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Effect of field-effect transistor geometry on charge ordering of transition-metal oxides
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We examine the effect of field-effect transis{®tET) geometry on the charge ordering phase diagram of
transition-metal oxides using numerical simulations of a semiclassical model including long-range Coulomb
fields, resulting in nanoscale pattern formation. We find that the phase diagram is unchanged for insulating
layers thicker than approximately twice the magnetic correlation length. For very thin insulating layers, the
onset of a charge “clump” phase is shifted to lower values of the strength of the magnetic dipolar interaction,
and intermediate diagonal stripe and geometric phases can be suppressed. Our results suggest that, for suffi-
ciently thick insulating layers, charge injection in FET geometry can be used to experimentally probe the
intrinsic charge ordering phases in these materials.
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Charge ordering in doped transition-metal oxides has atinteracting with a metallic gate layer that is offset by varying
tracted considerable recent interest, both in theory and exhicknesses of insulating material. We find that for a suffi-
periment. Due to the competing long-range, e.g., Cou|0mb(,:ient|y thick insulating layer, the charge ordering is unaf-
repulsion and short-range antiferromagnetic interactions ifiected by the presence of the gate. When the insulating layer
the charge system, a rich variety of phases can occur, includbickness approaches twice the magnetic correlation length
ing stripest? clumps®* and liquid-crystalline electron N the metal oxide, however, we find a sha_rp dowpward_shlft
state$ Simulation studies of the charge ordering phasd’ the onset of the clump phase as a function of dipole inter-
diagran?’ showed transitions among four phases dependingCtlon strength. The diagonal stripe and geometric phase
on the hole density and the strength of a dipolar interactiorPouUndaries do not shift, but these phases can be suppressed
induced by the holes: a Wigner crystal at low hole densitiesPY the intrusion of the clump phase as the insulating layer is
a diagonal stripe phase, an intermediate geometric phase _made .thmner. Our results show that, for suff|C|entIy t.hICk
which the charges form continuous filaments in a squard'Sulating layers, FET geometry should provide a reliable
checkerboard pattern, and a clump phase at larger dipolyOPe of the charge ordering phase behavior. .
interaction strengths. The behavior of these phases is of in- e consider a sample constructed in FET geometry, illus-
terest not only for the charge ordered system, but also foffated in Fig. 1. The metal oxide plane is parallel to the
their similarities to other pattern-forming systems with coex-nsulating layer and also to the metallic gate layer deposited
isting short- and long-range interactions, including magneti©" top of the insulator. Experimentally, a gate voltage would
films® Langmuir monolayers, polymers, gels, and water-oilb€ used to tune the dppmg level present in thg metal oxide
mixtures? A natural extension of this model is to consider l2yer. We simulate this effect by directly varying the hole
charges interacting with a distortable charged membrandl€nsity in our system, which is a rectangular computational
which could be relevant to active membrane systems such &9 of sizeL, XLy, with L,, L, up to 100 unit cells in a
ion pumps. CuG, plane. At the beginning of each simulation, we place

To experimentally probe the charge ordering phase diath® holes at random and assign to each hole a magnetic di
gram, the hole doping of the material must be controlled. AP0l€ moment of constant size, but random direction. We find
recently proposed method of controllably varying the holeth® minimum of the total potential in this system using the
density is the use of field-effect transist&iET) geometry to  efficient Monte Carlo method described in Ref. 7.
inject holes into the metal oxide plane. The geometry is il-
lustrated in Fig. 1. An insulating layer is deposited on top of ] Gate Metal
the metal oxide, and then a metallic gate is deposited on top A
of the insulator, forming a capacitive structure. By varying 65 3
the gate voltage, holes move into or out of the metal oxide Insulator |4
layer, allowing the sample to be conveniently tuned to the
desired doping level’ Source and drain contacts can be used —1 s Y D
to probe the conductance properties of the structure. A po- THEFiEas
tential drawback of this geometry for exploring the phase Cuprate
diagram is that the holes can interact with the gate layer, and
complicate the intrinsic hole-hole interactions within the
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metal oxide which lead to the charge ordered phases: the v
phases could be distorted or disrupted by the presence of 5
FET geometry. FIG. 1. Schematic of the FET geometry considered here. “S”

To assess the effect of FET geometry on the charge orde&nd “D” represent the source and drain contacts, respectively. The
ing phases, we simulate a model of a single metal oxide layevertical scale of the figure is exaggerated.
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Our model for the interactions between the charges isnteraction between the holes, mediated by the AF back-
based on the spin-density-wave picture of the transitionground, is also of ordeg. Thus, at finiteT the magnetic
metal oxides. Full details of the model can be found in Refsdipolar interaction between the holes, mediated by the AF
6 and 7, but we summarize the essential details here. We udackground, is actually short range. The holes also interact
a numerical approach to simulate holes moving in an antifervia the long-range Coulomb interaction, which we take to be
romagnetic (AF) insulator in the presence of long-range unscreened, as appropriate at low doping wiherer o/a, is
Coulomb forces. We study a quasiclassical limit of the quanvery large:r, is the mean interparticle distance, is the
tum problem of holes in an AF spin environment, using theBohr radius, and ;~8. Each hole also carries a spin degree
model in Refs. 6 and 7, which incorporates the essential comf freedom, but it can be shoWwn that the overall spin en-
relations for an effective hole-hole interaction. The AF back-ergy is minimized in the spin-antisymmetric channel, as we
ground is integrated out, and the focus is on the charge sulassume here. Hence we neglect the spin-symmetric channel
system. In the absence of disorder, this model produces fownd only consider the charge channel with an effedtinag-
phases depending on the density of holes and the characteretic in origin interaction between two holes, 1 and 2, a
istic AF energy scales: a Wigner crystal, diagonal stripesdistancer apart in a single metal oxide plane, in the form
horizontal-vertical stripegloops, and a clumped phase.

Our numerical approach utilizes the spin-density-wave q Cia vl
(SDW) picture of Schrieffer, Wen, and Zhahywhich is V(r)=--—Ae ""-Bcos(20— ¢~ ¢r)e 5. (2
closely related to the semiclassical approach to the model of
Shraiman and Siggta in which the interaction between Here,q is the hole chargef is the angle between and a
doped holes stems from the spiral distortion of the locaINe fixed axis, and¢, , are the angles of the magnetic dipoles
vector near a hole. The SDW picture of layered transitiontelative to the same fixed axis, which we assume can take an
metal oxides has been successful in describing the stoichi@rbitrary value.A is the strength of the short-range aniso-
metric insulating AF phase of these systems at lowtropic interaction, and is the strength of the magnetic di-
temperatured! In this model, an electron moves in the self- polar interaction] B~A/(27£%)], which we assume to be
consistent staggered field of its spin. The electronic band ithndependent variables. In real cuprate oxide materils,
split into upper and lower Hubbard bardiseparated by the should be of order-1 eV. Throughout this work we take
Mott-Hubbard gapA. At half filling the upper band is empty A=0. Since the isotropic attractive interaction due to the
and the lower one is full. We consider a systemTat second term in Eq2) is extremely short ranggn fact in an
<A/kg that is doped with holes with planar density, and infinite system it is & function), it is initially reasonable to
focus on the lower band which has a maximunkat Q/2  setA=0 and explore the behavior of the system as a func-
=(x1,=£1)w/2a, wherea is the lattice spacing. A mobile tion of B. The magnetic correlation lengthis obtained from
carrier in an antiferromagnet produces a dipolar distortion oheutron-scattering measuremetftsind here we assume the
the magnetic background as described Appendix B of Ref. Zapproximate dependenée=3.8//n A . The doping levehiis
Thus, at finite density, the holes interact via two differentdefined as the hole density measured in units of the cuprate
mechanisms: a uniform short-range attractive force due tgattice spacing. Thus®i=1% corresponds to one hole per
AF bond breaking, and a long-range magnetic dipolar inter100a?, wherea~3.8 A . We have assumed for numerical
action. The latter term is due to the long-range spiral distorconvenience that can be relaxed from a crystal lattice po-
tion of the AF background, which is a consequence of quasition to an arbitrary(continuoug value. The results pre-
siparticles interacting with softGoldstong modes of the  sented here are for a system with 196 holes with size ranging
spin systent?* The magnetic dipole moment associated

with each hole is due to the coherent hopping of holes be- o T L UL T
tween different sublattices, and scales with the AF magnetic 15| 6n 4 5@ -
energy. The two-hole interaction Hamiltonian has a Fourier i

transform, for quasiparticle momenta néar of s
g 10 w S = glo— W =
z z + - -+ d,-dp - ¢ - 5-_ c _-
H(r)=[A,0105—= Aoy 0, + 01 0,)]8(r)—Byy 2 51 .
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FIG. 2. (a) Phase diagram as a function of the hole densiyd
. . . 2+) () the strength of the magnetic dipolar interactiBn for a sample
N r2|_ is the relat've hole-flole dlstancgi ~Ca0ap'Cp 1S without the FET interaction term, E¢4). “W” is the Wigner crys-
a spin-density operatos;”*) are Pauli matrices, andj is a 5 phase, “S” is the diagonal stripe phase, “G” is the geometric
unit vector in the direction of the dipole moment of the hole. phase, and “C” is the clump phaséb) Phase diagram for a sample
In strictly two dimensions at finitd, the system is magneti- with the same parameters but with the FET interaction added at an
cally disordered, characterized by a finite magnetic correlainsulator thickness of4 A , showing the downward shift i of the
tion length ¢ (see Ref. 1§ and the range of the dipolar clump phase “C,” and the suppression of the geometric phase “G.”

Here, r; is the coordinates of a hole in units af r=|r,
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from 307.15 Ax307.15 A (for n=3%) to 137.4 A The interplay of the correlation length and the insulator

x137.4 A (for n=15%). The value of then ranges from thickness affects the onset of the clump phase because only
21.9 A forn=3% to 9.8 A forn=15%. The sample is the clump phase possesses a characteristic length scale of
periodic in thex-y plane!’ order 2. This is illustrated in Fig. 3, which shows the clump

In FET geometry, a metal oxide channel is created, thegtructure amn=13% andn=3%. When the length scale of
an insulating layer of thicknessis deposited on top of the the insulating layer is comparable to the length scale of the
channel, and finally a layer of metal is deposited to serve aglump structure, the interaction with the metal gate above the
a gate. The interactions between holes in the metal oxid#sulating layer becomes comparable to the interaction with
layer are altered by the presence of image charges in the gat€ighboring clumps, and the transition to the clump phase is

layer, enhanced.
The effectiveness of the FET term extends only to insula-
V-D=4mp tor thicknessesl that are approximately twice the magnetic
correlation lengthd=<2¢. This is illustrated in Fig. 4 for a
—Adme 2 {S[r— (rHi+dAz)]— SLr—(ry; —d%)]}, sample withn=3% and varying insulator thicknessgsThe
I

arrow indicates the saturation of the clump phase oBgeit
3) d, to the value oB=B2 observed in the absence of the FET
term. The other phase boundaries, Wigner to stripe and stripe
giving the Coulomb energy between charges a distdiio®  to geometric, shift very little withd but instead the interme-

the material as diate phases are suppressed wBgmoves below the onset
values for these phases. To assess whether the magnetic cor-
£l e’ o, 1 1 @ relation length is responsible for the shift in the phases, we
262 = vl ey —ry+2d2 ] considered a system at=13%, which normally has a cor-

Thus, we modify the Coulomb interaction between the holes so . . . T . T .
in our system to this form. This introduces a new length scale
2d. For comparison, we also ran simulations with the un-
modified Coulomb interaction, representing a bare metal ox-
ide plane without the FET gating. - Diagonal Stripe 1
In the absence of the FET interaction, we find a phase | “&«
diagram consistent with that observed in Ref. 6, as illustratec=
in Fig. 2(@). For thick insulating layers, when the FET inter- ~
action is included, the locations of the phases are not affecter 20
and we obtain the same phase diagram, as shown in Fic
2(a). As we decrease the thickness of the insulating layer,
however, we find a crossover thickneksbelow which the
phase boundaries begin to change. Figut® Blustrates the

5
T
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phase diagram for the same system as in Fig) But with 0

the FET term added and with an insulating layer of thickness

d<d. (d=14 A). The onset of the diagonal stripe phase BV

“S”is unaffected, but there is a large shift downwardBe FIG. 4. Phase diagram as a function of the thickness of the

of the onset of the crosslike clump phase “C.” The size ofjnsylating layerd and the strength of the magnetic dipolar interac-
the downward shiftAB, increases as the hole densityle-  tion B, for a sample with the FET interaction term, E4), and with
creases. The geometric phase that was present without thele densityn=3%. Inset: Dependence of the cutoff thickneks
FET term is now completely suppressed. on the magnetic correlation length
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relation length ofé=10.54 A, and artificially changed the magnetic correlation length. For thin insulating layers the
screening length té=20 A for one series of runs, and to onset of the clump phase is enhanced. This suggests that FET
£=5 A for a second series. In the inset of Fig. 4, we showgeometry with a sufficiently thick insulating layer is suitable
the cutoff insulator thickness, beyond which the FET term for studying the effects of hole concentration on the charge
has no effect as a function of correlation lengthboth for ~ ordering phases because the presence of the FET does not
the normal screening lengths and for our two artificially &t€r the hole-ordered structures. Alternatively, FET geom-
changed screening lengths. We indeed find a linear depeffies deliberately created with thin insulating layers can be

dence for the cutoff thickness on the correlation length, viz.used to prol_)e the clump phase at higher hole_densities, where
do~1.7¢ the underlying value oB may preclude reaching the clump
~1.7¢.

In conclusion, we have found that FET geometry does no?‘tate in the bulk phase.
affect the clump ordering phases unless the insulating layer This work was supported by the U.S. Department of En-
is thin enough, namely, less than approximately twice theergy under Contract No.W-7405-ENG-36.
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