(EE LLT. E)EE=E
SIGN=1
IF(FI .LT. O.)SIGN=-1
IK=0
IF(IEUC.GT. O)WRITE(6.802)
C
C itERATION to RECUICE MAGNItUDE OF FN
2
C
C NEW ESTIMATE OF PRESSURE .PI. AT POINT |
PI=F(I)+SIGN*DF
C
C CALClLATE NET FLOW,FA. into point | USING PI
FN=FFLCW(I.PI)
IF(IEUG.GT.O)WRITE(6.804) LIK,FI,FN,FP,DPI,DP,DPP,PI,IPHASE
C
C CHECK YAGNITUDE OF FN
IF(AES(FN) .LT. EE)GO TO 10
C
C CFECK NUMBER OF ITERATIONS
IF(IK .GT. ITM)GO TO 25
C
C CHECK fHASE

```

\section*{subfoutine eldgp}
```

 IF(IFHASE .EQ. 2)GO TO 6
 C
C CFECK FOR TRANSITION FROM PHASE 1 TO PHASE 2
IF(FI*FN .LT. O.)GC TO 4
C
C PHASE 1
CPI=CF
CP=5.0*DP
FI=FN
GO TC 2
C
C FHASE 2
IPHASE=2
GO TC 9
\epsilon IF(FI*FN.GT. O.)GO TO 8
C NEW CP EETWEEN DPI AND DP
S CPP= LP
FP=FN
CP=DFI+(CPP-OPI)*FI/(FI-FN)
GO TC 2
C
C NEW [P EETWEEN CP AND CFF
FI=FN
EPI=CP
CF=DFI+(CPP-DP |)*FN/(FN-FP)
GO TC 2
P(I)=PI
15 CONT INUE
getlign
WRITE(E,800)
STOF
C
C FORNAT STATEMENTS
C
E00 FORMAT(///10X,20(1H*)///10X.22HEXCESSIVE ITERATIONS
+ 10X,8rIN BLDGP ///10x,20(1H*)//////)
e02 FORMAT(//11X,1HI, 2X,2H1T,12X,2HFI, 13X,2HFN,13X,2HFP, 12X,3HDP Is
+13X,\&\&CP,12X,3FDPP,13X,2HPI,3X,5HPHASE /)
\varepsilon04 FORMAT (8X,2I4,3E15.4,4F15.6.15)
\epsilon06 FORMAT(///10X,6HBLDGF)
END
arDG.P SUBROUTINE SHAFTP.L.1

```
```

aNES*PLIE\$.SHOW A.SHAFTF
SUERCUTINE SHAFTP
C
C
C THIS FCLTINE CALCULATES STEACY STATE FRESSURES
C
C
C
PARAMETER
M=140,MS=\varepsilon,MC=9,MFC=2,MTP=2,MFL=25,MB=50)
COMNCN NT, F(MM),C(MM,MC),NC(MM),JC(MM,MC),ITS(MS),
1 FC(NM,MC),PZ(MM,MC),PO(MM,MPC),CO(MM,MPO),F(MM), PFO(MFL,MPO),
2 FF(NM),FO(MM,MPO),CS(MS),PS(MFL),NS1(MS),NS2(MS).
3 FSS(NS),N,NS,NPO,ICONV,E,IBUG,AI(MM,MC),AO(MM,MPO),TITSH(MS,5),
4 NF,H(NFL), IFLCCR(MM),T(MTF,NFL),NFSI(MS),NFS2(MS), IT(MB),NTP
5 , NCC(MM), JOC(MM,MPQ), TOUT
COLELE PRECISION P,FO,FS,PI
IF(IEUC.GT. O)WRITE(\sigma.\&OE)
ITM=100
ICCNV=0
CO 15 I=1,NS
C
C CALCLLATE NET FLOW, FI, INTC PCINT I
M1=N@1(I)
FI=SFLCW(I,P(NI))
C
C CHECK NAGNITUDE OF FI
IF(AES(FI) \<.E)GO TO 15
ICONV =ICCNV+1
C SET LF PARAMETERS FOR ITERATICN
CP=1.0
IPHASE=1
CPI=C.
EE=0.2*ABS(FI)
IF(EE -LT.E)EE=E
SICN=1
IF(FI \<.OO)SIGN=-1
IK=0
IF(IEUG.GT.O)WRITE(6.802)
C
c ItERATICA tO RECUICE MAGNItUDE OF FN
2 IK=IK+I
C
C NEW ESTIMATE OF PRESSURE •PI, AT BOTTOM OF SHAFT I
PI=F(N1)+SIGN*OP
C
C CALCULATE NET FLOW,FN. INTO SHAFT IUSING PI
FN=SFLOW(H,PI)
IF(IEUG.GT.O)WRITE(6,804)I,IK,FI,FN,FP,DPI,DP,DPP,PI,IPHASE
C
C CHECK YAGNITUDE OF FN
IF(AES(fN) •LT. EE)GO TO 10
C
C CHECK NUMBER OF ITERATIONS
IF(IK .GT. ITM)GO TO 25
C
C CHECK FHASE

```
```

 IF(IFHASE .EQ. 2)GO TO 6
 C
C CFECK FOR TRANSITICN FROM PHASE 1 TO PHASE 2
IF(FI*FN •LT. O.)GO TO 4
C
C FHASE 1
DFI=CP
CP=5.0\#DP
FI=FA
CO TC 2
C
C FHASE 2
4 IPHASE=2
GO TC S
e IF(FI*FN.GT.O.)GO TO 8
C
C NEW CP BETWEEN CPI AND OP
S CFP=CP
FP=FN
DP=DFI+(CPP-DPI)*FI/(FI-FN)
CO TC 2
C
C NEW [P BETWEEN DP AND DPP
E FI=FA
CPI=CP
DP=CFI+(OPP-DPI)*FN/(FN-FP)
CO TC 2
N2=\ \2(I)
CO 11 IF=N1,N2
II=IF+I-NI
F(IF)=PS(II)
C CONTINUE
gETLFN
WRITE(\epsilon,800)
STOP
C
C FORYAT STATEMENTS
\&00 FORMAT(///10X,20(1H*)///10X,22HEXCESSIVE ITERATIONS
+ 10X,9+IN SHAFTP ///10X,20(1H*)///////
E02 FORMAT (//11X, 1HI, 2X,2HIT,12X,2HFI,13X,2HFN,13X,2HFP,12X,3HDPI,
+13X,2HCP,12X,3HDPP,13X,2HFI,3X,5HPHASE /1
€04 FORMAT(8X,2I4,3E15.4,4F15,6,IE)
€06 FO\&MAT(///10X,GHSHAFTP)
END
@\vdashDG,P SUBROUTINE PZAO •L.\&

```
```

aNBS*PLIE\$.SHO% A.PZAO
slefcutine pZad
C
C THIS ROUTINE CORRECTS PZ TERMS FOR PRESSURE
C
FARAMETER (MM=140,MS=8,MC=9,MFO=2,MTP=2,MFL=25,MB=50)
CONNCN NT, P(NM),C(MM,MC),NC(MM),JC(MM,MC),ITS(MS),
1 FC(NM,MC), PZ(MM,MC), PG(NM,MPO), CO(MM,MPO),F(MM), PFO(MFL,MPO),
2 FF(NM),FO(MM,MPO),CS(MS),PS(MFL),NS1(MS),NS2(MS),
3 FSS(MS),N,NS,NFO,ICONV,E,IEUG,AI(MM,MC),AO(MM,MPO),TITSH(MS,5),
4 NH,F(NFL), IFLOCR(NM),T(MTP,MFL),NFSI (MS),NFS2(MS), IT(MB),NTP
5,NCC(MM),JOC(NN,MPO),TOUT
CONMCN /PZZ/ PGZ
CQUELE PRECISION P,FU,PS
IF(IEUG.GT. -2)GOTO 1
WRITE(E,800)
CO 2 I=1,N
NN=NC(1)
IF(NA .EG. O)GO TO 2
WRITE(E, 801)(I,J,PZ(I,J),J=1,NN)
CONTINLE
NP1=N+1
WRITE(E,802)(IL,PZ(IL,1),IL=NP1,NT)
CO 1C I=1,N
NN=N(C(I)
IF(NA .EG. O)GO TO 10
IA=IT(1)
IFI = IFLOCR(I)
DO \& JJ=1,NN
J=JC(I,JJ)
IFJ=IFLOCR(J)
IF(IFI -EQ. IFJ)GO TO 8
IE=IT(J)
TEMPA=0.5*(T(IA,IFI)+T(IB,IFJ))
FAVE=0.5*(P(I)+P(J))+PGZ
PZ(I,JJ)=(0.03416*PAVE/TEMPA)*(H(IFJ)-H(IFI))
CONTINUE
10 CONTINLE
CO 20 IS=1,NS
N1=NS1(IS)
N2=N\leqslant2(IS)-1
ITT=1TS(IS)
CQ 1E I=N1,N2
IFI=IFLOQR(I)
IFJ=IFI+1
TEMPA=0.E*(T(ITT,IFI) +T(ITT,IFJ))
J=I +1
PA=0.5*(P(I)+P(J))+PGZ
PZ(I,1)={0.0341\in*PA/TEMPA)*(H(IFJ)-H(IFI)}
CONTINLE
RETUFN
FORMAT(/10X.1OHINITIAL FZ /)
FORMAT(10X,3HPZ(,I2.1H,I2.4H)=,F12.4)
FOFMAT(1OX,3HPZ(,I2,6H,1):,F12.4)
FCFMAT(/10X,11HADJLSTED PZ /)
END

```
```

aNES*PLIE\$.SHOW A.OUT
SUEFCLTINE OUT
C
C
C
C
C
C
PAFANETEF (MM=140,MS=8,MC=9,MPC=2,MTP=2,MFL=25,MB=50)
COMMCN /CORR/C1(MM,MC),C2(MM,MC),CO1(MM,MPO),CO2(MM,MPO)
COMMCN /IO/TITLE(18),IOUT,IUNIT,NCOMP(MFL),SNCOMP(MFL)
COMNCN NT, P(MM),C(MM,MC),NC(MM),JC(MM,MC),ITS(MS),
1 FC(MM,MC),PZ(MM,MC),PO(MM,MPO),CO(MM,MPO),F(MM),PFO(MFL,MPO),
2 FF(NM),FO(MM,MFO),CS(MS),FS(MFL),NS1(MS),NS2(MS),
F FSS(MS),N,NS,NFO,ICONV,E,IBUG,AI(MM,MC),AO(MM,MPO),TITSH(MS,5),
4 NF,r(NFL),IFLOOR(MM),T(MTP,MFL),NFS1(MS),NFS2(MS),IT(ME),NTP
5,NCC(NM),JOC(MM,MFC),TOUT
CCLELE PRECISICN P.FO.FS
INTEGER COM
I=0
IL=0
WRITE(C,800)(TITLE(I),I=1,18)
CO ZO IFF=1,NH
NNN=ACCMF(IFFJ
IF(NAN .EQ. O)GO TO 30
DO 2S IC=1,NNN
|\+=1
NN=NC(I)
NNC=NCC(1)
IL=IL+NN+NNO+2
IF(IL .LT. E1)GO TO 2
CRITE(\epsilon,800)(TITLE(I), I=1,18)
IL=AN+NNO+2
IF(NA .GT. O)GOTO 3
WRITE(E.801)IFF.IC,P(I),IT(D),FF4 D
EO TC 21
CO 2C J=1,NN
JJ=JC(I,J)
CP=F(JJ)-P(I)+PZ(I,J)
CC=C2(1,J)
IF(DF .LT, O.)CC=C1(I,J)
IF(JJ .LE. N)GO TO 10
DO 5 IS=1.NS
IF(JJ.GE.NSI(IS) •AND. JJ •LE. NS2(IS))GO TO 6
continle
IF(J.GT. 1)GO TO 7
WRITE(\epsilon, \&02)IFF,IC,P(I),IT(I),FF(I),(TITSH(IS,K),K=1,5)
+ ,DF,CC,AI(I,1),F((1,1)
GO TC 20

```

\section*{SUbROLTINE CUT}
```

7

```
```

WRITE(E,\&Oз)(TITSH(IS,K),K=1,E),DP,CC,AI(I,J),FC(I,J)
GC TC 20
IFJ= IFLOOR(JJ)
CON=\J-SNCOMP(IF3)
IF(J.GT. 1)GO TO 12
WRITE(E,804)IFF,IC,P(I),IT(I),FF(I),IFJ,COM,DP,CC,AK(I,1),FC(1,1)
GC TC 20
WRITE(G,805)IFJ,COM,DP,CC,A|(I,J),FC(I,J)
CONTINUE
IF(NNO .EQ.O)GO TO 29
GO 2ミ J=1,NNO
JJ= JCC(1,J)
CP=PC(I,J)-P(I)
CC=C[2(1,J)
IF(DF -LT. O.)CC=CO1(I,J)
WRITE(E,806)JJ,DP,CC,AO(I,J),FO(I,J)
WRITE(E, 807)F(I)
CONTINUE
WRITE(E.SOO)
shaft output
CO 6C IS=1,NS
N1=NS1(|S)
N2=N\$2(IS)
WRITE(E,\&14)(TITLE(I),I=1,18)
WRITE(E,808)(TITSH(IS,K),K=1,E),ITS(IS),CS(IS)
CC 5C I=N1,N2
NN=NC(1)
IF(NA -GT. O)GO TO 35
WRITE(\epsilon,809)IFLOOR(I),P(I),FF(I)
GO TC 41
CO 4C J=1.NN
JJ=JC(1,J)
CP=P(JJ)-P(I)
CC=CE(I,J)
IF(DF .LT. O.)CC=C1(I,J)
IFJ= IFLOCR(JJ)
CON=JJ-SNCOMP(IFJ)
IF(J.ET. 1)GO TO 36
WRITE(6,810)IFLOOR(1),P(1).FF(1),FJ.COM,DP,CC, AI(I,1),FC(I,1)
GO TC 40
MRITE(E,811)IFJ,CCM,DP,CC, AI(EJ),FC(I,J)
CONTINUE
NNC=ACC(I)
IF(NNO .EQ. O)GC TO 50
GO 4\epsilon J=1,NNO
JJ=JCC(I,J)
CP=FC(1,J)-P(I)
CC=CC2(I,J)
IF(CF .LT. O.)CC=COI(I,J)
WRITE(E,812)JJ,OP,CC,AC(I,J),FC(I,J)
COhTINLE
MRITE(E,813)FSS(IS)
WRITE(E,SOO)
CONTINLE
GO TC 165

```
```

C
C
100 |
IL}=
WRITE(E,800)(TITLE(I)•I=1.1\&)
CO 120 IFF=1,NH
NNA=^CCMF(IFF)
IF(NAN .EG. O)GC TO 130
CO 129 IC=1.NNN
I=I+1
FFI=F(1)/0.4719
P||EFP(|)/248.8
FFF=FF(I)/0.471G
NN=NC(I)
ANC=ACC(I)
IL= IL+NN+NNO+2
IF(IL .LT. S1)GO TO 102
HRITE(6,800)(T ITLE(D),I=1,1\&)
IL=NN+NNO+2
IF(NA .GT. O)GC TO 103
WRITE(E,601)IFF.IC,PIII,IT(E),FFF
GC TC 121
CO 120 J=1,NN
FCCC=FC(I,J)/0.4719
JJ=JC(I,J)
DP=(F(JJ)-P(|)+PZ(I.J))/248.8
AAI=A K |,J)/0.0929
CC=CE(d,J)
IF(DF \<. Oo)CC=C1(I,J)
CC=CC*33.43
IF(J* •LE. N)GO TO 110
CO 1CS IS=1,NS
IF(JJ.GE.NSI(IS) •AND.JJ •LE.NS2(IS))GO TO 106
CONT INLE
IF(J -GT. 1)GO TO 107
WRITE(E,G02)IFF,IC,PIII.IT(| DFFF *(TITSH(IS,K),K=1,5)
+,CP,CC,AAI,FCCC
GO TC }12
WRITE(E,GOE)(TITSH(IS,K),K=1,5),DP,CC,AAI,FCCC
CO TC 120
110 IFJ=IFLOOR(JJ)
CON=\J-SNCOMP(FJ)
IF(J - CT. 1)GO TO 112
WRITE(E,604)IFF,IC,PI II,IT(I),FFF OIFJ,COM,DP,CC,AAI,FCCC
CO TC 120
112 WRITE(E,CO5)IFJ,CON,DP,CC,AAI,FCCC
120 COhTINUE
121 IF(NNO .EQ.O)GC TO 12S
CO 123 J=1,NNO
FOC=FO(I m)/0.4719
JJ=JCC(m,J)
DP=(FO(I,J)-P(I))/248.8
AAO=AC(|,J)/0.0929
CC=CC2(I, J)
IF(DF./LT.O.)CC=COI(I,J)
CC=CC*3ミ.43
\#RITE(\epsilon,EO6) JJ,CP,CC,AAC,FOO
WRITE(E,807)FFI

```

\section*{SUBROUTINE OUT}
```

1 3 0
C
C SYAFT OUTPUT FOR IUNIT = 2
C
continle
CRITE(E,901)
C
OO 1\inO IS=1,NS
CSS=(S(IS)/0.02992
FFI=FSS(IS)/0.4719
N1=NS1(IS)
N2=N S2(IS)
WRITE(E.E14)(T ITLE(D,I=1,18)
WRITE(\epsilon, 808)(TITSH(IS.K),K=1,5),|TS <IS),CSS
DO 1\leqslantO I=N1,N2
FFF=FF(I)/0.4719
FIII=P(I)/248.8
NN=NC(1)
IF(NA .GT. O)GO TO 135
WRITE(E,GOS)IFLOOR(I),PIII,FFF
GO TC 141
CO 140 J=1,NN
FCCC=FC(I,J)/0.4719
JJ=JC(1,J)
DP=(F(JJ)-P(I))/248.8
AAI=AI(G.J)/0.0929
CC=CE(I,J)
IF(CF .LT, O.)CC=C1(I,J)
CC=CC*33.43
IFJ=1FLOCR(JJ)
CON=JJ-SNCOMP(IFJ)
IF(J.GT. 1)GO TO 136
WRITE(\epsilon,610)IFLCOR(D),PI|\&FFF ,IF3,COH,DP,CC, AAI`FCCC
CC TC 140
WRITE(E, 611)IFJ,COM,DP,CC, AA I,FCCC
CONT INLE
NNC=\CO(1)
IF(NNO .EQ. O)GO TO }15
CO 146 J=1,NNO
FOC=FO(I,J)/0.4719
JJ=JCC((1,J)
CP=(FO(I,J)-P(I))/248.8
AAC=AC(I,J)/0.0529
CC=CC2(I,J)
IF(CF .LT. O.)CC=CO1(I,J)
CC=CC* E3.43
WRITE(E,€12)JJ,DP,CC,AAO,FOO
150 COhT INCE
WRITE(E.813)FF!
MRI1E(e,SO1)
COhTINLE
C SUNMARY OUTPUT
C LSER INSERTS WRITE STATEMENTS TO FILE IOUT
C SUNMARY OUTPUT
C LSER INSERTS WRITE STATEMENTS TO FILE IOUT
1\in5 CONT INLE
RETURN
C
C
1\in0
C

```
```

C
COl
€02
€03
e04
CO5
106
€09
E10 FORMAT(4X,I 3,FAO.3.F11.O.3X,SHFLOOR, I3,12H COMPARTMENT, B.F11.3.
1 F15.0,F10.3,F11.1)
\epsilon11 FORMAT(31X,5HFLOOR,13,12H COMPARTMENT,I3,F11.3,F15.0,F10.3,F11. 1)
\epsilon12 FORMAT(31X,17HOUTSIDE DIRECTION ,I3,F14.3,F15.0,F10.3,F1101)
\varepsilon00 FORNAT(1H1.20X,18A4./54X,8HADJLSTED/35X,4HTEMP,7X,5HF WED,28X,
1 12HCIFFERENTIAL, 5X,4HFLOW, 8X,4HFLOW/4X,5HFLOOR, 2X,11HCOMPARTMENT
2,2X,8HPRESSURE,2X,7HPROFILE,5X,4HFLOW.3X,1GHCONNECTION TO ,
312X,EPPRESSURE,4X,11HCOEFFICIENT. 2X,8H AREA .5X.4HFLOW /)
FORMAT (/4X,I3,110,F13.1,18,F12.0)
FORMAT(/4X,13.I 10,F13.1.I \&,F12.0.3X,5A4,F14.1,F15.1,F10.4,F1101)
FOFMAT(53X,SA4,F14.1.F15%1,F10.4,F11o1)
FORMAT (/4X,13,110,F13.1,18,F12.0.3X,5HFLOOR,I3,12H COMPARTMENT, I3,
1 F11.1,F15.1,F10.4,F11.1)
FORMAT(53X,5HFLOOR,I3.12H COMPARTMENT, I3,F11.1,F15.1,F10.4,F11.1)
FCFMAT(53X,17HOUTSIDE C RECTION, 13,F14.1,F15.1,F1004,F11.1)
FORMAT(11EX,F8.1,4H NET)
FORMAT /////20X,EA4//20X.2OHTEMPERATURE PROFILE .I3/ 2OX.
123HSHAFT FLOW COEFFICIENT ,F10.0//7 2X,8HADJUSTED/24X,5HFIXED,
2 28X.12HCIFFERENT IAL,5X,4HFLOW,8X,4HFLOW/4X,5HFLOOR,2X,8HPRESSURE,
3 EX,4HFLOW,3X,1GHCONNECTION TO,12X,8HPRESSURE,4X,11HCOEFFICIENT
4,2X,\varepsilonF AREA ,5x,4HFLOW /)
FORMAT(4X,I3,F10. 1,F11.0)
FCRMAT (4X,I3,F10. 1,F11.0,3X,5HFLOOR,I 3,12H COMPARTMENT,I3.F11.1.
1 F15.1,F10.4,F11.1)
811 FORNAT(31X,SHFLOOR,I3,12H COMPARTMENT,I3,F11.1,F15,1,F10.4,F11.1)
e12 FORMAT(31X,17HOUTSIDE DIRECTION,13,F14.1,F15.1,F10.4,F11.1)
€13 FOFMAT(93X,F8.1,4H NET)
e14 FORMAT(1H1,20X,18A4)
SOO FORMAT(//15X,'THE FOLLOWING UNITS ARE LSED FOR OUTPUT'
1//5X,'FLCW IN LITERS PER SECCNO AT 21 DEG C AND 1 ATM'
2/5x,'PRESSURE IN PASCALS'/Ex,•AREA IN METERS SQUARED')
FORMAT(///,5X,'THE FOLLOWING UNITS ARE USED FOR OUTPUT'
1//5X,'FLOW IN CFM AT 70 DEG F AND 1 ATM'
2/5X,'PRESSURE IN INCHS H2O%/5X,'AREA IN FEET SQUARED')
END

```
aHDG.P SUERQUTINE UNITS.L. 1

\section*{SUBROUTINE UNITS}
```

aNBS*PLIE\&.SHOW A.UNITS
SUERCUTINE UNITS
C
C ThIS RCUTINE CONVERTS VARIABLES H.FF.AI.AO.CS TO SI UNITS
C
C
FARANETER (MM=140,MS=\&,MC=9,MFC=2,MTP=2,MFL=25,MB=50)
CQMNCN NT, P(NM),C(MM,MC),NC(MM),JC(MM,MC),ITS(MS).
1 FC(NM,MC),PZ(MM,MC),PC(MM,MFC),CO(MM,MPO),F(MM),PFO(MFL,MPO).
2 FF(NM),FO(MM,MFO),CS(NS),PS(MFL),NS1 (MS),NS2(MS).
3 FSS(MS),N,NS,NFO,ICONV,E,IBUG,AI(MM,MC),AO(MM,MPO),TITSH(MS,5),
4 NH,F(NFL),IFLOCR(NM),T(MTP,MFL),NFSI(MS),NFS2(MS),IT(MB),NTP
5.NCC(NM), JOC(MM,MPC),TOLT
COLELE PRECISICN P.FO.FS
CINENSION B(5)
CATA B/0.3048.248.8.0.4719,0.02992,0.0929/
CO 10 I=1,NH
r(1)=H(I)*B(1)
CO 2C I=1,NT
FF(I)=FF(I)*B(\Xi)
DO 1\epsilon J=1,MC
AI(II,J)=AI(I,J)*B(E)
CONTINLE
DO 1E J=1,MPO
AO(I,J)=AO(I,J)*B(E)
CONTINUE
CONTINUE
DO 2e 1S=1.NS
CS(IS)=CS(IS)*E(4)
FETLFN
END

```

\section*{slaroutine simeq}
```

ENBS*PLIE\&.SHOW A.SIMEQ
slefcutine Simec
C
C CHCLEEKY'S METHOD CF SOLUTICN OF
C SINLLTANEOUS LINEAR ALGEBRIC EQUATIONS
PARANETER (MM=140,MS=2,MC=9,MFC=2,MTP=2,MFL=25,MB=50)
PARANETER (MEF=MB+1)
COUELE PRECISICN A.X
COMMCN /MAT/ A(MB,MBP),X(MB).N
AP1=N+1
ZEFO=1.OE-35
k=0
C
C
C
C
A(1.1) l S ZERO
IF SC ADC ANOTHER RCW TO ROW 1
IF(AES(A(1,1)) .GT. ZERO)GO TO 40
DO 31 I=1.N
IF(A(I.1) .NE. O.)GO TO 32
31 CONTINUE
12 MRITE(6,804)K
STCF
32 CO ミミ J=1,NP1
33 A(1,j)=A(1,J)+A(l, J)
C
c calcllate upper and cower
C TRIANGULAR MATRICES OVEF ORIG
C MATRIX A
40 AA=A(1,1)
CO 2 J=2,NP1
2 A(1, ()=A(1,J)/AA
DO 1C I=2,N
k=0
C
c STORE A(I,1) ... A(I,I) IN X ARRAY
C N CCSE NEW A(I,I) E ZERO
C ROw |CAN BE RECALCULATED
4 CO 5 J=1,I
5 X(J)=A(I,J)
K=K+1
CO 10 J=2.NP1
IF(J .GT. I)GO TO 8
JM1=-1
AA=0 。
GO 3 IF=1,JM1
3 AA=AA+A(I,IR)*A(IR,J)
A(I,.) =A(I,J)-AA
C
C CHECU IF A(I.I) IS ZEFO
C FI SC NULTIPLY OLD ROW |BY 2.
C
IF(1 .NE. J)GO TO 10
IF(AES(A(I,I)) .GT. ZERC)GO TO 10
CO 6 JJ=1,I
6 A(I,JJ)=x(JJ)
DO 7 JJ=1,NP1

```

\section*{subroltine simeq}
```

 7A(I,.j)=2.*A(I,J)
 IF(K.ET. 3)GO TO 12
 GO TC 4
 8 IM1=1-1
 AA=0.
 CO 9 IR=1,IM1
 9 AA=AA+A(I,IR)*A(IR,J)
 A(I,J)=(A(I,J)-AA)/A (IsI)
 10 CONTINUE
 C ENC CF CALCULATION OF TRIANGULAR MATRICES
C
C
C EACKMAFD SUBSTITUTIGN
C
X(N)=A(N,NP1)
DO 2C II=2,N
AA=0 o
I=NF1- II
IP 1= 1+1
DO 1E J=IP1,N
15 AA=AA+A(I,J)*X(J)
20 X(I)=A(I,NP1)-AA
C
804 FORMAT(//////10X,1EHPROGRAM FAILURE ,I3/////)
END
arCG.P FUNCTION FLOW.L.1

```
```

aNES*PLIES.StOW A.FLCW
FUNCTICN FLOW(PI,PJ,PZ,C)
COUELE PRECISICN PIgFJ
C ThIS FLNCTXON CALCULATES FLOWS EETWEEN TWO PUINTS
C ThIS FLNCTXON CALCULATES FLOWS EETWEEN TWO PUINTS
IF(C .LT. O.001)GO TO 10
LP=P:-FI+PZ
SICN=1.0
IF(DF -LT. .0)SIGN=-1.
FLCH=SIGN*C*SQRT(SIGN*CP)
FETURN
10 FLOK=0 00
FETUFN
ENC
âHDG,P

```
ãNBS*PLIES.SFC# A.PFLOW
    FUNCTICN PFLOW(I,PI)
C
C
C THIS FUNCTION CALCULATES NET FLOWS INTO POINT I
C
    FARANETEF (MM=140,MS=R,MC=9,MFC=2,MTP=2,MFL=25,MB=50)
    COMMCN /CORR/C1(MM,MC),C2(MM,MC),CO1(MM,MPO),CO2(MM,MPO)
    COMMCN NT, P(MM),C(MM,MC),NC(MM),JC(MM,MC),ITS(MS),
    1 FC(MM,MC),PZ(NN,MC),PC(MM,MPC),CO(MM,MPO),F(MM),PFO(MFL,MPO),
    2 FF(MM),FO(MM,MPO),CS(NS),PS(MFL),NS1 (MS),NS2(MS).
    3 FSS(MS),N,NS,NFO,ICONV,E,IEUG,AI(MM,MC),AO(MM,MPO),TITSH(MS,5),
    4 NH,F(NFL),IFLOOR(NM),T(MTP,MFL),NFS1(MS),NFS2(MS),IT(MB),NTP
    5,NCC(NM),JOC(NN,MPC),TQUT
    COUELE PRECISION P,PO,PS.PI
    NN=NC(I)
    SuM=0.
    IF(NA .EG. O)GO TO 3
    CO 1 JJ=1,NN
    J=JC(I,JJ)
    CC=C1(1,JJ)
    IF(FI .LT. P(J))CC=C2(I,JJ)
    PZZ=FZ(I.JJ)
    IF(I .CT. N)PZZ=O.
    FC(I,JJ)=FLOW(PI,P(J),PZZ,CC)
    SUN=SUN+FC(I,JJ)
    NNC=\CC(I)
    IF(NNO .EQ. O)GO TO 4
    CO 2 K=1,NNO
    CC=CC1(I,K)
    IF(FI L.T. PO(I,K))CC=CC2(I,K)
    FO(I,K)=FLOW(PI,PO(I,K),O,CC)
    SUM=SUM+FO(I,K)
    FFLOK=SUM+FF(I)
    IF(I .LE.N)F(I)=SUM+FF(I)
    RETLFN
    ENC
äDG,P FUNCTION SFLOW•L.1
```


FUNCTION SFLOW

```
aNBS*PLIEq.SHOW A.SFLUW
    FUNCTICN SFLOW(IS,PI)
C
c
C This goutine calculates net flow into a shaft and
        s+Aft PRESSURE PROFILE
C
C
    PARALETER (MM=140,NS=8,MC=9,MPC=2,MTP=2,MFL=25,MB=50)
    CQMMCN NT, P(MM),C(MN,MC),NC(MM),JC(MM,MC),ITS(MS),
    1 FC(NM,MC), PZ(MM,MC), PO(MM,MPO),CO(MM,MPO),F(MM), PFO(MFL,MPO).
    2 FF(NM).FO(MM,MFO),CS(NS),PS(MFL),NS1(MS),NS2(MS).
    3 FSS(MS),N,NS,NPO IICONV,E,IBUG.AI(MM,MC),AO(MM,MPO) ITITSH(MS,5).
    4 NF,H(NFL),IFLCOR(NM),T(MTP,MFL),NFS1(MS),NFS2(MS),IT(MB),NTP
    5,NCC(NM).JOC(MN,MFC),TOUT
    COUELE PRECISION P,PO,PS,PI
    IF(IEUG .GT.1)WRITE(6.800)IS
    SUM=C.
    N1=NS1(|S)
    N2=N \2(|S)
    FS(1)=PI
    FUF=C.
    CSS=CS(IS)
    CO 1C I=N1,N2
        L=I+1-N 1
        FLO=FFLOW(I,PS(11))
        FUP=FLC+FUP
        SUM=SUM+FLO
        IF(I .EQ. N2)GC TO 5
        | |P1=||-
        SI CN=1
        IF(FLP.GT. O.)SIGN=-1.
        FS(IIP 1)=PS(II)-PZ(|_1)+SIGN*FUP*FUP/(CSS*CSS)
E IF(EEUG .GTe 1)WR TTE(6,801) bII,PS(I I),FLO,FUP,SUM
10 CONT INUE
        FS\subseteq(1S)=SUM
        SFLCK=SUM
        FETLFN
C
C FCRNA7 STATEMENTS
C
€OO FORMAT(////5X,17HFLOW - SHAFT NO .15/)
€01 FORMAT (5X,3HI=,I3,5X,4HII =,I 3,5X,4HPS =,
    +E15.7.5X.5HFLO=.E10.4.5X,5HFUP =.E10.4.5X.5HSUM =.E10.4/)
    ENC
```

```
@ERKPT FRINTS
```


FEDERAL INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY

13. Narrative

Pressurized stairwells and pressurized elevators can be used as a means of providing a smoke free exit route during fire situations. This computer program analyzes systems intended to pressurize stairwells and elevator shafts.
14. Keywords

Air movement; computer programs; egress; elevator shafts; escape means; modeling; pressurization; simulating; smoke control; stairwells

26. FOR SUBMITTING ORGANIZATION USE

INSTRUCTIONS

1. Summary Date. Enter date summary prepared. Use Year, Month, Day format: YYMMDD.
2. Summary Prepared By. Enter name and phone number (including area code) of individual who prepared this summary.
3. Summary Action. Mark the appropriate box for new summary, replacement summary or deletion of summary. If this software summary is a replacement, enter under "Previous Internal Software ID" the internal software identification as reported in item 07 of the original summary, and enter the new internal software identification in item 07 of this form; complete all other items as for a new summary. If a software summary is to be deleted, enter under "Previous Internal Software ID" the internal software identification as reported in item 07 of the original summary; complete only items $01,02,03$ and 11 on this form.
4. Software Date. Enter date software was completed or last updated. Use Year, Month, Day format: WMMDD.
5. Software Title. Make title as descriptive as possible.
6. Short Title. (Optional) Enter commonly used abbreviation or acronym which identifies the software.
7. Internal Software ID. Enter a unique identification number or code.
8. Software Type. Mark the appropriate box for an Automated Data System (set of computer programs), Computer Program, or Subroutine/Module, whichever best describes the software.
9. Processing Mode. Mark the appropriate box for an Interactive, Batch, or Combination mode, whichever best describes the software.
10. Application Area.

General: Mark the appropriate box which best describes the general area of application from among:

Computer Systems Support/Utility	Process Control
Management/Business	Bibllographic/Textual
Scientific/Engineering	Other

Management/Business
Biblhographic/Textual
Specific: Specify the sub-area of application; e.g.: "COBOL optimizer" if the general area is "Computer Systems Support/Utility"; "Payroll" if the general area is "Management/Business'; etc. Elaborate here if the general area is "Other."
11. Submitting Organization and Address. Identify the organization responsiblefor the software as completely as possible, to the Branch or Division level, but including Agency, Department (Bureau/Administration), Service, Corporation, Commission, or Council. Fill in complete mailing address, including mail code, street address, city, state, and ZIP code.
12. Technical Contact(s) and Phone: Enter person(s) or office(s) to be contacted for technical information on subject matter and/or operational aspects of software. Include telephone area code. Provide organization name and mailing address, if different from that in item 11.
13. Narrative. Describe concisely the problem addressed and methods of solution. Include significant factors such as special operating system modifications, security concerns, relationships to other software, input and output media, virtual memory requirements, and unique hardware features. Cite references, if appropriate.
14. Keywords. List significant words or phrases which reflect the functions, applications and features of the software. Separate entries with semicolons.
15. Computer Manufacturer and Model. Identify mainframe computer(s) on which software is operational.
16. Computer Operating System. Enter name, number, and release under which software is operating. Identify enhancements in the Narrative (item 13).
17. Programing Language(s). Identify the language(s) in which the software is written, including version; e.g., ANSI COBOL, FORTRAN V, SIMSCRIPT 11.5, SLEUTH II.
18. Number of Source Program Statements. Include statements in this software, separate macros, called subroutines, etc.
19. Computer Memory Requirements. Enter minimum internal memory necessary to execute software, exclusive of memory required for the operating system. Specify words, bytes, characters, etc., and number of bits per unit. Identify virtual memory requirementsin the Narrative (item 13).
20. Tape Drives. Identify number needed to operate software. Specify, if critical, manufacturer, model, tracks, recording density, etc.
21. Disk/Drum Units. Identify number and size (in same units as "Memory"-item 19) needed to operate software. Specify, if critical, manufacturer, model, etc.
22. Terminals. Identify number of terminals required. Specify, if critical, type, speed, character set, screen/line size, etc.

23 Other Operational Requirements. Identify peripheral devices, support software, ot related equipment not indicated above, e.g., optical character devices, facsimile, computer-output microfilm, graphic plotters.
24. Software Availability. Mark the appropriate box which best describes the software availability from among: Available to the Public, Limited Availability (e.g.: for government use only), and For-In-house Use Only. If the software is "Available", include a mail or phone contact point, as well as the price and form in which the software is available, if possible.
25. Documentation Availability. Mark the appropriate box which best describes the documentation availability from among: Available to the Public, Inadequate for Distribution, and For In-house Use Only. If documentation is "Available", include a mail or phone contact point, as well as the price and form in which the documentation is available, if possible. If docurnentation is presently "Inadequate", show the expected availability date.
26. For Submitting Organization Use. This area is provided for the use of the organization submitting this summary. It may contain any information deemed useful for internal operation.

NBS.114A (REV. 2-80)

[^0]: Sponsored in part by:
 Department of Health and Human Services
 Washington, DC 20201

[^1]: $l_{\text {The }}$ concept of extending the use of smoke control to protect elevators is currently being investigated at NBS.
 ${ }^{2}$ Numbers in brackets refer to the literature references listed at the end of this paper.

[^2]: $3_{\text {The }}$ results of the program are not very sensitive to changes in atmospheric pressure. For altitudes considerably different from sea level the more accurate value can be substituted by changing an assign statement in the subroutine INPUT and one in the subroutine CORR.

[^3]: ${ }^{4}$ In this paper the term building compartment refers to a space in a building other than in a shaft.

[^4]: ${ }^{1}$ The user must assign this file before program execution.

[^5]: ${ }^{2}$ All net flows are at standard conditions of $21^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)$ and one atmosphere.

[^6]: $1_{\text {At }}$ standard conditions of $21^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right)$ and one atmosphere.

