Nighttime Aerosol, Trace Gas and Boundary-Layer Measurement from the Texas 2000 Field Campaign Preliminary Results from Pacific Northwest National Laboratory and Battelle

Carl Berkowitz

Atmospheric Sciences Program Meeting

Tuesday, February 13, 2001

Raleigh, North Carolina

Contributors/authors

- Trace-gas Observations: Battelle
 Chet Spicer*, Darrell Joseph, Raj Mangaraj, Jan Satola, Andrew Savage
- Meteorology/PBL: Chris Doran*, John Hubbe, Will Shaw
- *Time-tagged Particle Collection:*

Jim Cowin*, Alex Laskin, Martin Iedema

• TOFSIMS:

Dan Gaspar*, Jim Cowin, Rob Disselkamp,Len Barrie

• Membrane Introduction Ion Trap MS:

Mike Alexander*, Chris Aardahl

• Surface chemistry: TNRCC

Jim Price*, Ken Rozacky

Motivation

- No local sources.
 - measurements representative of average values for the greater Houston area.
- Sampling above and within mixed layer:
 - strong contrast in day/night chemical mix.
- Aloft, at night.
 - measurements of regional scale transport into/out of Houston area.
- West of major NOx/VOC sources of Houston;
 - will sample processed plume.

The "Aerosol" Room Pacific N'west, Brookhaven, SUNY Argonne,UC/Davis

The "Trace-gas" Room Battelle, Pacific N'west, Georgia Tech.,TNRCC

Outside View of Sampling Lines

High One Hour Houston-Galveston Area Ozone

<u>Summary Statistics</u> ozone mixing ratio, aloft and at surface

Williams Tower (830 ft AGL)

- Mean Value (day + night) = 47ppb
- Max = 205ppb
- Mean Value, afternoon = 69ppb
- Mean Value, predawn = 36ppb

Bayland Park

(surface site)

- Mean Value (day + night) = 34ppb
- Max = 164ppb
- Mean Value, afternoon = 67ppb
- Mean Value, predawn = 14ppb

Frequently a well defined <u>chemical</u> signature of Convective Boundary Layer Williams Tower (o) & Bayland Park (---)

Subtle variations in thermal stability associated with observed decoupling

- August 19th: Weakly stable all the way up, with slightly stronger stability within bottom 25 meters.
- August 25th: More stable than on the 19th above 65 m, and neutral below 65 m.
- September 6th: roughly neutral, or weakly stable, throughout the layer.

0.1 to 0.2 micron aerosols predominate during day; less significant domination at night.

Observations courtesy of Alex Laskin/PNNL

TOFSIMS (Time of Flight Secondary Ion Mass Spectrometry)

Imaging 3D analysis of single particles (Dan Gaspar)

Rastered primary ion beam impacts surface, ejects pieces of surface molecules (secondary ions), massselected by Time-of Flight

Spatial Resolution: 0.2 μ Mass Resolution: 0.002 amu

Can Depth Profile Particles

Drawing courtesy of Physical Electronics

Automated Time-Resolved Collector of Field Aerosols

- 3000 individual samples with the time resolution of 10 minutes

Courtesy Alex Laskin/PNNL

Automated SEM/EDX Single Particle Laboratory Analysis

analysis down to 0.1mm particles
analysis speed of 2000 particles/hour
quantitative detection of low-Z elements: C, O, N

Particle-type Classification of Representative Aerosol Samples

Time-Resolved Particle-Type Characterization of Aerosols

Courtesy Alex Laskin/PNNL

Chlorine Depletion from Sea Salt Particles ?

August 17, 2000

- steady wind from Mexican Gulf
- 50-70% of 0.7-2.5 mm particles are Na-containing particles
- absolute conversion of NaCl to NaNO₃ after the sunrise
- termination of the process after the sunset

3-stage rotating drum cascade impactor

PIXIE/PESA/STIM analysis of deposited aerosol yields elemental (Na-Ga), hydrogen, and total aerosol loading in atmosphere

Courtesy Rob Disselkamp/PNNL

Trends and diurnal variation observed in sulfur loading (3-stage rotating drum cascade impactor PIXIE/PESA/STIM analysis of deposited aerosol)

Courtesy Rob Disselkamp/PNNL

Membrane Introduction Ion Trap Mass Spectrometer

Membrane Introduction Interface

Ion Trap Mass Spec.

Real-time Data Output

Courtesy Mike Alexander/PNNL

Still to Come...Aerosol Sampling with Simultaneous VOC Measurements

- Aerosols ≤2.5 microns collected on Quartz and Teflon filters (4 hour integrated samples).
- Simultaneous <u>real-time VOC monitor</u> using Membrane Introduction Ion Trap Mass spectrometer.
- Aerosol Filter samples being analyzed for semiand involatile organic compounds.
- Analysis in Progress (VOC data).
 - VOC observations being correlated with aerosol data.

Courtesy Mike Alexander/PNNL

Near-term goals at PNNL for TX2000 observations:

1. Chemical Characterization of aerosols.

- relation of organic gas phase species and aerosol composition.
- To statistically characterize the diurnal cycle in size-segregated aerosol composition.
- Evidence of interactions of aerosol compounds with gas phase species.
- Use analytical results to develop aerosol chemistry modules for incorporation into air quality models.

2. PBL/Chemistry Observations.

- Growth of mixed layer: observations vs. model, under various synoptic conditions, and effect on trace gas species.
- Feedback mechanisms between aerosols/radiation/meteorology.
- Evidence of bay/sea breeze recirculation on pollutant distribution (day and night, surface and aloft).

3. Trace-gas measurements.

- NOy budget at night vs day.
- Chemical evidence of long range transport: consistency with meteorology.

