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The ground-state phase diagram of the half-filled repulsive Hubbard model in a bilayer is investigated using
cluster dynamical mean-field theory. For weak to intermediate values of Coulomb repulsion U, the system
undergoes a transition from a Mott-insulating phase to a metallic phase and then onto a band-insulating phase
as the interlayer hopping is increased. In the strong-coupling case, the model exhibits a direct crossover from
a Mott-insulating phase to a band-insulating phase. These results are robust with respect to the presence or
absence of magnetic order.
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Strong Coulomb interaction can localize electrons even in
the absence of disorder to give rise to a gapped electronic
state known as the Mott insulator. This state is of tremendous
interest because upon addition of carriers it produces high-
temperature superconductivity and intriguing features such
as a pseudogap in the normal state of the cuprates. Band
insulators, on the other hand, lack the ability to conduct be-
cause they have either a filled or an empty band. The topic of
transitions between band and Mott insulators has received
considerable attention recently,1–7 because it provides a use-
ful tool to understand the fundamental differences between
the two states. Recent progress in the control of fermionic
atoms trapped in optical lattices adds to the experimental
interest as it would be feasible to investigate the evolution of
correlated ground states in a many-body system. In a recent
study, it was shown that the ground state of a Mott-insulating
Haldane phase in a generalized Hubbard ladder can be con-
nected adiabatically to a band-insulating phase.8 On the
other hand, studies of the two-dimensional ionic Hubbard
model �IHM�, which contains an alternating local potential
±� on the A or B sublattice, find an intervening phase be-
tween the band- and Mott-insulating phases rather than a
continuous evolution when the Coulomb repulsion is varied.
Cluster dynamical mean-field theory �CDMFT� calculations
for the IHM at zero temperature suggest that the intervening
phase is a bond-ordered insulator,7 whereas finite tempera-
ture quantum Monte Carlo techniques propose it to be a
metal.6

Another theoretical model for the study of the band to
Mott insulator crossover is the bilayer Hubbard model
�BHM�. The presence of copper oxide bilayers, well de-
scribed by doped Hubbard planes, in many of the high-Tc
materials adds to the practical importance of studying the
bilayer Mott system theoretically. The BHM was studied re-
cently using dynamical mean-field theory �DMFT�,5 and a
smooth crossover between band and Mott insulators was ob-
served. Since this study dealt with the infinite-dimensional
lattice, intralayer spatial correlations are absent. As a two-
dimensional Hubbard model exhibits fundamentally different
behavior from the infinite-dimensional Hubbard model, such
as a pseudogap9 and d-wave superconductivity10 upon dop-
ing, a study incorporating the two-dimensional nature of the
Hubbard planes in the BHM is expected to show richer phys-
ics.

In this work, we study the evolution of an antiferromag-

netic �AF� Mott insulator into a band insulator as the inter-
layer hopping is varied in a bilayer Hubbard model at half
filling using cluster dynamical mean-field theory.11 With in-
terplane hopping set to t�, the Hamiltonian for the bilayer
Hubbard model can be written as

H = − t �
�ij���

�ci��
† cj�� + H.c.� + U�

i�

ni↓�ni↑�

− t��
i��

ci��
† ci��1−��. �1�

Here, �=0,1 labels the two Hubbard planes and U repre-
sents the on-site Coulomb repulsion. ci�� denotes the de-
struction operator at site i, with spin � and on plane �.
Chemical potential is chosen as �=U /2 so that the density is
fixed to unity. In the limit U→0, it can be seen that the
system goes from an uncorrelated metal to a band insulator
at t�=4t when the splitting between the bonding and anti-
bonding bands produced by the two layers results in a finite
gap. At large U and t�→0, the system decouples into two
Hubbard systems with a finite Mott gap and AF long-range
order in each layer.

In the recent study on the infinite-dimensional BHM, the
two-plane system was reduced to two impurities embedded
in a self-consistently determined bath.5 For t�=0, the authors
found a phase transition at U=Uc from a metallic phase to a
Mott-insulating phase. As t� is switched on, the Mott insu-
lator �MI� evolves continuously into a band insulator �BI�
with no sign of a phase transition. In what follows, we shall
argue that in-plane spatial correlations provide a competing
energy scale that is missing in the infinite dimension. Taking
both intraplane and interplane spatial correlations into ac-
count within CDMFT, we find that for U�8t as t� is in-
creased from zero the MI goes through a metallic phase be-
fore entering a band-insulating phase. For larger values of U,
the system undergoes a direct crossover from a MI to a BI
without an intervening metallic phase.

CDMFT is a nonperturbative technique where the full
many-body problem is mapped onto local degrees of free-
dom treated exactly within a finite cluster that is embedded
in a self-consistent bath.11,12 It is a natural generalization of
single-site DMFT �Ref. 13� to incorporate spatial correla-
tions. The method has passed rigorous tests for the one-
dimensional Hubbard model where it compares well to exact
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solutions14 and has been applied to a variety of problems.9,10

The first step in the CDMFT method involves a tiling of the
infinite lattice by a finite cluster. As seen in Fig. 1, we con-
sider a 2�2 tiling cluster which includes both the in-plane
and interplane hopping processes with a unit cell defined by
the vectors u=x+y and v=x−y. Using CDMFT, the BHM
on the infinite lattice reduces to the cluster-bath Hamiltonian
below, that is subject to a self-consistency condition:

Hc = �
�����

t���c��
† c�� + H.c.� + U�

�

n�↑n�↓

+ �
m�

	m�am�
† am� + �

m��

Vm���am�
† c�� + H.c.� . �2�

Here, � ,�=1, . . . ,Nc denote indices labeling the cluster sites
and m=1, . . . ,Nb represent those in the bath. The self-
consistent calculation proceeds by an initial guess for the
cluster-bath hybridization Vm�� and the bath site energies
	m� to obtain the cluster Green’s function Gc

��. Applying the
Dyson equation, �c=G0

−1−Gc
−1, where G0 denotes the non-

interacting Green’s function for the Hamiltonian in Eq. �2�,
the cluster self-energy is obtained. �c is then used in the
self-consistency condition below to determine the local
Green’s function for the lattice:

Gloc�z� =
Nc

2
2 � dPudPv
1

z + � − t�Pu,Pv� − �c�z�
. �3�

Here, Pu and Pv denote reciprocal-lattice vectors conjugate
to the spatial unit vectors u and v, respectively, while z
= i�n is the Fermionic Matsubara frequency. Gloc can be used
to obtain a new Weiss field, G0, and consequently, a new set
of Vm�� and 	m�’s by means of a conjugate gradient minimi-
zation program to close the iterative loop. In this work, the
Lanczos method is used to solve the cluster-bath Hamil-
tonian and we fix the bath size to Nb=8. The Lanczos
method can access both the strong- and weak-coupling re-
gimes with equal ease and it is well suited to compute dy-
namical quantities directly in real frequency. Rotational sym-
metries of the cluster on a square lattice, together with
particle-hole symmetry at half filling, reduce the number of
bath parameters significantly. These bath parameters can de-
pend on spin, allowing for symmetry-breaking solutions. For
details of the method, we refer to earlier work.11,14

Let us start from the phase diagram with suppression of
the magnetic order. Numerical results are shown in Fig. 2.
We observe three states; a Mott-insulating state at large U, a
band-insulating state at large t�, and a metallic state in be-
tween. At U=0, the BI and the metallic states are separated

at t�=4 where the bonding and antibonding bands are sepa-
rated. Critical t� decreases with increasing U because the
widths of bonding and antibonding bands broaden due to
correlation. Above U=12, the BI and the MI states are adia-
batically connected, but by close inspection of the charge
gap, two regions are distinguishable; in the MI �BI� phase,
�c decreases �increases� with increasing t�. Those features
are consistent with the DMFT result on the infinite-
dimensional BHM. In contrast to the infinite-dimensional
case, the MI state extends down to small U and t� in the
two-dimensional case because of the intralayer spatial corre-
lation, and the system passes through two phase transitions
when increasing t� at 0�U�12. Thus, the two-dimensional
BHM provides topologically distinct behavior as compared
to the infinite-dimensional one. As will be discussed in detail
below, this essential feature is not altered even by including
the magnetic ordering.

We next investigate the magnetic properties of the bilayer
Hubbard model in detail. In Fig. 3, the staggered magnetiza-
tion M =n↑−n↓ is plotted as the interplane hopping is varied
for different values of U. At t�=0, the two planes are decou-
pled and the value of the staggered magnetization increases
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FIG. 1. Tiling the infinite bilayer with a 2�2 cluster.
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FIG. 2. Phase diagram for the bilayer Hubbard model. The
shaded portion shows the extent of the metallic region �paramag-
netic metal �PM� and antiferromagnetic metal �AFM�� in the pres-
ence of magnetic order. The dashed line showing the magnetic
phase boundary extends into the insulating region separating the
paramagnetic Mott insulator �PMI� from the antiferromagnetic Mott
insulator �AFMI�. Suppression of magnetic order extends the me-
tallic phase down to lower t� and is shown by a closely spaced
dotted curve. The crossover to the band insulator �BI� from the PMI
is depicted by a sparse dotted line.
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FIG. 3. Staggered magnetization as a function of t� for U=4t,
6t, 8t, 12t, and 16t.
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as U is increased, but quickly saturates to a value below
unity because of quantum fluctuations. With increasing t�, M
stays fairly constant until t�= t and then drops rapidly to zero
at about t�=2t. This value of t�=2t is universal and does not
depend on U for all U�8t. The vanishing of the staggered
magnetization at small U is caused by an increase in the
effective bandwidth and a consequent reduction in the ex-
change coupling. In contrast, critical value t�	2t at large U
is due to the instability toward the formation of a local sin-
glet. In this limit, the BHM is reduced to the S=1/2 Heisen-
berg model with the intralayer exchange J=4t2 /U and the
interlayer exchange J�=4t�

2 /U. By taking a dimer on the
interlayer bond as a unit and introducing a mean-field decou-
pling on the intralayer bonds, critical exchange coupling for
the transition from a Néel ordered state to an interlayer
dimerized state is obtained as J�=4J at T=0, thus, t�=2t.
Staggered magnetization M =2�Sz� at t��2t is also com-
puted. As shown with a dashed line in Fig. 3, this mean-field
approximation to the bilayer Heisenberg model gives reason-
able agreement with CDMFT at large U.

Next, we look at the local density of states for the BHM
as a function of t� at U=8t as shown in Fig. 4. As t� is
increased, the Mott gap reduces until it closes completely at
t�=2t to give rise to a metallic state. The local density of
states shows a clear quasiparticle peak along with the lower
and upper Hubbard bands characteristic of Mott physics at
t�=2.4t. Upon further increase of t�, we see that a gap opens
abruptly to reveal a band-insulating state. Increasing t� in
the band-insulating phase causes the charge gap to grow mo-
notonously unlike the Mott-insulating phase where it reduces
to zero. In Fig. 5, we plot the double occupancy and the
charge gap as a function of t� for different values of U. For
U�8t, as t� is increased in the Mott phase, the double

occupancy rises and then shows a sharp kink as the system
enters a metallic phase and also upon going into a band-
insulating phase. For larger values of U, as expected, the
crossover from a Mott insulator to a band insulator is smooth
with the double occupancy showing no signs of a kink. The
charge gap for large U shows a continuous decrease in the
Mott phase but never goes to zero. The crossover to a band
insulator around t�=2t is easily identified by the increase in
the charge gap with t�.

The phase diagram for the bilayer Hubbard model that
emerges for our calculation is shown in Fig. 2. We identify a
region in the phase diagram which shows an intermediate
metallic region, depicted by the shaded portion, which sepa-
rates the band- and Mott-insulating phases. The width of the
metallic region narrows with increasing U and eventually for
U�8t there is a direct crossover from a band insulator to a
Mott insulator. The magnetic phase boundaries are depicted
by the dashed line which separates an antiferromagnetic
metal from a paramagnetic metal. In the insulating portion of
the phase diagram, the magnetic phase boundary separates
the antiferromagnetic Mott insulator �AFMI� from a para-
magnetic Mott insulator �PMI�. As we discussed earlier,
emergence of an intermediate metallic region separating BI
and MI is a generic behavior in two-dimensional BHM inde-
pendent of magnetic ordering.

In summary, we have obtained the zero-temperature phase
diagram of the bilayer Hubbard model at half filling using
cluster dynamical mean-field theory. We computed the
double occupancy and the local density of states as a func-
tion of the interlayer coupling t� and the Coulomb repulsion
U to identify a clear demarcation between a Mott-insulating
phase and a band-insulating phase as the interlayer coupling
is varied. For weak to intermediate values of interaction �U
�12t�, the Mott insulator at small t� is separated from the
band insulator at large t� by an intermediate metallic phase.
For U�12t, there is a direct crossover from a Mott insulator
to a band insulator as t� is increased. This crossover is most
clearly manifest in the behavior of the charge gap which first
reduces in the Mott phase with increasing t� and then
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FIG. 4. �Color online� Local density of states as t� is varied at
U=8t. Spin-resolved density of states is shown for t�=1.0 where
magnetic order exists. Note the metallic state at t�=2.4t.
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FIG. 5. Double occupancy �top panel� and charge excitation gap
�bottom panel� as functions of t� for various U indicated.
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increases in the band-insulating phase. These results should
be contrasted with the DMFT results for the infinite-
dimensional model which always find a smooth crossover
between the BI and MI states.5 These differences arise due to
the presence of in-plane spatial correlations in the two-
dimensional model stabilizing a Mott phase for all U at half
filling, which is accessible by cluster DMFT. We completed
the phase diagram by further allowing for magnetic order.
The phase diagram is essentially unchanged, except that the

onset of the metallic phase occurs at a larger value of t� for
a fixed value of U.
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