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Summary. Given a data function, f(x, y), defined for (x, y) in a domain,D and
an error measure for approximating f on D, we can call a piecewise linear func-
tion, fpl(x, y), acceptable if its error measure is less than or equal to a given error
tolerance. Adaptive Delaunay Refinement (ADR) is one approach to generating a
mesh for D that can be used to create an acceptable fpl(x, y). A measure of the
efficiency of methods for generating a mesh, M , for piecewise approximation is the
size of M. In this paper, we present empirical evidence that ADR generated meshes
can be twice a large as necessary for producing acceptable interpolants for harmonic
functions. The error measure used in this study is the maximum of the triangle
average L2 errors in M. This observation is based on demonstrating a comparison
mesh generating using maximal efficiency mesh theory as reviewed in the paper.
There are two different approaches to point placement commonly used in ADR,
edge based refinement and circumcenter based refinement. Our study indicates that
there is no significant difference in the efficiency of the meshes generated by these
two approaches.

1 Introduction

The meshing context of this paper is piecewise linear function approximation
on a planar domain D. I.e. Given a function f(x, y) defined for (x, y) ∈ D, cre-
ate an unstructured triangular mesh, M , for D and the coefficients of a piece-
wise linear approximation, f (pl)(x, y) ≈ f(x, y). Unstructured meshes pose
an efficiency-computational cost trade-off. Local computations with unstruc-
tured meshes tend to be more complex than with structured grids. However, a
given accuracy in f (pl)(x, y) can usually be achieved by an unstructured mesh
with significantly fewer vertices that needed by structured grids. So, for global
computations, unstructured meshes can be more efficient by virtue of being
smaller. Iterative adaptive h-refinement is a long standing mesh generation
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techniques that aims to provide this efficiency (since 1970s.) The combina-
tion of this technique with Delaunay meshing has been used almost as long
( since 1980s). We will use the abbreviation ADR for adaptive Delaunay h-
refinement in the sequel. Clearly, there is a limit, for a given f and target
error, on how small the meshes that meet this target error can be. A mesh
that meets the error target with a minimal number of vertices is a maximal
efficiency mesh, Simpson [26]. In this paper, we address questions of how ef-
ficient are the meshes generated by adaptive Delaunay refinement, relative to
maximal efficiency meshes.

In §2, we review the development of adaptive Delaunay refinement methods
and explain the details of the versions that are used in our computations. In
particular, we distinguish two choices for the insertion vertex used for refining
a triangle, T , the midpoint of a longest edge of T , which we will denoted
LEBis(T ), and the circumcenter of T , which we will denote by CC(T ). In §3,
we present in detail a demonstration of ADR for piecewise linear interpolation
of a specific harmonic function. This demonstration leads to a discussion of a
class of simple meshes consisting of isosceles right angled triangles. This class
is closed under adaptive h-refinement or ADR for either LEBis(T ) or CC(T )
type insertion and any of these methods produce the same result whan applied
to an initial mesh in the class.

The demonstration of §3 includes evidence that ADR generated meshes can
be roughly twice as large as maximum efficiency meshes, for isotropic data.
This evidence is based on a comparison to the size of a highly efficient mesh
created by a computation specific to the data function. The computation of
the comparison mesh is detailed in §4 and an overview of the theory supporting
this computation is given in §5. In §6, a second example is presented in less
detail that confirms the features of the example discussed in §3. The results of
this study are highly consistent with a similar study by E. F. D’Azevedo, [10],
which demonstrates that adaptive meshes created by the program PLTMG [3],
discussed below, are about twice as large as specially constructed comparison
meshes.

2 Iterative Refinement Methods

Iterative refinement refers to a hierarchy of mesh generation methods, as
shown in Figure 1. We will use this hierarchy to discuss related previous
work and the methods used in the computations of this paper. Basic iterative
h-refinement (BR) requires a size measure for triangles, size(T ), an input a
mesh M0 for D, and a maximum size tolerance, sizeTol, which may be vari-
able across D. The method then attempts to create a mesh, M for D such
that size(T ) ≤ sizeTol for every T ∈ M . Delaunay refinement methods,
(DR), are basic h-refinement methods in which M0 and M are constrained
Delaunay triangulations. Adaptive refinement methods, (AR) are basic h-
refinement methods related to specific applications, such as piecewise linear
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Fig. 1. A hierarchy of iterative refinement methods

approximation. These methods are aware of a data function through an er-
ror measure for triangles. They require an error tolerance, errTol and the
method attempts to create a mesh such that the error in every triangle does
not exceed errTol. Adaptive Delaunay refinement (ADR) methods have char-
acteristics both of adaptive h-refinement and Delaunay refinement methods.
This requires a reconciliation of the the refinement criterion on size(T ) in the
case of Delaunay refinement with the triangle error measure in the case of
adaptive h-refinement.

2.1 Basic and Adaptive Refinement Methods

To describe the basic attributes of iterative refinement methods, we use the
following pseudo code algorithmic description of basic refinement.

1: basic iterative refinement(M)
2: initialize S by the triangles of M
3: while S is not empty do
4: select T using S
5: if Refine(T) then
6: Vinsert = SelectNewVertex(T,M)
7: (Sadd, Srem) = Insert(Vinsert ,M)
8: S ⇐ S + Sadd − Srem

9: else
10: S ⇐ S − T
11: end if
12: end while

(1)

The algorithm computes a sequence of meshes, Mn, n = 0, 1, 2, ... on the do-
main D. Mn+1 is obtained from Mn by selecting a triangle T in Mn such that
a method predicate, Refine(T), has value True and inserting a related vertex
into Mn, The input parameter is mesh M , which is identified with M0 of the
above mentioned sequence. This description uses several abstract procedures
that are incompletely described by their names. Basic refinement methods can
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be illustrated by simple model examples of these procedures, which have been
associated with early refinement methods. We will describe the methods that
we review, and those used in the computations of this paper, by specifying
these processes in the child methods of the method hierarchy of Figure 1.
The description uses a dynamic set, S, of triangles of M which, at any time
contains the triangles of M that may trigger refinement. Perhaps a simpler
explanation is that at all times T ∈ M − S implies Refine(T) == False.
Insert(V,M) takes Mn as input argument for parameter M , and returns
Mn+1 as output argument. The procedure returns two sets of triangles; Sadd

are the triangles in Mn+1 but not in Mn, and Srem are in Mn but not Mn+1.
A simple instance of this basic refinement algorithm uses simple longest

edge bisection of T . For this, SelectNewVertex of step 6: of (1) returns the
midpoint of a longest edge of T for Vinsert and Insert of step 7: splits T into
two new triangles TA and TB using a new edge from Vinsert to the vertex
opposite the split edge of T . If the edge being split is internal to the mesh,
then the same split is performed on the neighbouring triangle, Tneigh, produc-
ing two more triangles TC and TD in the refined mesh. The implication for
step 7: of this method is that Insert returns Sadd = {TA, TB , TC , TD} and
Srem = {T, Tneigh}. In a 1984 paper, [18], Rivara presented a class of basic
h-refinement methods using simple longest edge bisection.

It is common to implement the selection of step 4: of (1) so that larger
triangles are selected before smaller ones. The need for quick access to the
largest triangle in S complicates the data structure for this dynamic set,
Shewchuck, [25]. The longest edge propagation path of Rivara, [19, 20], is
a heuristic for finding a local maximum edge length in the mesh. For any
triangle T0 in M , the longest edge propagation path of T0, Lepp(T0), is the
sequence {Tj}N

j=0, where Tj is the neighbor triangle on a longest edge of Tj−1,
and longest edge (Tj) > longest edge (Tj−1), for j = 1, . . . , N . This condition
determines N ≥ 0. Consequently either Lepp(T0) terminates with TN that
has a longest edge that is a constrained edge of M , (e.g. a mesh boundary
edge), or it terminates with a pair of neighbouring triangles, (TN , T̄ ) such
that their common edge is a longest edge of both. For the computations of
this paper, these ideas affect step 4: of (1); i.e. a triangle T0 is initially selected
from S and then T is set to TN of Lepp(T0). It is common then that T is not
itself in S. This is a technicality of the combined use of Lepp and longest
edge bisection discussed in §2.1 immediately following ; see Rivara, [19], for a
discussion of it.

6: Vinsert = SelectNewVertex(T, M)

The general pattern of this procedure is that it computes a candidate vertex
Vcand for Vinsert that will improve the configuration of triangles in the mesh
near Vinsert relative to the refinement criteria. If Vcand is so close to a boundary
edge, e, that its insertion would result in an obtuse triangle adjacent to e, then
Vcand is said to encroach on e. Inserting Vcand in this case would violate the
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assumptions we have placed on the meshes of the refinement sequence. So if
Vcand does not encroach on any boundary edge, then it can be returned as
Vinsert by SelectNewVertex(T,M), otherwise the midpoint of an encroached
edge is returned. Two standard choices for Vcand are the circumcenter of T ,
CC(T ) , or the midpoint of a longest edge of T , which is referred to as longest
edge bisection, LEBis(T ) . We will compare the efficiency of meshes generated
by these two possible choices in §3.

Adaptive Refinement

The basic refinement methods that have just been discussed contain the geo-
metric features of adaptive h-refinement methods for triangular meshes which
starting appearing in the literature in the late 1970s1. The context of these
refinement methods was piecewise linear function approximation, f (pl)(x, y),
typically by the finite element method, for a data function, f(x, y), typically
defined implicitly by a partial differential equation. The implication for our
refinement method hierarchy is that the Refine(T) predicate uses an error
estimate of some measure of the error, err(x, y) = f(x, y) − f (pl)(x, y). The
literature on error estimation is large and continues to grow; we do not review
it here. Bank and Weiser published an early paper on error estimation for
this purpose, [5]. This research was done at an early stage of the sustained
development by Bank and collaborators, of the pde solving software PLTMG
which incorporates adaptive h-refinement, [3].

2.2 Delaunay and Adaptive Delaunay Refinement Methods

As mentioned above, for Delaunay refinement methods, all the Mn are con-
strained Delaunay meshes; but in addition, we require that no boundary edge
is the longest edge of an obtuse triangle. For Delaunay refinement, step 7: of
(1) is the familiar Delaunay vertex insertion into the mesh, Mn. Algorithmi-
cally, the update can be accomplished by a simple insertion of Vinsert followed
by a series of edge swaps, or equivalently, as the Delaunay kernel operation
of George and Borouchaki, [13], page 55, which is expressed in this reference
by Mn+1 = Mn − Cav(Vinsert)2 + Ball(Vinsert)3 To relate this operation to
the basic refinement algorithm, we identify Srem of step 7: of (/refalgorithm)
with Cav(Vinsert) and Sadd with Ball(Vinsert).

What has been the motivation for developing ADR methods from basic
h-refinement methods? The initial uses of iterative Delaunay refinement seem
to have been motivated by the use of the circumcentre of T for (Vinsert). Frey,

1Perhaps the earliest reference to adaptive refinement based on LEBis is Sewell,
1979, [23]. See also Bank and Sherman, 1979, [4]; the edge based refinement of this
reference is not exactly LEBis

2the cavity of V in Mn,Cav(V ), is the set of triangles with V in their circumcircle
3the ball of V in Mn+1, Ball(V ), is the set of triangles in Mn+1 incident on V
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1987, [12], promoted it on the basis that CC(T ) was a new vertex that was
equidistant from the vertices of T , and a longer distance from any other nodes
of M , and other authors have concurred, e.g. Peraire et al, 1987, [16].

Another motivation came from proofs that the Delaunay incidences min-
imized the interpolation error for f(x, y) = x2 + y2 in a number of error
measures, over a given set of vertices, e.g. D’Azevedo and Simpson, 1989, [11]
and Rippa, 1992 [17], The implication was that for isotropic errors, a maxi-
mal efficiency mesh would be a Delaunay mesh. Of itself, this is not a very
convincing motivation because most data, and errors, are anisotropic. The
extension of these ideas to anisotropic errors was also recognized in the ap-
plications literature e.g. Mavriplis, 1991 [14], and the mesh theory literature.
Anisotropic errors are minimized by meshes that are Delaunay in appropriate
stretched coordinate systems (see §5).

There are also motivations from the benefits of using Delaunay meshes for
the discretization of PDEs by either the FEM or FVM that we do not discuss
here, e.g. Shewchuck, 2002 [24], and Sukumar, 2003, [29].

A characteristic of Delaunay meshes is that they contain the most equi-
angular, and hence most equi-lateral, triangles of any vertex connectivity of a
triangular mesh. This is a shape benefit that is not tied to the choice of CC(T )
for insertion as was noted by Baker, 1994, [2]. Rivara and Palma, 1997, [21]
and [19] reported combining Lepp and the choice of LEBis(T ) for Vinsert with
Delaunay insertion. Borouchaki and George presented in the same year, [7],
an edge based Delaunay refinement scheme that uses many features similar
to those that we have discussed above.

Delaunay refinement research was simultaneously being carried forward by
the momentum of research in computational geometry. This research extended
the Refine predicate to include a requirement that the minimum angle in the
triangles exceed a specified angle tolerance, angTol. I.e.

Refine(T) ≡ True ⇐⇒ size(T ) ≥ sizeTol or min angle(T ) ≤ angTol
(2)

Chew, 1993, [8], Ruppert, 1995, [22], and Shewchuck, 1996, [25], devel-
oped Delaunay refinement algorithms based on Vcand = CC(T ), and suit-
able encroachment rules, that were proven to terminate with MN satisfy-
ing min angle(MN ) ≥ angTol for angTol values up to about 30◦. Meth-
ods proven to terminate satisfying this angle constraint are referred to as
quality methods for mesh generation. Based on this research, Shewchuck
produced the widely used quality Delaunay refinement code, Triangle, [25].
Using size(T ) = Rcc(T ), Vcand = CC(T ) , and a largest T first ordering
for the selection in step 4, Baker, [2], gave an alternative proof that De-
launay refinement with the given encroachment rule, terminates satisfying
min angle(MN ) ≥ 30◦.
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3 ADR

In this section, we provide a detailed study of ADR using the data function

compexp(x, y) = (1 + e2πxcos(2πy))/(2e2π) (3)

as the working example. Because this function is the real part of complex
valued function (1 + e2πz)/(2e2π), we will refer to it as the complex exponen-
tial function. f (pl)(x, y) is the piecewise linear interpolant of f and the error
measure to be used is

|e|M = max
T∈M

|err|2,A(T ) (4)

where |err|2,A(T ) is a computable estimate of the average L2 error over tri-
angle T ,

||err||2,A(T ) = (
∫

T

(f − f (pl))2dA/A(T ))
1
2 (5)

A(T ) is the area of T . |err|2,A(T ) is computed by estimating ||err||2,A(T )
using a 7 point order 4 quadrature rule for integration over T which may be
found in Strang and Fix, [28], page 184. The criteria used for Refine(T) are
those of (2) with |err|2,A(T ) in place of size(T ) and similarly for errTol. We
set angTol = 20◦; however, the angle criterion plays very little role in this
study.

We introduce several notations:
M(D, f, errTol) – for a mesh generated by ADR on domain D, for data

function f using error tolerance errTol
NV (M) – for the number of vertices in mesh M .
|err|2,A(T, f) – for |err|2,A(T ) if we wish to be explicit about dependence on f .

3.1 A Demonstration

For this computation, D is US, the unit square and the initial mesh, M0 is
the two triangle mesh on US. LEBis is used in SelectNewVertex. M(US,
compexp, 10−3) is shown in Figure 2(A); the triangles of this mesh are shaded
with a 10 level gray scale based on log10(|err|2,A(T )) to show the distrib-
ution of errors. A summary histogram of this error data is also shown in
Figure 2(B).

It can be seen in Figure 2(A) that only one triangle shape is present in
the refined mesh; all the triangles are isosceles, right angled. We will abbre-
viate ‘isosceles, right angled triangle’ to IRAT. For an IRAT, the midpoint
of the longest edge coincides with the circumcircle center, i.e. LEBis(T ) =
CC(T ) . In Lemma 1 below, we use this to infer that, for this M0, the ADR
methods that use either choice of Vinsert produce the same mesh as an adap-
tive h-refinement method that uses simple longest edge bisection refinement.
The regions of constant triangle shape and size form a series of patches with
curved outlines in the mesh. The edge lengths step down by a constant factor
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(A) M(US, compexp, 10−3) // NV (M) =
3845 vertices

(B) histogram of |err|2,A(T, ce)

Fig. 2. ADR mesh for complex exponential, (3), with errTol = 10−3, : 3845 vertices

of 1/
√

2 on moving from one patch to its neighbour on the right. This pat-
tern can be conveniently summarized by the histogram of the distribution of
the log2(longest edge) shown in Figure 3(A). It shows a discrete spectrum of
sizes at the negative half integers. This pattern persists if we decrease errTol.
Figure 3(B) shows the same histogram for errTol = 1.0−4; the correspond-
ing mesh has 37520 vertices, i.e. about 10 times the number in the mesh of
Figure 3(A).

(A) errTol = 1.0− , for mesh in Figure
2(A)

3845 verticies

(B) errTol = 1.0−4, mesh not shown
37520 vertices

Fig. 3. Histograms of Log2(size(T )) for M(US, compexp, errTol)

The grey scale visualization of the distributed triangle interpolation errors
of Figure 2(A) shows that on each patch of constant triangle shape and size,
the errors are larger for the triangles nearer to the right side of the patch. At
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the boundary of two patches, the neighouring triangle of the larger size are
shaded dark and those of the smaller size are light indicating a discrete step
in error size across this boundary. The error step is of relative size ≈ 1

2 since
the triangle edge size change is 1√

(2)
. The gradual darkening of the error grey

scale across the patches is reflected in the relatively block shaped histogram
of the distribution of log10(|e|T ) shown in Figure 2(B).

We now show that the features of this example have some generality.

3.2 Isosceles, Right Angled Triangle Meshes

We will refer to a mesh in which each triangle is an IRAT as an IRATM.
Evidently, an IRATM is a Delaunay mesh that meets the non-obtuse bound-
ary triangle criteria for the Delaunay refinement procedure DelRefine(M) of
§2. The next lemma shows that for a class of common Delaunay refinement
methods, if M0 is an IRATM, then all Mn of the refinement sequence are
IRATMs.

Lemma 1. Let M be an IRATM, and let T be a triangle selected using by
either Lepp or largest triangle first ordering. Let Vinsert be either LEBis(T )
or CC(T ), and let M ′ be the result of Delaunay insertion of Vinsert into M .
Then M ′ is an IRATM.

Proof If the longest edge of T is a boundary edge, then the lemma is
clearly true. Assume that the longest edge of T is not on the boundary, and
let T be its neighbour on this edge. Then T cannot be smaller than T . But
since T has been selected by either Lepp or largest first ordering, T cannot
be larger than T . So we conclude that T is the same size as T and the two
triangles form a square. SelectNewVertex will choose the centre of the square
for Vcand. Vcand does not encroach on any boundary edge, nor does it lie in the
circumcircle of any mesh triangle other than T and T . Hence Vinsert = Vcand

and DelaunayInsert breaks T ∪T into 4 IRATs in M ′ and all other triangles
in M ′ are unchanged from M .

Corollary 1. Let M0 be an IRATM, then the same mesh is obtained by the
following three refinement methods applied to M0:

i) adaptive h-refinement with simple longest edge bisection
ii), iii) ADR with either CC(T ) or LEBis(T ) for Vinsert

provided that either Lepp or largest triangle first ordering is used in the se-
lection of T for refinement and the empty diametral circle encroachment rule
(,or no encroachment rule,) is used.

This observation muddies the water for establishing a general merit of
combining Delaunay insertion with adaptive h-refinement to get ADR, or
some merits of using one of LEBis(T ) or CC(T ) in preference to the other.
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(A) LEBis(T ) : 3750 vertices (B) CC(T ) : 3802 vertices
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Fig. 4. ADR with strong encroachment test: errTol = 10−3

Any such theoretical statements of merit would have to be contingent on the
choice of initial mesh.

Before you try this with your favourite ADR code, note that, while mathe-
matically correct, the proof of the lemma depends heavily on exact arithmetic.
For IRATs, the circumcircle of T is the diametral circle of its longest edge.
So empty circle testing and encroachment testing are basically the same. The
binary outcome of the exact arithmetic encroachment test is, however, lost in
floating point computation. If inexact arithmetic is used, there are in effect
three outcomes:

1. the vertex is definitely not inside the diametral circle
2. it is definitely inside the circle
3. the test is not definitive.

In such arithmetic, the property that ADR maps an IRATM into a bigger
IRATM will hold if we define encroachment to occur only if the vertex is def-
initely inside the diametral circle. We will refer to this as the weak encroach-
ment test. For the meshes created in §3.1, we used this criterion. If, however,
we change the criterion to be that encroachment takes place unless the vertex
is definitely outside the diametral, circle, then we get the strong encroachment
test. Two things ensue from using the strong test in SelectNewVertex. We
do not get a sequence of IRATM meshes, and there is a difference between us-
ing the LEBis(T ) choice of Vcand and the CC(T ) choice. In Figure 4(A) and
(B), we show the two meshes generated by the strong test and the LEBis(T )
choice of Vcand in (A) and the CC(T ) choice in (B). While the meshes are
evidently not IRATMs, and clearly differ, the sizes are not significantly dif-
ferent, i.e. the variation between the meshes in Figures 2(A), 4(A), and 4(B)
is less than 12%.
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(A) Comparison mesh - 1938 vertices (B) Log10(|err|2,A(()T ) histogram

Fig. 5. Comparison mesh for complex exponential; (3)

3.3 A Comparison Mesh

In §3.1, we noted that the light shading of the error gray scale in the triangles
on the right sides of the uniform mesh patches of Figure 2(A) indicate some
inefficiencies in this mesh. These triangles are smaller than necessary, which
also shows in the block structure of the error histogram in Figure 2(B). We can
get some insight into the extent of this inefficiency by creating a comparison
mesh, Mcomp using techniques discussed in the next section that are based on
some theory of mesh efficiency which is reviewed in §5. For errTol = 10−3,
Mcomp is shown in Figure 5(A) and NV (Mcomp) = 1938. A histogram of
log10(|err|2,A(T )) is shown in Figure 5(B). This histogram shows that the
mesh is strongly equidistributing; i.e. that |err|2,A(T ) ≈ errTol for most of
the triangles in Mcomp. This histogram also shows that Mcomp is not, strictly
speaking, a feasible mesh; i.e. it contains some triangles that do not meet
the error tolerance. Meshes that are fully equidistributing to a specified er-
ror tolerance are theoretically possible. But constructing them is as difficult
as constructing MMaxEff . Here we propose Mcomp as an indication that a
MMaxEff has about 1900 to 2000 vertices. This is evidence for our conclusion
that the ADR generated meshes, M(US, ce, 10−3) that we have shown are
about twice as big as necessary.

3.4 A Modified Domain: The Hollow Square

Perhaps efficiency factor of about 2 that we observed for Mcomp compared to
meshes of Figures 2 or 4 is due to taking D as the unit square and /or M0

as an IRATM. In this section, we look at an alternative D = HolloSq which
is the hollow square created by removing the square from (.2,.2) to (.8,.8)
from the unit square as shown in Figure 6. M0 is the 8 triangle mesh on HS.
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(A) LEBis(T ) : 3141 vertices (B) CC(T ) : 3227 vertices

Fig. 6. MLEBis(HolloSq, compexp, 10−3) and MCC(HolloSq, compexp, 10−3)

Despite the difference in appearance of the the two meshes in Figure 6, they
are essentially the same size i.e. neither LEBis(T ) nor CC(T ) appear to pro-
vide an efficiency advantage over the other. This effect persists for a range of
errTol. Figure 7 shows that the sizes of MLEBis(HolloSq, compexp, errTol)
and MCC(HolloSq, compexp, errTol) are essentially the same for 10−4.2 ≤
errTol ≤ 10−2.4. A least squares fit to this data produces the linear relation-
ship NV (M) ≈ 3.15/errTol.

4 Creating a Comparison Mesh

We discuss the following steps for creating a comparison mesh like that of
Figure 5(A).

1) Introduce an appropriate new coordinate system by a transformation

(u, v) = G(x, y) (6)

which maps D in the (x, y) plane 1-1 onto a domain D in the (u, v) plane.
Let the inverse transformation be (x, y) = g(u, v).

Figure 6 (A) shows MLEBis(HolloSq, compexp, 10−3) with 3141 vertices,, cre-
ated using LEBis(T ) and Figure 6 (B) shows MCC(HolloSq, compexp, 10−3)
with 3227 vertices, created using CC(T ) . MLEBis(HolloSq, ce, 10−3) clearly
shows the pattern of patches of regular submeshes that characterizes
M(US, compexp, 10−3) of Figure 2(A) and Figure 4(A). It seems likely that
this is related to the shape stability of simple longest edge bisection stud-
ied by Adler, [1]. By comparison, MCC(HolloSq, compexp, 10−3) in Figure
6(B) shows no such patterns; it, and Figure 4(B),show relatively continu-
ous transitions of triangle edge lengths with significantly more irregularity.
These characteristics of the two vertex insertion methods were reported by
Baker, [2].
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2) Define data function

F (u, v) = f(g(u, v)) for(u, v) ∈ D (7)

for (u, v) ∈ D to be the function corresponding to f invariant under (6).
Create an appropriate mesh, M comp = M(D,F, errTol)

3) Using (x, y) = g(u, v), map M comp to Mcomp on D.

Key to getting a suitable comparison mesh are the interpretations of ‘ap-
propriate’ as it appears in steps 1) and 2) of (7). These explanations are based
on some theory of maximal efficiency meshes which is, unfortunately, incom-
plete and technically complex, even for two dimensions. We give an overview
of this theory in §5. The choices of appropriate G(x, y) and M comp are quite
problem specific and customized; so these techniques for creating Mcomp are
not practical general mesh generation techniques.

Note that in looking for efficient meshes for pwlinear interpolation, we are
not concerned with whether they are Delaunay meshes or not. While we do
create a Delaunay mesh for M comp in step 2, the inverse mapping of step 3
does not ensure that Mcomp is Delaunay, nor do we care.

(A) NV (M(HS, ce, errTol)) = 3.15/errTol
for either LEBis or CC

(B) MComp, NV (M̄) = 1938 vertices

Fig. 7.

For the complex exponential, D’Azevedo, [9], showed that an appropriate
transformation is4

u = G1(x, y) =
√

20/eπ (eπ xcos(π y)− 1) (8)

v = G2(x, y) =
√

20/eπ eπ xsin(π y)

4Actually (8) is the transformation computed by D’Azevedo rotated through 90◦.

¯
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The image of the unit square in the (x, y) plane under this transformation
is shown in Figure 7(B). It is a semi-ring in the upper half of the (u, v) plane,
centred on (−c, 0), for c =

√
20/eπ = .1933 . . . and having inner radius c, and

outer radius 2
√

5 = 4.472 . . ..
Figure 7(B) also shows the version of M comp used as per step 2 of (7)

to create Mcomp, shown in Figure 5(A), as per step 3. To create M comp, we
use a small amount of ADR applied to an initial Delaunay mesh, M0. M0

is constructed from a regular grid of vertices controlled by a grid spacing
parameter, h. The boundary vertices form a uniformly spaced partition of ∂D
of spacing ≈ h, and the internal vertices lie on a grid (j h, k

√
5h) for integers

j and k corresponding to grid points inside D at a distance greater than h
from the boundary. ADR is then used to reduce the size of the triangles of M0

to meet an error criterion, errTol for F , while retaining much of the desired
shape in the resulting triangles. We pick h large enough that M0 requires at
least every internal triangle to be refined at least once.

This example can provide some simple intuitive insight into the term ‘ap-
propriate’ for G of step 1 and M comp of step 2 in this case. We know that the
mesh spacing in M should be small on the x = 1 boundary of the unit square
(for accuracy) and should be large on the x = 0 boundary (for efficiency). If
such a mesh is to be the transform of an essentially uniform mesh on D, then
the image of the x = 1 boundary must be much longer that the image of the
x = 0 boundary. G accomplishes this by mapping the x = 1 boundary to the
large outer circle, and the x = 0 boundary onto the small inner circle, of the
boundary of D.

As described in §5, the ideal comparison mesh would be a regular mesh
of essentially uniform triangles of appropriate shape. Exact uniformity is not
possible because of the geometry of D and not useful because of the ap-
proximate relation between |err|2,A(T , F ) and |err|2,A(T, f) when T and T
are images under (8). Step 2 at (7) has two continuous control parameters,
h and errTol, that can be tuned to control the size of Mcomp and the spec-
trum of |err|2,A(T ). However, the variation of these outcomes with the control
parameters is only approximately continuous; there are discrete jumps in be-
haviour due to the ‘stiffness’ of essentially uniform meshes. For this reason,
we have presented the mesh of Figures 5(A) and 7(B) as a comparison mesh
even though it is not feasible, rather than a feasible comparison mesh with a
spectrum that peaks significantly below the error tolerance of 10−3.

5 An Overview of Some Theory
of Maximal Efficiency Meshes

In the introduction, we describe a goal of adaptive h-refinement as producing
meshes that locate the vertices efficiently for the control of the piecewise linear
approximation purpose of the mesh. We also mention that there is a limit to
how efficiently this can be achieved. The mathematical formulation of this
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limit is a maximal efficiency mesh, MmaxEff , which minimizes the number
of vertices over the set of meshes for which maxT∈M (||err||2,A(T )) ≤ errTol.
We can view ADR as a method for generating meshes, M(D, f, errTol) that
are feasible meshes for the constrained optimization problem of determining
MmaxEff . In this section, we give an overview of some of the theory pertaining
to MmaxEff . We start with the simple case of quadratic f , then discuss what
can be said for more general functions, and then look at harmonic functions
in particular.

5.1 The Quadratic Data Function Model

Much of our understanding of max efficiency meshes is guided by analysis
of f(x, y) as a quadratic polynomial, which has produced some rigorously
correct results and helpful insights. Three key components of the study of
optimal meshes for quadratic f are

a) an explicit formula for ||err||2,A(T, f) that shows its dependence on the
size and shape of T

b) an affine transformation to a new coordinate system that reduces the for-
mula of a) to one of two canonical cases.

c) a characterization of the maximal efficiency triangle shapes for the two
canonical cases.

The transformation of b) is then used to reduce optimal meshing problems
to one of two canonical optimal meshing problems. The characterization of c)
provides some indication of the nature of solutions to these problems, including
some special case, non-typical solutions.

Component a): Error in Linear Approximation of Quadratic Data

Let f(x, y) = 1
2H1,1 x2 + H1,2 xy + 1

2H2,2 y2 where H is the constant Hessian
of f . In developing a formula for ||err||2,A(T, f) for this quadratic f , Nadler
[15], introduces quantities, dj , associated with the jth edge of T which can be
expressed in native coordinates, (x, y), by the quadratic form

dj+1 =
1
2
(Pj+1 − Pj ,H(Pj+1 − Pj)) for Pj = (xj , yj) (9)

The error is then given by

||err||2,A(T, f) =
1

180
((d1 + d2 + d3)2 + d2

1 + d2
2 + d2

3). (10)

See also Berzins, [6]. Note from (10) that dj has units of error; so they are
invariant under affine changes of coordinates.
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Component b): Canonical Forms

We now develop an affine transformation from native coordinates, (x, y) to
coordinates, (u, v) in which the dj have a canonical form. These new coor-
dinates are commonly called stretched coordinates. Because H is symmetric,
there is an orthogonal matrix, M such that M t H M is diagonal, D; the diag-
onal entries of D, Dk k = 1, 2 being the eigenvalues of H. Consequently, we
can rewrite (9) as

dj+1 =
1
2
(M (Pj+1 − Pj), D M (Pj+1 − Pj))

M Pj are rotated coordinates of Pj which we will denote by (pj , qj). Assuming
that |D1| ≤ D2, we can then write

dj+1 =
1
2
D2 (a2(pj+1 − pj)2 + (qj+1 − qj)2) (11)

where a2 = D1/D2, so |a2| ≤ 1. For simplicity, we assume a2 
= 0, avoiding
the degenerate case.

The transformation to stretched coordinates takes the form
(

u
v

)
=
√

D2

(√
|a2| 0
0 1

)
M

(
x
y

)
=
(

G1(x, y)
G2(x, y)

)
. (12)

It is useful to introduce the anisotropy ratio, a, which carries the sign of a2, as
a = sign(a2)

√
|a2| Under this transformation, we have the following forms

for dj

if a > 0 dj+1 = 1
2 ( (uj+1 − uj)2 + (vj+1 − vj)2 ) the definite case

if a < 0 dj+1 = 1
2 (−(uj+1 − uj)2 + (vj+1 − vj)2 ) the indefinite case (13)

Stretched coordinates are useful here because the maximal efficiency mesh-
ing problem is invariant under (12) in the sense that a solution in one coor-
dinate system transforms to a solution in the other. Let us note the details
involved in this assertion. If we continue to use F (u, v) = f(g(u, v)) as in-
troduced in §3.3, we can regard functions (f,D) and (F,D) as one abstract
quadratic function, invariant under (12). However, by virtue of (13), we can
see that from the point of view of error behaviour, we can assume

F (u, v) = (u2 + v2)/2 if a > 0 (14)
= (−u2 + v2)/2 if a < 0

which we will denote by F (u, v) = (±u2 + v2)/2.
We can extend the mapping between D and D to be a mapping of an

arbitrary mesh M on D to mesh M on D in which each triangle T ∈ M is
mapped exactly to a triangle T ∈ M . In this sense, we could say that M
and M are invariant under (12). Consequently, the piecewise linear function
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F (pl)(u, v) can be defined either as the piecewise linear interpolant of F on
M , or the transform of f (pl)(x, y); they are equivalent. Using this invariance
of f (pl)(x, y) and the invariance of the dk terms of Nadler’s formula, we can
see that ||err||2,A(T, f) is invariant, i.e. can be calculated in either coordinate
system.

Consequently, we have the following equivalences

M(D, f, errTol) ⇐⇒ M(D,F, errTol) (15)
MmaxEff ) ⇐⇒ MmaxEff

meaning that if meshes M and M are images under (12), then M meets the
error tolerance, errTol if, and only if, M does, and M is a maximal effiency
mesh if, and only if, M is.

Component c): Maximal Efficiency Triangles

A triangle is a maximal efficiency triangle, TmaxEff , if it maximizes A(T ) over
the set of triangles such that ||err||2,A(T ) ≤ errTol. The maximal efficiency
triangle for a general quadratic f is the transform of its canonical case. Both
D’Azevedo, [9], and Nadler [15], identified the shapes of maximal efficiency
triangles for the canonical cases. For the definite case, the maximal efficiency
triangles are equilateral with any orientation. For the indefinite case, there are
several isosceles shapes for TmaxEff ; however, their optimality is orientation
dependent, which complicates the construction of MmaxEff for the indefinite
case. One of these shapes is the isosceles triangle with horizonal base and
height to base ratio

√
5/2.

If, per chance, domain D could be tiled with maximal efficiency triangles
for errTol, then the resulting mesh would be MmaxEff for D. Then, in turn,
the mesh obtained by transforming MmaxEff to the domain D would be
MmaxEff for (D, f, errTol).

5.2 More General Data Functions

If f(x, y) is not quadratic, then, assuming that f is smooth, it can be approx-
imated near P by a quadratic based on the Hessian, Hf (P ). It is common
in meshing algorithms to use the quadratic f theory locally, i.e. for triangles
that are small enough to qualify as being ‘near P ’. However, this is of limited
value in the global view of meshing needed for the theory of maximal effi-
ciency meshes. So we turn to some classical differential geometry for the tools
we need.

If the line segment from Pj to Pj+1 is considered to be infinitely short, i.e.
by setting Pj+1 = Pj + dP for differential dP , then, in native coordinates, (9)
becomes the differential edge length formula

ds2 = (dx,Hf (P ) dx) (16)
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In the case that Hf (P ) is positive definite, (16) is the Riemannian geom-
etry formula for differential arc length for metric tensor Hf . For the case
in which Hf (P ) is indefinite, (16) is the formula for differential arc length
in a Minkowski, or hyperbolic, geometry. Classical differential geometry
has established that for particular classes of metric tensors, it is possible
to define stretched coordinates globally for the domain by transformations
(u, v) = G(x, y). The differential edge length formulae in the (u, v) coordi-
nates are either Euclidean, i.e. ds2 = du2 + dv2, or canonical hyperbolic,
i.e. ds2 = −du2 + dv2, Sokolnikoff, [27], Chapter 2. These are the same two
canonical cases as we identified at (13).

In [9], D’Azevedo determined sufficient conditions on Hf for a global trans-
formation to stretched coordinates to exist, and describes a procedure for
constructing G(x, y). These conditions are met, in particular, by harmonic
functions and the procedure applied to the complex exponential data func-
tion, (3) results in essentially the transformation (8).

Since these transformations to stretched coordinates are not generally
affine, triangles in stretched coordinates are mapped onto ‘curved triangles’
i.e. three sided patches connecting the images of the vertices with curved sides.
In particular, ||err||2,A(T, f) is not invariant. Consequently, the problems of
determining MmaxEff for D, f and errTol and MmaxEff for D,F and errTol
no longer enjoy the equivalence that we noted at (15) for quadratic data func-
tions. It is not clear whether such equivalences would hold in some asymp-
totic sense as errTol → 0. We have observed in calculations that the ratio
|err|2,A(T , F )/|err|2,A(T, f) ≈ .75 as T becomes small. This suggests that
|err|2,A(T , F ) may not be even a consistent approximation to |err|2,A(T, f)
for small T . These observations have implications for the construction of com-
parison meshes that we present in §4. We introduce a separate error tolerance
for tuning the comparison mesh and we report the error statistics for Mcomp

in native coordinates, (x, y).

5.3 Application to Harmonic Functions

For harmonic data functions fyy(x, y) = −fxx(x, y) so Hf has the special form

Hf =
(

r s
s −r

)
(17)

for r = fxx(x, y), s = fxy(x, y). The eigenvalues of (17) are D2 =
√

r2 + s2,
D1 = −D2; hence, non-degenerate Hf (x, y) is always indefinite. The anisotropy
ratio, a, of (11) is exactly −1, so, in this sense, the error metric is isotropic.
However, because Hf is always indefinite, the error will show some directional
dependence and maximal efficiency triangles have orientation restrictions and
are not equilateral as discussed in §5.1.

The D’Azevedo global transformation to stretched coordinates can be com-
puted for harmonic functions, and, in particular,for the complex exponential,
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(3) as per (8) which was used to construct the image domain, D in the (u, v)
plane shown in Figure 7(B). Using ADR, M = M(D, (−u2 + v2)/2, errTol)
was created as described in §4. The initial mesh for M had a regular interior
grid which, if refined once, would be composed of maximal efficiency triangles
for the indefinite case in stretched coordinates.

6 The Double Pole: A Second Example Data Function

If we look at the mesh characteristics and efficiency of ADR applied to an-
other harmonic data function, we find that our observations of §3 for the
complex exponential are confirmed. In this section, we demonstrate this using
the ‘double pole’ data funtion

dp(x, y) = Re(1/(z−c)2) = ( (x−c1)2+(y−c2)2 )/( (x−c1)2+(y−c2)2 )2 (18)

on the unit square, for pole at c = (1.1, .5).

(A) M(US, dp, .0045) : 1281 vertices (B) Mcomp : 677 vertices

Fig. 8. ADR and comparison meshes for double pole data function

For a two triangle initial mesh, with errTol = .0045, and the weak en-
croachment criterion, all methods produce the IRATM shown in Figure 8(A)
The D’Azevedo transformation for a double pole at (c1, c2) is

u =
√

6(1−(x−c1))/d2 ; v =
√

6(y−c2)/d2 for d2 = (x−c1)2+(y−c2)2 (19)

The domain, D in the (u, v) plane corresponding to D= the unit square is
shown in Figure 8(B). It is bounded by arcs from four circles. These circles
have centers denoted (uck, vck) and radii denote by rk for k = 1 . . . 4 in the
following table
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(A) IRATM : histogram of |err|2,A(T ) (B) Mcomp : histogram of |err|2,A(T )

Fig. 9. Error spectra for adaptive and comparison meshes for double pole data
function

(uc1, vc1) = s(1,−1/(2 ∗ c2)) ; r1 = s/(2c2)
(uc2, vc2) = s(1 + 1/(2(c1 − 1)) ; r2 = s/(2|c1 − 1|)
(uc3, vc3) = s(1, 1/(2 ∗ c2) ; r3 = s/(2c2)
(uc4, vc4) = s(1 + 1/(2c1) ; r4 = s/(2c1)

where s =
√

6.

7 Observations and Conclusions

There are several observations that we have made that are consistent across
the computations that we have described, and others that we performed in
the course of this study. A primary objective was to estimate the efficiency
of ADR applied to isotropic data functions and using Euclidean geometry
Delaunay meshes. We observed that the meshes are typically about twice the
size of maximal efficiency meshes for these cases. It seems reasonable to us
that a similar efficiency would be obtained by ADR for anisotropic data, using
appropriate stretched coordinates.

Our review of §2 identified several versions of adaptive refinement and in
particular, we reported on computations using the alternative choices of inser-
tion vertex, LEBis(T ) and CC(T ) . In §3, we noted that the different versions
all produce that same resulting mesh, if the initial mesh is an IRATM, and if
the implementations in inexact arithmetic use a weak encroachment criterion.
The relevance of this observation for our efficiency study is that any efficiency
differences between the versions must come from features associated with the
initial mesh. If the initial mesh is not an IRATM, or a strong encroachment

The error histograms for M(US, dp, .0045) of Figure 8(A)) and Mcomp,
transformed from Figure 8(B), are shown in Figures 9(A) and (B) respectively.
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criterion is used, then difference in the resulting meshes were quite apparent,
but differences in efficiency were insignificant, (Figures 4, 6).

The form of the error histograms for the ADR meshes provide some insight
into the nature of their efficiency. Figures 2(B) (complex exponential) and 9(B)
both show that log10(errTol) − .6 ≤ log10(|err|2,A(T )) ≤ log10(errTol) and
10.−.6 ≈ 1/4. I.e.

errTol/4 ≤ |err|2,A(T ) ≤ errTol

The lower bound of errTol/4 for |err|2,A(T ) was universally observed in our
computations, and the distribution of |err|2,A(T ) in the interval (errTol/4,
errTol) is typically fairly uniform as shown in Figures 2(B) and 9(B). So the
average error is about 5errTol/8, which is roughly consistent with the mesh
having twice as many triangles as would be needed to meet the error criterion
of errTol.

Perhaps this amount of inefficiency in ADR meshes is acceptable for many
purposes. But if we want to achieve more efficiency, where should we look?
Perhaps some form of smoothing could focus the error histogram distribu-
tion at its average value enough to be a significant remedy. However, it does
not seem obvious how this would be achieved, and at what price. Note that
D’Azevedo, [10], demonstrated a similar level of efficiency in the meshes gen-
erated by PLTMG, which incorporated a smoothing.

We have presented efficiency of ADR for refinement based on the L2

average error, ||err||2,A(T ). It would be interesting to know the extent to
which our observations would carry over to an energy average norm, i.e.
(
∫

T
(∂err/∂x)2 + (∂err/∂y)2dA/ A)1/2. It would also be very interesting to

know about the efficiency of ADR for three dimensions. However, there are
substantial difficulties in exending the technique of this paper to 3-D. In par-
ticular, neither the theory of maximal efficiency triangles for quadratic data
nor techniques for computing a global transform to stretched coordinates are
known.
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