Production of ¹¹C-Labeled Radiopharmaceuticals

Decay Characteristics of ¹¹C

Half-life= 20.3 minDecay modes:99.8% by positron emission and
0.2% by electron captureDecay product: ^{11}B Maximal positron energy= 0.96 MeVMaximal range in water= 4.1 mm.

Specific Radioactivity Considerations

Carrier is the non-radioactive version of a radiopharmaceutical. **Pseudo-carrier** is a term used to describe material closely resembling true carrier in some respect (*e.g.* biological activity, receptor binding affinity).

Specific radioactivity of a radiopharmaceutical is defined as the ratio of radioactivity (Ci) to accompanying carrier (mol), and is expressed in units of Ci/mol or equivalent.

For ¹¹C-labeled radiopharmaceuticals there is substantial dilution with carrier. The carrier usually remains constant, while the radioactivity decays. Hence, specific radioactivity generally decreases according to the half-life of the radioisotope. Specific radioactivities for PET radiopharmaceuticals should be cited with respect to a particular time *e.g.* end of radionuclide production (**EOB**), end of synthesis (**EOS**) or time of injection (**TOI**).

Qualitative Descriptions of Specific Radioactivity

Carrier-free (CF)

A radiopharmaceutical is carrier-free (**CF**) when there is no accompanying carrier.

No-carrier-added (NCA)

A radiopharmaceutical is no-carrier added (**NCA**) when no source of carrier has been added deliberately during its production, and when all reasonable precautions have been taken against the intrusion of sources of carrier.

Carrier-added (CA)

A radiopharmaceutical is carrier-added (CA) when a source of carrier has been added deliberately during its production.

Carrier & Pseudo-carrier

¹¹C - Theoretical Maximal *vs* Practical Specific Radioactivity

 $-d\mathbf{N}/dt = \lambda \mathbf{N}$ where $\lambda = \ln 2/t_{1/2}$ and \mathbf{N} is number of radionuclides
1 mole is an Avogadro number of atoms = 6.02×10^{23} atoms.
Therefore radioactivity per mole = $(0.693/20.3 \times 60) \times 6.02 \times 10^{23}$ Bq. $= 3.425 \times 10^{20}$ Bq/mol $= 3.425 \times 10^{20}$ Bq/mol $= 3.425 \times 10^{14}$ Bq/µmol $= 9.25 \times 10^{3}$ Ci/µmol ~ 10^{4} Ci/µmol [1 Ci = 37GBq]

Practical specific radioactivities rarely exceed 100 Ci/ μ mol and are typically ~10 Ci/ μ mol. *I.e.* dilution by carrier is typically ~ **1000**.

The Importance of Specific Radioactivity

Radiopharmaceuticals

Radiotracers

trace in vivo processes *e.g.* metabolism blood flow

Generally, high specific radioactivity **is not** required

Radioligands

bind to molecular targets *e.g.* neuroreceptors transporter proteins enzymes

Generally, high specific radioactivity **is** required

The Importance of Time & Process Efficiency

Progress of a Radiosynthesis with Carbon-11

Hot-cells for Radiochemistry

Automated [*O-methyl-*¹¹C]Raclopride Synthesis

Automated [¹¹C]Raclopride Synthesis Apparatus

Production Methods for ¹¹C

Reaction Targe	et Thresh'o isotope abundance	Thresh'd Max isotope energy indance section		at Calc'd th max cross satura	nick target yield at ation	
	(%)	(MeV)	(mb)	(MeV)	(GBq/µA)	
¹⁰ B(d,n) ¹¹ C	19.90	0	~ 200	3.0–5.4	$0.82 (E_d = 10 \text{ MeV})$	
¹¹ B(d,2n) ¹¹ C	80.10	5.9	48	10	ŭ	
${}^{11}B(p,n)^{11}C$	80.10	3.02	180	6.0– 6.5		
_			~ 350	8.7–10	4.1 ($E_p = 10 \text{ MeV}$)	
					7.8 $(E_n^r = 15 \text{ MeV})$	
$^{14}N(p,\alpha)^{11}C$	99.63	3.13	~ 290	~ 7.5	r	
			146	6.9	$2.30 (E_p = 10 \text{ MeV})$	
					$7.25 (E_p^r = 15 \text{ MeV})$	

Currently, the ${}^{14}N(p,\alpha){}^{11}C$ reaction is nearly always used.

Typical Production Parameters

Production reaction	Irradiation conditions	Main product(s)	Typical yield	Typical specific activity*
	(MeV, µA, min)		(GBq)	(GBq/µmol)
p on ${}^{14}N_2 (0.1\% O_2)$ p on ${}^{14}N_2 (5\% H_2)$	19, 30, 30 18, 30, 40	¹¹ CO ₂ ¹¹ CH ₄	67 67	2 150 2 130

*Varies greatly according to production system (target etc). Values up to 100 Ci/ μ mol (3.7 TBq/ μ mol) are possible for [¹¹C]methane.

Organic Chemistry with ¹¹C

In principle, ¹¹C is a candidate for the **isotopic** or **non-isotopic** labeling of any organic compound and is thus of major importance to PET.

Isotopic labeling: ¹¹C replaces stable ${}^{12}C/{}^{13}C$ in the molecule. The biological fate of the molecule is *virtually* unchanged.

Non-isotopic labeling: a group containing ¹¹C is added to the molecule of interest, producing a new compound with different properties to the original.

Isotopic and Non-isotopic

[3-¹¹C]3-*O*-methyl-Glucose Non-isotopically labeled glucose Isotopically labeled 3-*O*-methyl-glucose

Kinetic Considerations in Radiochemistry with Carbon-

Precursor + $[^{11}C]$ Labeling agent \longrightarrow $[^{11}C]$ Product

The reaction time needs to be as short as possible. Clearly the reactions needs to be driven to give useful yields within one physical half-life.

Generally, fast reactions are promoted by:

- using a large excess of precursor to consume labeling agent
- use of high precursor concentration in small volumes (Law of Mass Action)
- use of sealed vessels for elevated reaction temperature

Other means may be used *e.g.*

- use of microwaves, sonication
- use of solid supports for reagents

Yield Description and Measurement

• The practical radiochemical yield (%) of [¹¹C]product from a ¹¹C-labeling agent is defined as:

(100 x [¹¹C]P)/[¹¹C]L

where $[^{11}C]L$ is the initial radioactivity of the labeling agent and $[^{11}C]P$ is the measured radioactivity of the product.

• The conversion of labeling agent into radioactive product is given by the **decay-corrected radiochemical yield** (%):

$(100 \text{ x} [^{11}\text{C}]\text{P.e}^{\lambda t})/[^{11}\text{C}]\text{L}$

where t is the time taken for the radiosynthesis and λ is the decay constant for carbon-11.

a. Reactions with Grignard Reagents

- High specific radioactivity can be achieved if precautions are taken.
- The reactions must be carried out under controlled conditions, to avoid possible side reactions.

b. Reactions with Alkyllithiums

- [¹¹C]Methyl triflate is generally more reactive than [¹¹C]methyl iodide.
- Labeling reactions can be carried out with smaller amounts of precursor, at lower temperatures and over shorter times.

agents e.g. [¹¹C]methanesulfonyl chloride.

