The perspective of industry: non-inferiority trials for CAP

Glenn S Tillotson PhD, FCCP Executive Director, Scientific Affairs Replidyne Inc

Previous lives include Bayer1986-2000 and Oscient 2003-2006

January 16th many concerns......

Global drug development

- US vs EU (EU does not want ANY placebo trials)
- Acceptability of comparators-not all drugs viewed the same
- Statistical evaluations and guidance- inconsistent between authorities
- Indications required
 - CAP as an 'anchor' for RTI

Commercial aspects in today's environment

- CAP represents the smallest opportunity in RTI and yet is fundamental to clinical programs
- Research investment goes beyond clinical studies
 - Tufts Institute estimates drug development costs to be \$800mio
 - Clinical trials may be 30% of this sum

Historical and Projected Sales & Prescription Trends

Adult Oral Antibiotic Market

30% reduction in commercial opportunity over 10 years

Antibiotic Rx Market by Indications - 2005 Oral Market: 399,8 mio Rx globally; IV market much smaller

Challenges

Ethical issues

- Resistance considerations for comparator drugs
 Placebo controls?
- Implications on drug development

 Feasibility using clinical response alone?

Appropriate endpoints and tools

- How & when to assess efficacy
- Safety
- Time-based endpoints
- Bacteriological

– Patient-based assessments

Proportion reporting moderate to severe symptoms during resolution of pneumonia

			Percentage by time from diagnosis		
Symptom	Pre- pneumonia	Day 0	Day 7	Day 30	Day 90
Fatigue	10	79	48	28	20
Cough	7	80	51	23	13
Dyspnea	2	41	15	7	6
Sputum	3	39	23	12	8
Pleuritic chest pain	1	38	11	5	2

What about day 0-7???

Metlay JP et al J Gen Intern Med 1997;12:423-430.

Measuring symptomatic and functional recovery in patients with CAP.

Primary endpoint: clinical success at test of cure

Plain vanilla is the flavor but there maybe a hidden tasty streak if you look properly!

Speed of defervescence

Defervescence for moxifloxacin (median 3 days) vs ceftriaxone+/erythromycin (median 4 days; *p*<0.003)

Fever: body temperature >38.5°C

Welte et al. Clin Infect Dis 2005; 41: 1697-705

Patient-reported relief from symptoms

- Compared to ceftriaxone ± erythromycin, moxifloxacin-treated patients reported a consistently faster improvement in signs and symptoms specific to community-acquired pneumonia
 - Chest pain (p=0.021)
 - Weakness (p=0.015)
 - Sputum color (*p*=0.002)
- Median time to feeling better:
 - Moxifloxacin: 3 days
 - Ceftriaxone ± erythromycin: 4 days

Duration of hospitalization

Methodological deficiencies need large number of patients

* 738 were stratified and then randomised

Torres *et al.* ECCMID 2006, Poster 1061 Read *et al.* ERS 2006, Poster 2083

If S pneumoniae accounts for >40% of moderate to severe CAP :why these data on baseline causative organisms?

	Moxifloxacin N=291 n/N (%)	Ceftriaxone + levofloxacin N=278 n/N (%)
Pneumococcal pneumonia ^a	77 (26.5)	85 (30.6)
Pneumonia due to intracellular organisms ^b	41 (14.1)	45 (16.2)
Pneumonia due to <i>Legionella pneumophila</i>	10 (3.4)	12 (4.3)
Gram-positive aerobic organisms*	37 (12.7)	47 (16.9)
Streptococcus pneumoniae	32 (11.0)	45 (16.2)
<i>Staphylococcus aureus</i>	6 (2.1)	2 (0.7)
Gram-negative aerobic organisms*	20 (6.9)	10 (3.6)
<i>Haemophilus influenzae</i>	10 (3.4)	8 (2.9)
Enterobacteriaceae	10 (3.4)	2 (0.7)
Other	1 (0.3)	0 (0)

^aS. Pneumoniae cultured from respiratory/blood cultures <u>and/or positive urinary antigen testing</u> ^bAcute and convalescent blood serology (*Chlamydophila pneumoniae, Legionella pneumophila, Mycoplasma pneumoniae*) and urine antigen for *Legionella pneumophila*. Includes mixed infections i.e. infections due to a common bacterial pathogen and an intracellular CAP organism *Microbiologically valid population

Read et al. ERS 2006, Poster 2083

Which population for analysis? The impact on sample size- the accountants perspective

- FDA prefers "co-primary " analysis for NI trials
- CE population =85% of enrollees
- mITT 30-35% for typical pathogens
- Costs of these numbers
 - CE 10%Δ n= 432 **<u>\$23mio</u>**
 - mITT 10%Δ n=1236 **<u>\$65mio</u>**
 - − 15%Δ n= 618 <u>**\$35 mio**</u>
 - At least 2 studies required assuming comparators are globally accepted

– <u>The 'anchor' of CAP costs >\$70million alone.</u>

What have we learned about hospitalized CAP?

- Etiology is same as mild-moderate disease- CAP is a continuum
- New microbial diagnostics may make spotting the pneumococcus easier but will be these tests be universally available for trials (even in Primary Care)?
- Course of progression of disease is often host driven e.g. co-morbid conditions
- Incidence of CAP is likely to increase as population ages & co-morbidities rise but ROI issues still linger
- Clinical assessment alone is not enough to see 'true differences'

Industry Perspective on CAP

Operational considerations

- Impact of real clinical practice varies by country
- Etiology-can we do better in getting bacterially infected cases?
- Patient sub-populations

Regulatory considerations

- Standard of care vs treatment guidelines
- Study design-not globally acceptable despite ICH guidelines
- Feasibility- IRB & timelines prohibitive
- Niche indications- cipro or azithro for key infections aside from RTI

Financial considerations

 Diminishing commercial opportunity as we move to shorter courses with fewer tablets in an era of antibiotic stewardship

Clinicians need more options to manage increasingly challenging patients; these do NOT have to better but perhaps safer or better compliance.

Antibiotics should be judged on totality of factors not just efficacy.

Encouraging signs

- Came to the meeting fearing the worst
- We have heard more signs of compromise and willingness to reach appropriate decisions
- Still some way to go but...
- How can Industry contribute to establishing the "new science" without jeopardizing future antibiotic R& D?
- Perhaps the shiraz was too good last night but onto April 1 & 2 with some optimism and hope?