BoomerAMG

A Parallel Implementation of Algebraic Multigrid

Robert D. Falgout
Van Emden Henson
Jim E. Jones

Ulrike Meier Yang
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
March 22, 1999

AMG has two phases:

BoomerAMG

- Setup Phase
- Select Coarse "grids," $\Omega^{m+1}, m=1,2, \ldots$
- Define interpolation, $\quad I_{m+1}^{m}, m=1,2, \ldots$
- Define restriction and coarse-grid operators

$$
I_{m}^{m+1}=\left(I_{m+1}^{m}\right)^{T} \quad A^{m+1}=I_{m}^{m+1} A^{m} I_{m+1}^{m}
$$

- Solve Phase
- Standard multigrid operations, e.g., V-cycle, Wcycle, FMG, etc
- Note: Only the selection of coarse grids does not parallelize well using existing techniques!

We must parallelize these steps:

BoomerAMG

- The Setup Phase
- Coarse Grid Selection
- Construction of Prolongation operator, P
- Construction of coarse-grid operators by Galerkin method, RAP, R=P'
- The Solve Phase
- Residual Calculation
- Relaxation
- Prolongation
- Restriction

Parallelizing the Solve Phase

BoomerAMG

- The Solve Phase
- Residual Calculation
- entails Axpy matvec: $y<-a A x+b y$.
- Relaxation: use hybrid Jacobi-Gauß-Seidel (Jacobi for off-processor data, GS for onprocessor data)
- Prolongation
- requires Matvec
- Restriction
- requires MatvecT

Basic concept: Smooth error means "small" residuals

- Error that is slow to converge obeys:

$$
\begin{aligned}
& e^{k+1}=\left(I-Q^{-1} A\right) e^{k} ; \text { hence }\left(I-Q^{-1} A\right) e \approx e \\
& \Rightarrow Q^{-1} A e \approx 0 \Rightarrow r \approx 0
\end{aligned}
$$

- Define: i depends on \boldsymbol{j} (and \boldsymbol{j} influences \boldsymbol{i}) if

$$
-a_{i j} \geq \theta \max _{k \neq i}\left\{-a_{i k}\right\}, \quad 0<\theta \leq 1
$$

- The set of dependencies of \boldsymbol{i} is given by

$$
\boldsymbol{S}_{\boldsymbol{i}}=\left\{j:-a_{i j}>\theta \max _{j \neq i}-a_{i j}\right\}
$$

Choosing the Coarse Grid

BoomerAMG

- Two Criteria
- (C1) For each $i \in \boldsymbol{F}$, each point $j \in S_{i}$ should either be in C or should be strongly connected to at least one point in C_{i}
- (C2) C should be a maximal subset with the property that no two C-points are strongly connected to each other.
- Satisfying both (C1) and (C2) is sometimes impossible. We use (C2) as a guide while enforcing (C1).

Ruge AMG: start

BoomerAMG

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt 1

Boomer AMG

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select F-pt 1

BoomerAMG

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG:

 update F-pt neighbors 1
BoomerAMG

- select C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt 2

BoomerAMG

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select F-pt 2

BoomerAMG

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG:

 update F-pt neighbors 2
BoomerAMG

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt, F-pts, update neighbors 3
 Boomer AMG

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt, F-pts, BoomerAMG update neighbors 4

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt, F-pts, update neighbors 5
 BoomerAMG

- select next C-pt with maximal measure
- select neighbors as F-pts
- update measures of F-pt neighbors

Ruge AMG: select C-pt, F-pts, update neighbors 6,7,8,9
 Boomer AMG

A second pass is needed to enforce (C1)

BoomerAMG

- First-pass coarsening of 5 point Laplacian , periodic boundary conditions
- Numerous F-F dependencies among points not sharing common C-point
- A second "coloring" pass is made, changing F-points to C points, as needed, to ensure (C1).

A new approach: the Cleary-LJP algorithm

BoomerAMG

- The Ruge algorithm is inherently sequential.
- A new algorithm was proposed by Andrew Cleary , following parallel-independent-set algorithms developed by Luby and later by Jones \& Plasssman
- Resulting coarsening algorithm (Cleary-LJP) is fully parallel, independent of the number of processors or processor topology. Serial prototype early 98, parallel code late 98.

Cleary-LJP start

BoomerAMG

- select C-pts with maximal measure locally
- remove neighbor edges
- update neighbor measures

Cleary-LJP select 1

BoomerAMG

- select C-pts with maximal measure locally
- remove neighbor edges
- update neighbor measures

Cleary-LJP:
 remove and update 1

BoomerAMG

- select C-pts with maximal measure locally
- remove neighbor edges
- update neighbor measures

Cleary-LJP: select 2

Boomer AMG

- select C-pts with maximal measure locally
- remove neighbor edges
- update neighbor measures

Cleary-LJP:
 remove and update 2

BoomerAMG

- select C-pts with maximal measure locally
- remove neighbor edges
- update neighbor measures

Cleary-LJP: select 3

BoomerAMG

Cleary-LJP: final grid

Boomer AMG

- select C-pts with maximal measure locally
- remove neighbor edges
- update neighbor measures

Cleary-LJP results

Boomer AMG

- 3D 7pt Laplacian, 125,000 points/proc. Setup phase shows poor scalability
Solve phase shows relatively good scalability
Operator complexity (ratio: total matrix nonzeros, all grids, to nonzeros, fine grid) quite high ~2025

Cleary-LJP results

BoomerAMG

7 pt 3D Laplacian			27 pt 3D Laplacian		9 pt 2D Laplacian	
Procs.	Setup	Op. Cplx	Setup	Op. Cplx	Setup	Op. Cplx
1	19	18.37	16	1.83	6	1.94
2	48	20.01	44	1.89	7	1.94
4	142	21.89	138	2.01	8	1.95
8	354	23.45	318	2.16	11	1.95
16	681	24.41	595	2.19	14	1.96
32	1405	25.39	1009	2.31	14	1.96
64	2992	26.39	1975	2.93	18	1.96
128	3030	27.06	2010	2.43	32	1.96
256					49	1.96
Procs	Solve	C.F.	Solve	C.F.	Solve	C.F.
1	49	0.176	22	0.116	22	0.312
2	55	0.199	24	0.147	23	0.338
4	61	0.217	25	0.167	24	0.391
8	67	0.267	28	0.271	24	0.382
16	75	0.334	30	0.277	24	0.438
32	82	0.381	33	0.307	24	0.436
64	94	0.456	36	DIV	25	0.472
128	97	0.486	41	DIV	29	0.473
256					31	0.551

CASC

Parallel Ruge Coarsening

- Another approach to coarsening in parallel: perform the standard Ruge algorithm on each processor. Various treatments possible at processor boundaries.
- Yields processor dependent coarsenings, and will not produce the same reults for different numbers of processors.
- The "measure" of each point should include the number of off-processor connections, even when coarsening within processor.

Parallel Ruge coarsening: boundary treatment:

BoomerAMG

Perform first and second passes on each processor

Method 1: Do nothing. Accept the coarsening provided by the independent processors.
Problem: Leaves $F \Leftrightarrow F$ dependencies without mutual C-points

Parallel Ruge coarsening results

BoomerAMG

7 pt 3D Laplacian		
Procs.	Setup	Op. CpIx
1	14	4.91
2	26	5.25
4	63	5.71
8	153	6.23
16	328	6.75
32	561	6.98
64	999	7.34
128		
Procs	Solve	C.F.
1	36	0.065
2	40	0.081
4	43	0.111
8	48	0.210
16	389	0.246
32	3433	0.605
64	3352	0.384
128		

Ruge coarsening is much faster and yields much better complexities than Cleary-LJP on the 7-pt Laplacian

Note that the solve times jump by orders of magnitude as problem grows. Parallel Ruge leads to large "coarsest" grids with direct solve.

Solution: hybrid coarsening

Parallel Ruge-JLP Hybrid: no boundary treatment

BoomerAMG

7 pt 3D Laplacian			27 pt 3D Laplacia		9 pt 2D Laplacia	
Procs	Setup	Op. Cplx	Setup	Op. Cplx	Setup	Op. Cplx
1	6	4.39			3	
2	11	5.46	21	2.54	4	1.35
4	25	6.79	60	2.76	4	1.35
8	65	8.51	153	3.13	4	1.35
16	148	8.89	271	3.21	5	1.35
32	292	8.92	506	3.45	5	1.35
64	456	8.52	1089	3.81	6	1.35
128	488	8.38	1217	3.93	8	1.35
256					12	1.49
Procs	Solve	C.F.	Solve	C.F.	Solve	C.F.
1					17	0.203
2	20	0.091	29	0.123	18	0.599
4	24	0.138	32	0.145	18	0.612
8	64	0.279	38	0.192	19	0.61
16	147	0.385	41	DIV	19	0.606
32	293	DIV	54	DIV	19	0.607
64	456	DIV	62	DIV	20	0.627
128	488	DIV	69	DIV	20	0.644
256					21	0.472

CASC

Parallel Ruge coarsening: boundary treatment (Ruge2b)

BoomerAMG

 5

CASC

Perform first pass on each processor

Perform second pass locally on each processor, augmented by boundary points from neighbor

Choices must be made about how to resolve conflicting decisions among processors

Parallel Ruge coarsening: boundary treatment (Ruge2b)

Boomer AMG

CASC

Parallel Ruge coarsening: boundary treatment (Ruge3)

BoomerAMG

Perform first and second pass on each processor

Perform a third pass, (a second "second pass"), only on those points adjacent to processor boundaries

Choices must be made about how to resolve conflicting decisions among processors

Parallel Ruge coarsening: boundary treatment (Ruge3)

Boomer AMG

7 pt 3D Laplacian			27 pt 3D Laplacian		9 pt 2D Laplacian	
Procs.	Setup	Op. Cplx	Setup	Op. Cplx	Setup	Op. Cplx
1					3	1.33
2	17	7.62	36	2.35	3	1.33
4	70	12.07	128	3.48	4	1.35
8	249	16.76	365	4.88	5	1.36
16	479	16.69	684	5.82	6	1.37
32	1008	16.13	1423	7.31	8	1.38
64	2008	15.25			17	1.38
128					21	1.39
256					40	1.51
Procs	Solve	C.F.	Solve	C.F.	Solve	C.F.
1					17	0.121
2	26	0.128	27	0.119	18	0.121
4	38	0.158	44	0.163	19	0.141
8	53	0.217	64	0.215	19	0.225
16	62	0.233	78	0.238	20	0.336
32	76	0.348	112	DIV	20	0.312
64	90	DIV			22	0.318
128					23	0.385
256					26	0.474

CASC

7 pt 3D Laplacian

Boomer AMG

Setup Times
C-LJP Ruge Ruge (2b) Ruge (3)

Solve Times

27 pt 3D Laplacian

BoomerAMG

Setup Times

C-LJP Ruge Ruge (2b) Ruge (3)

Solve Times

9 pt 2D Laplacian

Boomer AMG

Setup Times

C-LJP Ruge Ruge (2b) Ruge (3)
CASC

Solve Times

Conclusions

BoomerAMG

- Testing is still needed to implement the algorithms efficiently; to determine better ways of treating processor boundaries, operator complexities, and growing convergence factors.
- Future computer science plans include load balancing and efficient cache useage.
- Future algorithmic development centers on implementing "system" solvers and determining MG components using the finite-element stiffness matrices
- This work was performed under the auspices of the U. S. Department of Energy
by Lawrence Livermore National Laboratory under contract number: W-7405.
Eng-48. Rele ase number UCRL MI 133583
CASC

