

A Primer on DNA Profiling Using STR Markers

Dr. John M. Butler National Institute of Standards and Technology Biotechnology Division

Presentation Outline

- Biology and technology behind short tandem repeat (STR) DNA testing
- How statistical calculations are made with STRs
- Approaches for "challenging" samples: perspectives for the future
- Resources for additional information

Dr. John M. Butler, Project Leader, Biotechnology Division, Human Identity DNA Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human

Human Identity Testing

- Forensic cases -- matching suspect with evidence
- Paternity testing -- identifying father
- Mass disasters -- putting pieces back together
- Historical investigations
- Missing persons investigations
- Military DNA "dog tag"
- Convicted felon DNA databases

Involves generation of DNA profiles usually with the same core STR (short tandem repeat) markers

Dr. John M. Butler, Project Leader, Biotechnology Division, Human Identity DNA Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human

Basis of DNA Profiling

The genome of **each individual is unique** (with the exception of identical twins) and **is inherited from parents**

Probe subsets of genetic variation in order to differentiate between individuals (statistical probabilities of a random match are used)

DNA typing must be **performed efficiently and reproducibly** (information must hold up in court)

Current standard DNA tests **DO NOT look at genes** – little/no information about race, predisposal to disease, or phenotypical information (eye color, height, hair color) is obtained

Dr. John M. Butler, Project Leader, Biotechnology Division, Human Identity DNA Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human

Short Tandem Repeat (STR) Markers

= 11 GATA repeats ("11" is all that is reported)

Advantages for STR Markers

- Use of the polymerase chain reaction (PCR) enables recovery of information from small amounts of material
- Small product sizes are generally compatible with degraded DNA
- Multiplex amplification with fluorescence detection enables high power of discrimination in a single test
- Commercially available in an easy to use kit format
- Uniform set of core STR loci provide capability for national and international sharing of criminal DNA profiles

Dr. John M. Butler, Project Leader, Biotechnology Division, Human Identity DNA Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human

Position of Forensic STR Markers on Human Chromosomes **10 SGM Plus Loci** IS1 SE33 (Germany) D3S1358 1995 1999 **TH01 D8S1179 VWA SE33 FGA D2S1338** Ξ 7 6 3 5 8 9 12 1 4 10 11 2 AMEL ion e Sex-typing **D19S433** lan i **D21S11** R D16S539 D18S51 AMEL è. 13 20 22 21 Y 18 19 Х 14 16 15

Core STR Loci for Europe

Typical Instruments Used for STR Typing

Thermal Cycler for PCR Amplification

GeneAmp 9700

Capillary electrophoresis instruments for separating and sizing PCR products

Butler, J.M. (2005) Forensic DNA Typing, 2nd Edition, Figure 13.8, © Elsevier Science/Academic Press

FMBIO III Gel Imager System

Gel Image

PowerPlex 16 BIO

Gel Electrophoresis

Steps in DNA Analysis

Commercial STR 16plex Kits

How Statistical Calculations are Made

- Generate data with set(s) of samples from desired population group(s)
 - Generally only 100-150 samples are needed to obtain reliable allele frequency estimates
- Determine allele frequencies at each locus
 - Count number of each allele seen
- Allele frequency information is used to estimate the rarity of a particular DNA profile
 - Homozygotes (p²), Heterozygotes (2pq)
 - Product rule used (multiply locus frequency estimates)

For more information, see Chapters 20 and 21 in *Forensic DNA Typing*, 2nd Edition

Dr. John M. Butler, Project Leader, Biotechnology Division, Human Identity DNA Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human

Individual Genotypes Are Summarized and Converted into Allele Frequencies

Gonotuno	I										Obcowod
Genotype			40		40	40		45			
Array	8	9	10	11	12	1j	14	15		<u>Allele Coum</u>	<u>Frequency</u>
	8,8	8,9	8,10	8,11	8,12	8,13	8,14	8,15			
8	9	9	1	17	13	10	0	0	8	68	0.11258
		9,9	9,10	9,11	9,12	9,13	9,14	9,15			
9		1	2	15	10	4	3	0	9	45	0.07450
			10,10	10,11	10,12	10,13	10,14	10,15			
10			2	12	6	3	2	1	10	31	0.05132
				11,11	11,12	11,13	11,14	11,15			
11				37	54	21	12	0	11	205	0.33940
					12,12	12,13	12,14	12,15			
12					21	18	7	0	12	150	0.24834
						13,13	13,14	13,15			
13						7	5	0	13	75	0.12417
							14,14	14,15			
14	The 11,12 genotype was seen					0	0	14	29	0.04801	
	54 times in 302 samples							15,15			
15	(604 examined chromosomes)							0	15	1	0.00166
										604	

Butler, J.M. (2005) Forensic DNA Typing, 2nd Edition, Table 20.2. ©Elsevier Science/Academic Press

Allele Frequency Tables

.

. .

Allele frequencies denoted with an asterisk (*) are below the 5/2N minimum allele threshold recommended by the National Research Council report (NRCII) The Evaluation of Forensic DNA Evidence published in 1996.

Butler <i>et al.</i> (2003)			Einum <i>et al</i> . (2	2004)	Evidence published in Ts		
	JFS	5 48(4):908-911	JFS 49(6)		African	African	
D3S13	358	<u>Caucasian</u>	<u>Caucasian</u>		<u>American</u>	<u>American</u>	
		N= 302	N= 7,636		N=258	N= 7,602	
	<u>Allele</u>			<u>Allele</u>			
	11	0.0017*	0.0009	11		0.0003*	
	12	0.0017*	0.0007	12		0.0045	
	13		0.0031	13	0.0019*	0.0077	
Most	14	0.1027	0.1240	14	0.0892	0.0905	
common	15	0.2616	0.2690	15	0.3023	0.2920	
allele	15.2			15.2	0.0019*	0.0010	
	16	0.2533	0.2430	16	0.3353	0.3300	
	17	0.2152	0.2000	17	0.2054	0.2070	
	18	0.15232	0.1460	18	0.0601	0.0630	
	19	0.01160	0.0125	19	0.0039*	0.0048	
	20	0.0017*	0.0001*	20			

DNA Profile Frequency with all 13 CODIS STR loci

The Random Match Probability for this profile in the U.S. Caucasian population is **1 in 837 trillion (10¹²)**

The Same 13 Locus STR Profile in Different Populations

1 in 837 trillion

1 in 0.84 quadrillion (10¹⁵) in U.S. Caucasian population (NIST)
1 in 2.46 quadrillion (10¹⁵) in U.S. Caucasian population (FBI)*
1 in 1.86 quadrillion (10¹⁵) in Canadian Caucasian population*

1 in 16.6 quadrillion (10¹⁵) in African American population (NIST)
 1 in 17.6 quadrillion (10¹⁵) in African American population (FBI)*

1 in 18.0 quadrillion (10¹⁵) in U.S. Hispanic population (NIST)

These values are for unrelated individuals assuming no population substructure (using only p² and 2 pq)

NIST study: Butler, J.M., *et al.* (2003) Allele frequencies for 15 autosomal STR loci on U.S. Caucasian, African American, and Hispanic populations. *J. Forensic Sci.* 48(4):908-911. (http://www.cstl.nist.gov/biotech/strbase/NISTpop.htm)

*http://www.csfs.ca/pplus/profiler.htm

Approaches for "challenging" samples: perspectives for the future

- Limited sample material (highly degraded DNA)
 - mtDNA (in use for this purpose since mid-1990s due to high copy number per cell)

Chapter 10 in *Forensic DNA Typing*, 2nd Edition

- Mixed male-female DNA
 - Y-chromosome STRs

http://www.cstl.nist.gov/biotech/strbase/y_strs.htm

- Degraded DNA
 - miniSTRs

SNPs (?)

http://www.cstl.nist.gov/biotech/strbase/miniSTR.htm

http://www.cstl.nist.gov/biotech/strbase/SNP.htm

Dr. John M. Butler, Project Leader, Biotechnology Division, Human Identity DNA Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human

Different Inheritance Patterns

Lineage Markers

Butler, J.M. (2005) Forensic DNA Typing, 2nd Edition, Figure 9.1, ©Elsevier Science/Academic Press

Dr. John M. Butler, Project Leader, Biotechnology Division, Human Identity DNA Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human

Y-STRs can permit simplification of male DNA identification in sexual assault cases

Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human

Y-Chromosome Haplotype Reference Database (YHRD)

Run only with minimal haplotype

http://www.yhrd.org

As of 12/17/04: 28,650 haplotypes 6,281 haplotypes with all US required loci

Commercial Y-STR kits exist to amplify all of the core loci in a single reaction (plus a few additional markers) DYS19 DYS389I/II DYS390 DYS391 DYS392 DYS393 DYS385 a/b

US haplotype requires <u>2 additional loci</u>: DYS438 DYS439

miniSTRs: new tool for degraded DNA

National Commission on the Future of DNA Evidence

U.S. Department of Justice Office of Justice Programs National Justice of Justice

Predictions of the Research and Development Working Group •Report published in Nov 2000

•Asked to estimate where DNA testing would be 2, 5, and 10 years into the future

Conclusions

STR typing is here to stay for a few years because of DNA databases that have grown to contain millions of profiles

http://www.ojp.usdoj.gov/nij/pubs-sum/183697.htm

Additional Resources

- Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers (2nd Edition) by John M. Butler, Elsevier Academic Press, 2005 – please go to the Human Identification E-Symposium Delegate Zone, for more information
- Butler, J.M., et al. (2004) Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis. *Electrophoresis* 25: 1397-1412.
- NIST website: http://www.cstl.nist.gov/biotech/strbase

Dr. John M. Butler, Project Leader, Biotechnology Division, Human Identity DNA Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human

Content of STRBase Website

http://www.cstl.nist.gov/biotech/strbase

- .../str_fact.htm
- .../multiplx.htm
- .../y_strs.htm
- .../var_tab.htm
- .../mutation.htm
- .../str_ref.htm
- …/training.htm
- …/validation.htm
- .../miniSTR.htm
- …/address.htm
- .../NISTpub.htm

STR Fact Sheets on Core Loci Multiplex STR Kit Information **Y-Chromosome Information** Variant Alleles Reported Mutation Rates for Common STRs Reference List with ~2,300 Papers **Downloadable PowerPoints for Training** Validation Information miniSTR Information Addresses for Scientists Publications & Presentations from NIST

Dr. John M. Butler, Project Leader, Biotechnology Division, Human Identity DNA Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human

Summary of Key Points

- STRs are highly variable genetic markers
- Core STR loci have been chosen to enable a common currency for use in national DNA databases
- STR kits permit co-amplification of up to 15 STRs plus amelogenin for sex-typing
- Capillary electrophoresis with fluorescence detection has become the method of choice for STR typing
- STR allele frequencies are used to estimate the rarity of a particular STR profile
- The core STR markers of today should remain in widespread use due to the millions of profiles already in DNA databases
- Y-STRs and miniSTRs will likely play a growing role in the future

Dr. John M. Butler, Project Leader, Biotechnology Division, Human Identity DNA Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human

Questions

Your turn, any questions?

>> Click on the Q&A tab, type your name & question, hit send and I will answer it live now!

John Butler john.butler@nist.gov 301-975-4049 http://www.cstl.nist.gov/biotech/strbase

Our publications and presentations are available at: http://www.cstl.nist.gov/biotech/strbase/NISTpub.htm

Dr. John M. Butler, Project Leader, Biotechnology Division, Human Identity DNA Technologies Group National Institute of Standards and Technology

HumID 2005

1st International Human