Electroweak Analyses

Sean Mattingly *Brown University*

DZero Collaboration Meeting 14 February 2003

Analysis Strategy

- Electroweak group concentrating on W/Z cross sections in electron and muon channels for winter conferences
 - Other activities/analyses delayed and people moved from their primary interest
 - A large amount of work done in a short period of time by a small group of motivated of people

$W \rightarrow \mu \nu$ Cross Section Analysis

- 24.3 pb-1 (MU_W_L2M5_TRK10) $\sigma = \frac{1}{1 \sigma} \left(N_{data} N_{bkg} \right)$
- **Event Selection**
 - 1 medium μ (trk match), $p_T > 20$ GeV, $|\eta_{det}| < 1.6$ (bottom hole removed), $\Delta \phi(\mu, MET) > acos(0.9)$
- Corrections for efficiencies applied in order (e.g. L3Track efficiency calculated for events passing offline cuts)

 $= 78.5 \pm 0.6\%$ ε_{trk match}

$W \rightarrow \mu \nu$ Matrix Method

- Isolation used to separate signal/background in matrix method
 - Isolation requires $E_{T,cal}(0.1-0.4) < 2.5 \text{ GeV}, p_{T,trk}(0.5) < 2.5 \text{ GeV}$
 - Isolation efficiency and background fake probability from data

$W \rightarrow \mu \nu$ Cross Section

Physics Acceptance	63.1%	±	0.5%
Pt cut (20 GeV)	84%	\pm	0.2%
Offline Medium Efficiency	70 %	±	2%
L1 Wide Efficiency	84.7%	±	0.8%
L2 Medium Efficiency	81.2%	\pm	0.5%
Tracking and Matching	78.1%	\pm	0.6%
L3 Tracking	74.1%	±	1.4%
$\Delta \phi$ cut	91%	\pm	1.5%
Isolation	90.3%	\pm	0.9%
Total efficiency	12.1%	±	0.6%

Luminosity $24.3 \pm 2.4 \text{ pb}^{-1}$

Matrix method: $\sigma = 2939.3 \pm 59.3 \pm 131.6 \pm 294$ pb (bgk, efficiencies, lumi)

Sean Mattingly WZ Meeting 13 February 2003

 $W \rightarrow \mu \nu$ Outlook

- D0Note draft sent to EB 13 Feb
- Event counting method for background subtraction produces different number of events
 - Investigate \boldsymbol{p}_{T} dependence of background
- Studying veto on more than one $\boldsymbol{\mu}$
 - remove $Z \rightarrow \mu \mu$

Search for $Z' \rightarrow ee$

- 51 pb-1 (EM_MX_SH)
- Event Selection
 - $\begin{array}{l} & 2 \ electrons, \ E_T > 25 \ GeV, \ EC: \ 1.5 < |\eta| < 2.5, \\ & CC: \ |\eta| < 1.1 \& \ |phi\mbox{-}crack| > 0.02, \\ & EMFrac > 0.9, \ Iso < 0.15, \ HM8 < 15 + slope*(E_T 45 \ GeV) \end{array}$
 - Slope = 0.023 (CC), 0.043 (EC)
 - Efficiency from MC
- Background estimation
 - Drell-Yann and Z from MC smear/scaled to match Z peak, QCD background scaled to fit around Z peak.

Z'→ee Mass Limit

• Limit is on Z'/Z cross section

- Remove lumi error, A_Z/A_{Z^2} from PMCS

GeV	#expected	#observed
150-200	116 ±10	102
200-250	55 ± 5	53
250-350	45 ± 5	47
350-450	9.5 ± 1.1	10
450-550	$\textbf{2.0} \pm \textbf{0.23}$	1
550-750	$\boldsymbol{0.75\pm0.09}$	0
750-1000	0.022 ± 0.002	2 0

95% CL Limit = 620 GeV

Sean Mattingly WZ Meeting 13 February 2003

W→ev Cross Section Analysis

- 43 pb⁻¹ (EM_HI_SH, EM_HI_2EM5_SH, EM_MX_HI)
- Event Selection
 - Electron:

$$\sigma_{Z} = \frac{N_{Z}}{L} \frac{1}{A_{Z}} \frac{1}{1 - (1 - \varepsilon_{trig}^{EM})^{2}} \frac{1}{\varepsilon_{EMID}^{2}} \quad \sigma_{W} = \frac{N_{W}}{L} \frac{1}{A_{W}} \frac{1}{\varepsilon_{trig}^{EM}} \frac{1}{\varepsilon_{EMID}}$$

 $p_T > 25$, $|\eta_{det}| < 1.1$, is_in_fiducial, EMFrac > 0.9, Iso < 0.15, HM8 < 20

- 2 Electrons for Z candidates
- 1 Electron, MET > 25 GeV for W candidates
- N_Z from invariant mass distribution, N_W from matrix method (track matching)

$W \rightarrow ev$ Matrix Method

- Matrix method uses track match
 - Track matching efficiency from — Z data
 - Fake track matching probability from QCD data

 $_{+}^{+}_{+}$

+

40

50

60

W cand MET distribution

4000

3500 3000

2500

2000

1500 1000

500

20

30

Sean Mattingly WZ Meeting 13 February 2003

RMS

W→ev Cross Section

=	$25.5 \pm 0.2\%$
=	$13.2 \pm 0.1\%$
=	$91.2\pm1\%$
=	$85.3 \pm 1\%$
=	$72.9 \pm 1\%$
=	2.7%

 $N_Z = 1151$ $N_W = 29127$

• Cross checks and systematics under way

$Z \rightarrow \mu \mu$ Cross Section Analysis

- Event Selection (di-m trigger)
 - Tune cuts for low background w/ good efficiency
 - 2 loose μ w/ track match, $p_T > 15$ GeV, $\Delta t_{A \text{ layer}} < 9$ ns, $\Delta R(\mu-\mu) > 2$, 1 isolated μ , opposite charge

μμ Invariant Mass

Sean Mattingly WZ Meeting 13 February 2003

Outlook

- All analyses trying for Moriond

 If Moriond slips then DPF
- Begin di-boson and W asymmetry analyses mid-March
- W mass longer term
- Small number of students
 - Plenty of opportunities for new students!

