## Dr. Robert K. Koger, P.E. President and Executive Director 919-857-9000



www.advancedenergy.org



- ► Is it technically feasible?
- Does it work in real applications?
- Can it work with other technologies?
- Does it have value to utilities or consumers?
- Does it demonstrate advanced services and products?



## Cross section of needs





- Measures that can be affected by real-time communications (prices and reliability)
- Direct load control (HVAC, water heating, etc.)
- Smart load control in response to price signals
- Distributed generation (solar, fuel cells, CHP)
- Curtailable load for manufacturing
- Energy storage (thermal and electric)



## Smart Grid

- End-to-end real-time communications
- Prices to devices
- Open architecture; standard protocols
- Plug and play connectivity
- Self diagnostics and self healing
- ► AMI



## Advanced Transportation

- Plug-in hybrid electric vehicles (PHEVs)
- Charging station monitoring and control
- Carbon impacts
- Grid connectivity with communications
- Multiple platforms (passenger, light-duty and heavy duty)



## Variable Speed Pool Pumps

- Estimated savings from converting pumps for approximately 5,000,000 in-ground pools to variable speed.
  - National
    - 8,434 MW peak demand
    - 9,466 GWh annually
  - Per Unit
    - □ 1.54 kW<sup>1</sup>
    - 2,000 kWh annually<sup>1</sup>
  - > 1.9 million tons of coal avoided annually<sup>2</sup>
  - > 7.2 million tons of  $CO^2$  avoided annually<sup>2</sup>





Sanford, NC

<sup>&</sup>lt;sup>1</sup> Calculated by utility using DEER methodology

<sup>&</sup>lt;sup>2</sup> Calculated using national average fuel mix 62% coal



# Incentive Programs

- Variable speed pool pump incentive programs
  - > SCE\*
  - > PG&E\*
  - > SDG&E
  - > Various CA Municipalities
  - > Austin Energy
  - > Nevada Power\*
    - \* Offer third-party outsourced programs













# Hybrid Plug-In Electric School Buses

### ► Facts

- > Initiated by Advanced Energy in 2002
- > The most viable plug-in platform to commercialize at the time
- > Available for purchase today
- > Built by International Corporation
- > Lifecycle savings expected in full production volumes
- > U.S. EPA helped many districts with Clean School Bus USA funds





# Nationwide plug-in deployment

#### Delivered

- Arkansas (1)
- ► California (1)
- ► Florida (2)
- ► North Carolina (2)
- Pennsylvania (1)
- South Carolina (2)
- ► Texas (1)
- ► Washington (1)

#### Funded / Ordered

- ► Iowa (2)
- New York (2)

#### Pending

- Texas (1)
- ► Virginia (1)
- Washington (1)
- ► Washington DC (1)





# Hybrid Plug-In Electric School Buses

- 50-100% estimated improvement in fuel economy
- ~30% carbon reduction when recharged with normal power generation





## Solar Energy – MegaWatt Solar

- Concentrating
- Two axis tracking
- Based in Hillsborough, N.C.
- Motto
  - > "Solar without subsidies"
- Production costs
   significantly lower than existing solar
- ► 3.5 kW test unit operating



## Current "Plate & Frame" Technology Fuel Cell Stack





# How is Microcell's fuel cell different?



# Technology – Microcell Assembly



- Inserted into module and sealed
- About the size of a pencil

 End caps contain "quick connect" electrical connections
 Page 14

feed fuel, air and coolant

Separate chambers to

## Significant Competitive Advantages

| Lower<br>Production<br>Cost       | Continuous automated extrusion process                                                                                                       |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | <ul> <li>Derived from raw materials compared to purchasing components</li> </ul>                                                             |
|                                   | <ul> <li>Elimination of expensive bipolar flow field plates</li> </ul>                                                                       |
|                                   | <ul> <li>Reduced auxiliary and control equipment requirements; no humidification equipment</li> </ul>                                        |
|                                   | <ul> <li>Simplified design and fabrication processes = lower labor costs</li> </ul>                                                          |
|                                   |                                                                                                                                              |
| High Power<br>Density             | Simplified design and no humidification system = compact and lightweight                                                                     |
|                                   | <ul> <li>Cylindrical shape provides the ideal fibrous geometry, resulting in the<br/>highest possible surface area / volume ratio</li> </ul> |
|                                   | Power density results exceed 1kW/L                                                                                                           |
| Ease of Repair,<br>Serviceability | Individual Microcell cores are inserted into a fuel cell module                                                                              |
|                                   | Individual cores can be replaced without replacing the entire module                                                                         |
| High Thermal<br>Efficiency        | <ul> <li>Heat removal occurs from every inch of every single cell</li> </ul>                                                                 |
|                                   | <ul> <li>Design allows for optimal heat removal to reduce cell degradation</li> </ul>                                                        |
| Quick Start<br>Operation          | Metallic current collectors heat up much faster than graphite plates                                                                         |
|                                   | <ul> <li>Reach operating temperature quickly; essential for operating effectively in cold weather conditions</li> </ul>                      |
| ✓ \ \ \                           |                                                                                                                                              |



www.advancedenergy.org

919 857-9000 [phone] 919 832-2696 [fax]

909 Capability Drive, Suite 2100 Raleigh, NC 27606-3870