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Lately, a number of drugs have been shown to pro-
long cardiac repolarization possibly through their

effect on the HERG-1 potassium channel.1,2 Regulatory
agencies are particularly interested in prolonged car-
diac repolarization as a safety issue because poten-
tially life-threatening ventricular tachycardia, called
torsades de pointes (TdP), may result.3 Identification
of prolonged cardiac repolarization is made using an
electrocardiogram (ECG), in which increased QT inter-
vals in a patient are indicative of the condition.
Because the QT interval is dependent on heart rate, QT
intervals are frequently corrected using either Bazett’s
equation,4

QTc
QT

RR
= ,

or Fridericia’s correction,5

QTc
QT

RR3
= ,

where QT is the time interval in msec between the Q
and T wave on an ECG, and RR is the time interval
between consecutive R waves on an ECG in sec.

Exactly what constitutes a “prolonged QTc interval”
is a matter of debate, although the European Agency
for the Evaluation of Medicinal Products (EMEA) has
indicated that changes in QTc intervals between 30
and 60 msec are likely to represent drug effect, and
changes greater than 60 msec “raise clear concerns
about the potential risk [for a new drug].”6 Also, if the
QTc interval is greater than 450 or 470 msec for males
and females, respectively, then this too is evidence of
prolonged QTc intervals. The Food and Drug Admin-
istration currently has no guidelines in place for deter-
mining QTc interval prolongation. Bonate and Russell7

have recently published clinical and statistical guide-
lines for the analysis of QTc intervals in clinical trials.
They suggest that QTc intervals are best analyzed
using mixed-effect models, either linear or nonlinear,
with one of four different dependent variables: maxi-
mal change in QTc intervals from baseline, maximal
QTc interval, area under the QTc interval-time curve
(AUC), and average QTc interval. It was suggested that
improved power can be achieved through analysis of
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Monte Carlo simulation was used to assess the type I error rate
and rank order of power for six different metrics using linear
mixed-effect models, including two variables recommended
by the European Agency for the Evaluation of Medicinal Prod-
ucts (EMEA) in the analysis of QTc interval data. The metrics
analyzed were maximal change in QTc interval from baseline,
maximal QTc interval, area under the QTc interval-time curve
(AUC), average QTc interval, maximal QTc interval with base-
line QTc interval as covariate, and AUC with baseline QTc
interval as covariate. Two dosing regimens were studied:
multiple-dose oral and multiple-dose continuous intravenous
infusion. Both regimens were designed to produce similar

maximal plasma concentrations, albeit with the infusion
regimen maintaining maximal plasma concentrations for a
longer period of time. The ability of the metrics to detect a drug
effect was examined, assuming drug effect followed either an
Emax or linear model. All statistics had a type I error rate near
the nominal value. Regardless of pharmacokinetic or phar-
macodynamic model, AUC with baseline QTc interval as a
covariate had greater power than any other metric examined.
The simulations also suggest that mean QTc interval data not
be used.

Journal of Clinical Pharmacology, 2000;40:468-474
©2000 the American College of Clinical Pharmacology



covariance with baseline QTc interval as the covariate.
The purpose of this paper is to use Monte Carlo simula-
tion to determine the type I error rate for each of these
dependent variables and their rank order of power and
to confirm that covariate inclusion results in increased
statistical power.

SIMULATION

Monte Carlo simulation is a computer-intensive tech-
nique to simulate models with fixed effects and ran-
dom components having specified probability distri-
butions that can be used to determine the long-term
outcome or expected value of such models. Monte
Carlo simulation was done to simulate two different
clinical trials for the same drug. In one trial, drug ad-
ministration was by the oral route of administration,
whereas in the other study, drug administration was
by continuous intravenous infusion. In each trial, 40
subjects were enrolled in a randomized, placebo-
controlled, four-period crossover design. Prior to drug
administration within each period, each subject was
given a placebo to characterize the baseline, drug-free
QTc interval for that subject (day –1). The treatments
for the oral administration study were placebo or 50,
100, or 200 mg drug once daily for 7 days, and the treat-
ments for the infusion study were placebo or 5, 10, or
20 mg drug once daily for 3 days infused over a 12-
hour period. In the continuous infusion study, a 12-
hour infusion period is unusually long; this infusion
duration was chosen to simulate a sustained-release
formulation in which drug concentrations are elevated
for prolonged periods of time. Both dosing regimens
lead to approximately equivalent maximal drug con-
centrations (Figure 1). Each subject was randomly
assigned to 1 of 20 unique dosing sequences. The
drug’s pharmacokinetics was assumed to follow a
one-compartment model. The population characteris-
tics were as follows:

Cl ~ LN(35 L/h, CV = 30%),
Vd ~ LN(100 L, CV = 20%),
Ka ~ LN(0.7 per h, CV = 10%) for oral administration,
F ~ Logit(0.3, CV = 20%) for oral administration,

where LN is log-normal distribution, Logit is the logit
distribution that has range [0,1], CL is systemic clear-
ance, Vd is volume of distribution, Ka is the absorption
rate constant, F is bioavailability, and CV is the coeffi-
cient of variation in percent. A logit distribution was
chosen for F since F must be constrained between 0

and 1.8 Each subject’s pharmacokinetic parameters on
the jth day, Sij, were defined as a linear function of the
population mean, µ, plus a random term for deviation
from the population mean (intersubject variability), δi,
and a random term for deviation from the ith subject
mean (intrasubject variability), εij:

Sij = µ + δi + εij.

It was assumed that inter- and intrasubject variability
were independent. εij was defined as normally distrib-
uted with mean zero and 10% coefficient of variation
around µ + δi. Drug accumulation was calculated
using the superposition principle.

Baseline, drug-free QTc intervals for each subject,
QTci

b , were defined as

QTc S Ri
b

i i= + +µ i = 1, 2, . . . 40 (1)

where µ is the population mean of 400 msec, Si is the
subject-specific effect for the ith subject, Ri is the intra-
subject effect for the ith subject, and the superscript b
refers to baseline. When QTc intervals are actually
measured using an ECG, equation (1) is modified to
account for measurement error, ei:

QTc S R ei
b

i i i= + + +µ i = 1, 2, . . . 40. (2)

The expected value for the population is µ, and the
total variance is the sum of the intersubject, intrasub-
ject, and measurement error variability,

Var QTcb
S R e( ) = + +σ σ σ2 2 2, (3)
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Figure 1. Representative plot of maximal plasma concentrations af-
ter oral administration and continuous intravenous infusion in 40
subjects.



which was reported to be 1156 msec in healthy normal
volunteers in a drug-free state.9 The test-retest reliabil-
ity, g, is given by

g R e

S R e

= +
+ +
σ σ

σ σ σ

2 2

2 2 2

(4)

and was reported to be 0.85.10 Solving for equations (3)
and (4) and assuming that measurement variability,σe

2 ,
is 64 msec (± 2%) gives σS

2 = 928 msec and σR
2 = 164

msec.* All sources of variability were assumed to fol-
low a normal distribution. For simplicity, it was
assumed that each QTc interval was independent and
that regression toward the mean did not occur on
repeated measurement.

Some effect due to drug was added to each QTc
interval. An Emax model was chosen to model the rela-
tionship between drug concentration and QTc inter-
vals. Table I shows each of the pharmacodynamic
simulation conditions. In general, for the Emax model,
IC50 values were simulated to range from much less
than average maximal plasma concentrations to much
greater than maximal plasma concentrations. It should
be noted that when IC50 equals zero or is much less
than drug concentrations, the model simplifies to the
case in which a constant drug effect, T, is present.
Within each IC50 value, Emax was varied from 0 to 50
msec, an interval that shows an ascending positive
drug effect. QTc intervals were measured in each sub-
ject within each period 0, 2, 4, 8, 12, and 24 hours after
the last drug administration on the last day of dosing
and on the placebo lead-in day within each period.
These data were used for statistical analysis.

Six different dependent variables were calculated
for each subject: maximal change in QTc interval from
baseline, maximal QTc interval, area under the QTc
interval-time curve (AUC), average QTc interval, maxi-
mal QTc interval with baseline QTc interval as covari-
ate, and area under the QTc interval-time curve with
baseline QTc interval as covariate. The tests were cho-
sen based on methods used in the literature, recom-
mended methods by regulatory agencies, and pro-
posed methods by Bonate and Russell.7 Maximal
change from baseline with baseline QTc interval as the
covariate was not included in the analysis because
estimation of the treatment effect using this approach
would produce exactly the same results as analysis of
maximal QTc intervals with covariate adjustment.11

The baseline QTc interval was calculated for each sub-
ject as the average of the six QTc intervals collected on

the placebo lead-in day within each period (day –1).
AUC was calculated using the trapezoidal rule:

AUC t t QTc QTc
i

n

i i i i= − +
=

−

+ +∑
1

1

1 105. ( )( ),

where n is the number of sampling points (in this case,
n = 6) and t is the time point (e.g., 0, 2, . . ., etc.). As an
example, consider a subject whose QTc intervals on
day –1 were {412, 416, 399, 402, 432, 408 msec} and
on day 7 were {414, 425, 422, 427, 444, 401 msec}.
That subject’s mean baseline QTc interval would be
412 msec with a maximal QTc interval of 444 msec, a
maximal change from baseline of 32 msec, an AUC of
10,196 msec•h, and a mean postdose QTc interval of
422 msec.

All data points were simulated with PROC IML of
SAS for Windows® (version 6.12), and all data were
analyzed using linear mixed-effect models (PROC
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Table I Pharmacodynamic Simulation Conditions

Simulation Emax (msec) IC50 (ng/mL) τ (msec)

1 0 0 0
2 1 1 0
3 5 1 0
4 10 1 0
5 20 1 0
6 30 1 0
7 40 1 0
8 50 1 0
9 1 200 0
10 5 200 0
11 10 200 0
12 20 200 0
13 30 200 0
14 40 200 0
15 50 200 0
16 1 2000 0
17 5 2000 0
18 10 2000 0
19 20 2000 0
20 30 2000 0
21 40 2000 0
22 50 2000 0
23 0 0 1
24 0 0 5
25 0 0 10
26 0 0 20
27 0 0 30
28 0 0 40
29 0 0 50

* These mean and variance estimates are based on Bazett’s equa-
tion and will be different if Fridericia’s equation is used.



MIXED) with terms for sequence (19 degrees of free-
dom, df), subject within sequence, period (3 df), and
treatment or dose (3 df). Mixed-effect models allow the
analyst to specify factors as either random or fixed. In
this simulation, subjects within sequence were treated
as a random effect, whereas all other factors were
treated as fixed. Baseline scores were used as option-
ally included covariates leading to an analysis of
covariance. The null hypothesis for treatment effect
was that the mean parameter estimate was equal among
treatment groups. Treatment effects were considered sta-
tistically significant if the p-value for treatment effect

was less than 0.05. One thousand iterations were done
for each pharmacodynamic simulation condition
(Table I) for both the oral and intravenous formulations.
The overall power for each dependent variable was cal-
culated as the percentage of simulations that rejected
the null hypothesis of no drug effect.

RESULTS AND DISCUSSION

Figures 2 through 4 show the percentage of simula-
tions that rejected the null hypothesis for the oral for-
mulation, and Table II shows the percentage of
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Figure 3. Percentage of
simulations rejecting the null hy-
pothesis when IC50 maximal
plasma concentrations following
oral administration. Data were
generated using 1000 simula-
tions. See text for details.

Figure 2. Percentage of simula-
tions rejecting the null hypothesis
when IC50 << maximal plasma
concentrations following oral ad-
ministration. Data were generated
using 1000 simulations. See text for
details.
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Table II Percentage of Simulations Rejecting the Null Hypothesis for the Continuous Infusion Simulation

Maximal
Change from Maximal QTc Mean QTc Maximum QTc AUC

Emax AUC Baseline Scores Interval Interval Interval (ANCOVA) (ANCOVA)

Emax model: IC50 << maximal plasma concentrations (IC50 = 1 ng/ml) constant drug effect
0 6.5 4.9 6.4 6.9 5.3 6.4
1 6.5 4.9 6.4 6.9 5.3 6.4
5 10.4 37.3 9.8 10.4 36.8 54.0

10 23.4 95.9 22.2 21.9 95.0 99.3
20 71.3 100.0 73.3 69.6 99.9 99.9
30 97.8 100.0 98.3 97.1 99.9 99.9
40 100.0 100.0 100.0 100.0 99.9 99.9
50 100.0 100.0 100.0 100.0 99.9 99.9

Emax model: IC50 ≅ maximal plasma concentrations (IC50 = 200 ng/ml)
0 6.5 4.9 6.4 6.9 5.3 6.4
1 6.6 4.3 6.1 6.6 4.5 5.3
5 6.7 7.9 7.6 6.8 7.4 11.2

10 8.4 19.4 8.5 8.6 19.6 34.7
20 15.5 78.6 16.3 13.6 79.4 93.1
30 29.5 99.1 31.5 24.3 99.2 99.9
40 49.5 100.0 58.5 40.2 99.9 99.9
50 69.4 100.0 79.8 60.5 99.9 99.9

Emax model: IC50 > maximal plasma concentration (IC50 = 2000 ng/ml)
0 6.8 4.4 6.2 6.2 4.9 5.0
1 6.8 4.4 6.1 6.2 4.8 5.0
5 6.5 4.2 6.2 6.5 4.4 5.3

10 6.8 4.8 6.4 6.5 4.6 6.3
20 6.7 6.3 6.9 6.6 6.6 9.5
30 7.2 9.3 7.6 6.8 9.3 13.6
40 7.7 13.3 8.2 7.5 13.4 21.9
50 8.4 20.3 8.9 8.6 19.8 34.3

Figure 4. Percentage of simula-
tions rejecting the null hypothesis
when IC50 > maximal plasma con-
centrations following oral admini-
stration. Data were generated us-
ing 1000 simulations. See text for
details.



simulations that rejected the null hypothesis for the
intravenous formulation. For both the oral and intra-
venous formulations, the results were similar and can
be generalized across simulations. The type I error
rates for all of the dependent variables were near their
nominal value of 5%. In general, the rank of order of
power was the following: area under the QTc interval-
time curve with baseline QTc interval as covariate ≥
maximal QTc interval with baseline QTc interval as
covariate ≅ maximal change in QTc interval from base-
line > area under the QTc interval-time curve ≅ maxi-
mal QTc interval ≅ mean QTc interval. As expected, as
Emax or τ increased, so did the percentage of simula-
tions rejecting the null hypothesis. As the IC50

increased, the power of the tests decreased, as did the
magnitude of the effect of Emax on power. Thus, drugs
with high IC50s have little effect on QTc intervals. Con-
versely, when the IC50 is small, very small changes in
Emax lead to large increases in power.

The EMEA has indicated that maximal change in
QTc intervals from baseline and maximal QTc interval
be used as the primary variables in the analysis of QTc
interval data. These simulations suggest that while
using maximal change from baseline as the dependent
variable has fairly good power, using maximal QTc
intervals as the dependent variable does not. Maximal
QTc intervals alone have roughly 25% of the power of
maximal change from baseline, which is not surpris-
ing since maximal change from baseline corrects for
individual differences at baseline while maximal QTc
intervals do not. Following the EMEA guidelines and
analyzing both maximal QTc intervals and maximal
change from baseline may lead to the situation in
which one test shows a significant drug effect and the
other does not. The inclusion of baseline QTc intervals
as a covariate in the linear model with maximal QTc
intervals as the dependent variable may correct this
possible discrepancy due to an increase in statistical
power since now the model begins to account for indi-
vidual differences at baseline.

Mean QTc intervals also had poor power compared
to the ANCOVA models and maximal change in QTc
intervals from baseline. This is not really surprising
since the mean value probably dilutes the true treat-
ment effect, a point discussed by Bonate and Russell.7

For example, suppose that QTc intervals are increased
immediately after drug administration but rapidly
return to baseline. Clearly, a drug effect is present, but
as the number of ECGs increases with each subsequent
ECG showing a normal QTc interval, the observed
mean value will approach the baseline mean, thus
masking any drug effect. Only with the collection of a

large number of ECGs showing abnormal results, rela-
tive to the total number of ECGs collected, will the
mean value be an indicator of drug effect. In these
simulations, even though drug concentrations were
elevated in the continuous infusion study, mean QTc
intervals failed to detect drug effect relative to other
more sensitive measures.

These results indicate that the suggestion by Bonate
and Russell7 to use area under the curve as a measure
of pharmacodynamic effect in QTc studies is a good
one, provided baseline QTc is used as a covariate. Area
under the curve alone is too insensitive a metric to
detect drug effect. But area under the curve with base-
line QTc interval as covariate was the most powerful
statistical test studied under all simulations. Under cer-
tain conditions, the increase in power using the area
under the curve with baseline covariate approached
20%. When baseline QTc was not included, the power
of using area under the curve as the dependent vari-
able decreased to the dismal levels seen using maximal
QTc intervals or mean QTc values as the dependent
variable. These results suggest that this method should
be the preferred way to analyze QTc interval data
under this experimental design. However, one diffi-
culty with its use is its interpretation. The units of
area under the curve are the time scale of QTc inter-
vals•time scale of the collection interval—in this case,
msec•h. What does a value of 10,000 msec•h mean?
Some may argue that because a clinician, who ulti-
mately makes the decision regarding whether the
degree of QTc prolongation that may occur with a drug
is clinically significant, cannot easily understand
what a value of an area under the curve represents, it
should not be used. Even if it is not easy to communi-
cate the meaning of a test statistic, we should not dis-
courage its use. Rather, we should find other means to
present the statistic in an easily understood manner.
For example, it may be more useful to report to an audi-
ence of clinicians the area under the curve after drug
administration relative to the baseline drug-free area
under the curve (e.g., “drug X had a 25% increase in
area under the curve, relative to the drug-free state”).
An alternative is to use AUC divided by the time inter-
val used to calculate the time-averaged AUC. In this
instance, the metric then becomes a time-averaged
AUC with units of msec. For example, in the example
data set used to illustrate the metrics used in the simu-
lation, the AUC was calculated to be 10,196 msec•h,
but divided by 24 hours, the time-averaged AUC is 425
msec, a value more easily understood. Presenting the
data in this manner will not change the results of an
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analysis since this is a monotonic transformation
using a constant value.

Two key points need to be addressed. First, the
simulation was designed to simulate a clinical trial in
which the goal of the study was to determine if QTc
interval prolongation occurs with a particular drug.
The timing of sampling was chosen to occur at or near
the time of maximal plasma concentrations, at the time
of trough (the time immediate prior to dosing) plasma
concentrations, and during the elimination phase.
Thus, it was likely that the maximal drug effect and
time course of drug effect were captured. Many phase I
studies, which are not specifically designed to deter-
mine if QTc interval prolongation occurs with a drug,
are examined retrospectively to answer that very ques-
tion. Often in these studies, few ECGs, much fewer
than simulated herein, are collected. The results of
this simulation cannot be generalized to those studies
because it is not clear if the advantage of using area
under the curve as a metric continues when the
number of time points decreases to two or three. Future
simulations will address that issue. Second, it must be
recognized that the characterization of the baseline
QTc interval within each subject is very important. It is
frequent practice in phase I studies that a single ECG is
collected in the drug-free state immediately prior to
drug administration as a baseline on which to make
future comparisons. While this may be acceptable
from a safety point of view, using a singular QTc inter-
val as the baseline measurement in an analysis of
covariance is risky because (1) the baseline is actually
a random variable that is indeed quite variable, and (2)
the possibility of regression toward the mean may
occur with future measurements.12,13 Collecting multi-
ple drug-free QTc intervals and then using the mean as
the baseline make for a more robust estimate of the
baseline and should be encouraged in studies wishing
to examine the effect of a drug on QTc intervals.14

In summary, Monte Carlo simulation was used to
choose a metric with which to analyze QTc data in a
clinical study. The simulations suggest that the best
metric is area under the QTc interval-time curve with
baseline QTc interval as a covariate. The difficulty
with using this metric lies primarily with its difficult
interpretation, an outcome that should not discour-
age its use. The results also show that the EMEA guide-
lines of recommending both maximal change from
baseline scores and maximal QTc interval as primary

metrics in an analysis may lead to conflicting results
because maximal change from baseline scores has
much greater power than maximal QTc intervals. One
metric may show a significant drug effect, while the
other may not. Inclusion of baseline QTc intervals in
the analysis of maximal QTc intervals leads to power
curves that are indistinguishable from maximal
change from baseline scores. Use of mean QTc inter-
vals as the primary metric should also be discouraged.
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