Phytofiltration of Arsenic from Drinking Water

Charissa Y. Poynton,

Edenspace Systems Corporation 15100 Enterprise Court, Suite 100 Dulles, Virginia

Tel. 703 961-8700, Fax 703 961-8939 www.edenspace.com

As-Accumulating Brake Fern, Pteris vittata

edenfern Patent, License, and Use

- Following its discovery and initial characterization, the University of Florida filed U.S. and international patents
- Exclusive license granted to Edenspace for phytoremediation purposes
- Marketed for phytoremediation of arsenic under the trade name 'edenfernTM'
- Field demonstrations have demonstrated the effectiveness of this fern to lower soil As concentrations.

Phytofiltration of As Using the edenfern

- Could the edenfern[™] be used to remove arsenic from drinking water?
- NIH funded research to investigate potential treatment methods for arsenic contaminated drinking water.
- Arsenic taken up by roots, transported to and stored in shoots.

Bench Scale Study

edenspacetm

Effect of Initial [As] on Phytofiltration Performance

Design of Phytofiltration Unit

chlorination steps

Phytofiltration Nursery System

edenspace Effect of Water Chemistry on Arsenic Uptake in Roots

Power and Site Requirements

- Greenhouse is lowest cost model
- Temperature requirements may need heating / air conditioning
- Lighting requirements may need additional lights
- Water flow may be pumped or gravity-fed
- May need aeration pumps.

Residuals & Waste

- Arsenic is accumulated in the fern shoots, not the roots
- Two strategies for operating system:
 - Harvest shoots before they become hazardous
 - Use plants for maximum time then dispose
- Possibility of recovering arsenic from fern shoot material to recycle and re-use in industrial processes
- Minimal waste water generated

Target Population for Phytofiltration Technology

- Small distributed systems
- Traditional treatments are generally not cost-effective for small drinking water systems
- Modular system can easily be scaled to meet requirements of community

Pilot Systems

- Northern Virginia arsenic
- Albuquerque, New Mexico arsenic
- Ashtabula, Ohio uranium
 - successfully cleaned water with fluctuating inflow concentration to below regulatory levels over 8 week period.

edenspacetm Cost comparison of activated alumina to phytofiltration for removal of arsenic from drinking water

Cost Parameter	Activated Alumina	Phytofiltration
Capital Cost	\$92,700	\$119,500
O & M Costs	\$34,300	\$15,334
Waste Disposal	\$1,200	(\$0?)

All costs assume a design flow of 160,000 GPD Approximately \$0.26 per 1,000 G

Summary

- The edenfern shows promise as a means to address arsenic contamination in waters with the following advantages:
 - Minimal effect of sulfate or other constituents of water on phytofiltration performance.
 - Hazardous waste can be minimized.
 - Potential to recycle recovered arsenic
 - No harsh chemicals or pre-treatment required.
 - Low level of operator training required.
 - Modular design scale up as needed.
- Other preliminary results
 - Promising results with arsenite as well as with arsenate, reducing the need for an oxidizing pretreatment.
 - Operates well over wide pH (4-10), thereby reducing the need for pH adjustments.

Acknowledgements

- Funding
 - NIH SBIR Phase I Grant (1 R43 ES11065-01) and Phase II Grant (2 R44 ES11065-02) entitled "Phytofiltration of Arsenic-Contaminated Drinking Water"
- Personnel
 - Dr. Leon Kochian (US Plant, Soil, and Nutrition Lab, Cornell University, Ithaca, NY) and Dr. Jianwei Huang (Lockheed Martin) for their assistance in this study.