
Multigrid FDTD with Chombo

Zdzis law Meglicki a,∗, Stephen K. Gray b, and Boyana Norris c

aOffice of the Vice President for Information Technology, Indiana University,

Bloomington, IN, 47405-1223

bChemistry Division and Center for Nanoscale Materials, Argonne National

Laboratory, Argonne, IL, 60439

cMathematics and Computer Science Division, Argonne National Laboratory,

Argonne, IL, 60439

Abstract

We describe a parallel, multiscale, multigrid, finite-difference time-domain (FDTD)
code for simulating electromagnetic wave propagation in two-dimensional systems
involving Lorentz and Drude media. We compare multigrid leapfrog time-stepping
procedures and analyze the efficacy and scalability of multigrid use in FDTD. We
have implemented the code using Chombo, an object-oriented toolkit for finite-
difference methods on block-structured, adaptively refined rectangular grids. We
discuss the advantages of this high-level approach, as opposed to the direct use of
message-passing libraries.

Key words: finite-difference methods, multigrid methods, adaptive mesh
refinement, wave optics, nanoscale structures, nanophotonics, multiscale
simulations
PACS: 02.70.Bf, 41.20.Bs, 78.67.-n

∗ All correspondence should be sent to Zdzis law Meglicki, Office of the Vice Pres-
ident for Information Technology, Indiana University, 601 East Kirkwood Avenue,
Room 116, Bloomington, IN, 47405-1223, USA, ph: (812) 856-5597, fax: (812) 855-
3310, email: gustav@indiana.edu.

Preprint submitted to Elsevier Science 7 June 2006



The submitted manuscript has been created by
the University of Chicago as Operator of Ar-
gonne National Laboratory (“Argonne”) under
Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. government
retains for itself, and others acting on its be-
half, a paid-up, nonexclusive, irrevocable world-
wide license in said article to reproduce, pre-
pare derivative works, distribute copies to the
public, and perform publicly and display pub-
licly, by or on behalf of the Government.

2



1 Introduction

Finite-difference time-domain (FDTD) simulations [1] can involve several length
and time scales. For example, in nanophotonics simulations, in which we are
particularly interested, the overall dimensions of a device can be on the scale
of microns, but structures within the device, for example, metal nanoparticles
or nanoholes, can have dimensions on the scale of tens of nanometers [2–4].
Having to resolve light waves at the same level, as demanded by the smallest
nanostructures, results in excessively large grids, very long computation times,
and, just as important, enormous output files that may be difficult or even
impossible to postprocess.

A natural solution to this challenge is to apply orthogonal gridding of such
density as is required in specific areas of the computational domain. Solu-
tions based on this approach are known as multigrid methods. Keeping the
grid orthogonal lets us use standard FDTD within each high-density grid re-
gion without the complexities, but also without the advantages, of curvilinear
coordinates.

Various approaches exist for implementing multigrids. Many of these differ in
subtle ways—each in need of its own analysis because the differences may have
implications regarding stability and accuracy.

If the problem is highly dynamic, for example, with the micro- and nano-
structures moving with respect to each other and with speeds comparable to
that of signal propagation, the multigrid may have to adapt to the changing
geometry of the system as the computation unfolds. Such situations may not
arise in nanophotonics often, although it is not impossible to transfer enough
momentum to a nanograin to cause it to move. But they are often enough
encountered in fluid dynamics, the area in which the method of adaptive mesh
refinement (AMR) arose [5–8].

Development of AMR, or even multigrid applications for parallel processors,
is a difficult undertaking. Perhaps for this reason, this methodology has not
been universally embraced by the FDTD community yet. Relatively few pa-
pers discuss multigrid FDTD. Taflove and Hagness cover multigrid methods
under the heading of nonuniform orthogonal grids [1], citing literature from
the mid-1980s to the mid-1990s. Govan et al. discuss multigrid FDTD in their
review [9]. Burr [10] mentions the option of using multigrid to mitigate stair-
case problems but complains about difficult logistics. Multigrid approaches
to FDTD were demonstrated also by Zhu and Carin [11], White, Yun and
Iskander [12], Schuhmann, Mayer and Weiland [13], and Chow, Kubota and
Namiki [14].

In the past decade, the computational fluid dynamics community developed a

3



variety of flexible programming tools for implementation of AMR codes. Since
multigrid methods can be considered a static version of AMR, the tools are just
as applicable to multigrid implementations, including FDTD. Chombo [15] is
an object-oriented library package for solving partial differential equations on
multigrids. Although designed primarily for finite differences and computa-
tional fluid dynamics, it has been used in other areas of computational science
and engineering, by exploiting its generality and flexibility. Chombo does not
provide implementations of specific scientific computations; these have to be
provided by Chombo users as Fortran subroutines. Instead, Chombo provides
C++ objects and methods for building and managing multigrids, for providing
input data to various parts of the computational procedure, and for handling
I/O—all these in either sequential or parallel environments.

We used the Chombo framework to implement a highly scalable and flexible
FDTD code, called shapes, that operates on either static or dynamically
reconfigurable multigrids. The code can be executed sequentially on a PC
under Cygwin or Linux or on a massively parallel supercomputer such as the
Cray XT3, in the latter case writing its output files in parallel, too. Also,
Chombo enabled us to design simple, yet powerful, input semantics that let
shapes users define complex media layouts, media properties, incident signals,
and output formats including spectral response for an arbitrary number of
frequencies. The Chombo layer of shapes takes care of allocating and building

data structures needed to process a problem that has been specified by the
shapes user.

2 Mathematical Foundations

shapes mathematics is simple and is based on the well-established FDTD
methodology as presented, for example, by Taflove and Hagness [1] or by
Sullivan [16].

shapes solves the following equations:

∂t
~D = ~∇× ~H (1)

~D(ω) = κ(ω) ~E(ω) (2)

∂t
~H =−~∇× ~E, (3)

in the two-dimensional configuration defined by the (Ex, Ey, Hz) triad and
referred to as a TEz mode in [1]. In spatial regions occupied by a nondispersive
dielectric medium, κ is independent of ω and equal to the relative dielectric

4



constant. In a dispersive (and absorbing) medium, we take

κ(ω) = ǫ
∞

+
∑

k

ǫk

αk + i2δk(ω/ωk)− (ω/ωk)2
. (4)

The fields and time in equations (1)–(3) are defined to absorb the fundamental

constants ǫ0, µ0, and c and are related to those in standard SI units, ~ESI, ~DSI,
and tSI by

~E =

√

ǫ0

µ0

~ESI (5)

~D =

√

1

ǫ0µ0

~DSI (6)

t = ctSI. (7)

Coefficients ωk in equations (1)–(3) are Lorentz or Drude resonance frequen-
cies, and ǫk and δk are the other two Lorentz parameters that are related to
refraction and dissipation at ωk, respectively. The reader should note that the
parameters ǫ

∞
, ǫk, αk, and δk are all dimensionless; the only parameters that

aren’t are the resonance frequencies ωk. For a Drude resonance we have αk = 0
and for a Lorentz resonance αk = 1.

The Drude-Lorentz model is well suited to describing the relative dielectric
constant of metallic systems [17].

The system of partial differential equations (1)–(3) is solved explicitly by plac-
ing Ex and Ey on the sides of every grid cell and Hz in its center and approx-
imating both the curl and time derivatives with central differences [1,16].

We begin each time step by updating ~D following the discretized form of
equation (1). The next step is to obtain ~E from ~D. This transformation is
trivial for a nondispersive dielectric medium. In regions of space occupied by
a dispersive medium, the transformation between ~D(t) and ~E(t), which is
given in the frequency domain by equation (2), is accomplished as follows. We
define

~Sk(ω) =
ǫk

αk + i2δk(ω/ωk)− (ω/ωk)2
~E(ω) (8)

so that

~D(ω) = ǫ
∞

~E(ω) +
∑

k

~Sk(ω). (9)

5



Interpreting iω as d/dt, we arrive at the following auxiliary differential equa-
tion (ADE) for each point of the computational domain:

d2

dt2
~Sk(t) + 2ωkδk

d

dt
~Sk(t) + αkω

2
k
~Sk(t) = ǫkω

2
k
~E(t). (10)

Upon discretization, and assuming that tn−tn−1 = ∆t is constant for all n, we
solve the ADE trivially for ~Sk(tn) in terms of ~Sk(tn−1), ~Sk(tn−2), and ~E(tn−1):

~Sk(tn) =
2− αkω

2
k∆t2

1 + ωkδk∆t
~Sk(tn−1)− 1− ωkδk∆t

1 + ωkδk∆t
~Sk(tn−2)

+
ǫkω

2
k∆t2

1 + ωkδk∆t
~E(tn−1). (11)

We can do this for each resonance separately because the assumed medium
is linear and the resonances do not interact with each other. In effect, by
solving equation (9) for ~E in the time domain, we obtain for each point of the
computational domain

~E(tn) =
1

ǫ
∞

(

~D(tn)−
∑

k

~Sk(tn)

)

. (12)

This then leads to the following pseudo-code implementation for the ADE.

~Eold ← ~E
~E ← ~D
where media are present

repeat for k = 1 to number of resonances

hold← ~Sk

~Sk ←
2−αkω2

k
∆t2

1+ωkδk∆t
~Sk − 1−ωkδk∆t

1+ωkδk∆t
~Sk old +

ǫkω2

k
∆t2

1+ωkδk∆t
~Eold

~Sk old ← hold
~E ← ~E − ~Sk

end repeat
~E ← ~E/ǫ

∞

end where

The number of ~Sk and ~Sk old fields required is equal to the number of reso-
nances. For example, a formula with three resonances will require six ~S fields
including the “old” ones. But multiple media can be covered by the same set
of ~S fields; that is, we do not need to proliferate them if we have multiple
media. All that must be done is to let the αk, δk, ǫk, ωk, and ǫ

∞
coefficients

vary with position. The C++ Chombo shell of shapes dynamically allocates

6



all ~S fields and appropriate arrays of media coefficients after reading the input
file.

After the ADE conversion of ~D to ~E, the magnetic field Hz is updated by
solving the discretized form of equation (3).

The computational domain is divided into the total field and scattered field
regions. The incident signal is injected into the total field region by explicit ma-
nipulation of field derivatives at grid points near the total field region boundary
in the standard way [16]. shapes can inject signals of many types, including
Heaviside and tanh ramped harmonic waves, Gaussian pulses, and various
chirps, and from any direction. On leaving the total field region and propagat-
ing across the scattered field region, the scattered signal is then absorbed on
perfectly matched layer (PML) boundaries around the computational domain.
This strategy is also standard and done similarly to the method presented in
Sullivan [16,18]. We chose to implement various PML expressions functionally,
rather than by storing them in arrays, in order to save memory. Similarly, the
injected signal is propagated on the total field region boundary functionally,
not numerically.

These usual FDTD complexities are not affected by the multigrid because we
restrict multigrid manipulations to the interior of the total field region.

On output, shapes can generate images of all the fields used in the computa-
tion, that is, ~E, ~D, and ~H, both individual components as well as field values,
energy density, and Fourier accumulations of the fields for an arbitrary number
of frequencies. Here, again, the Chombo C++ shell allocates such auxiliary
storage as is required.

3 Media Distribution

shapes users can define an arbitrary number of Lorentz/Drude media, each
with an arbitrary number of resonances. The media can then be distributed
by associating them with various shapes, hence the name of the program.
The elementary shapes provided by the program are circles, rectangles, and
ellipses, which can be oriented in any direction, and rings and triangles. The
elementary shapes can be repeated any number of times in any direction.
Shapes are allowed to overlap. Additionally, program users can define masks
that work like lift-off masks in microelectronics; that is, they remove whatever
medium they overlap with. The masks are defined the same way as media
layouts, by combining possibly multiple occurrences of elementary shapes.

Figure 1 illustrates the use of a mask and overlapping to define a waveguide

7



Fig. 1. A rounded corner definition in shapes.

bend with a rounded corner. The white circle in the upper left corner of the
bend is a mask. It cuts a round portion out of the square that fills the corner.
The partially overlapping circle in the lower right corner of the bend fills the
square gap that results from the intersection of the two rectangles that define
the waveguide from below.

The shape semantics let us define and vary with ease very complex and large
configurations that may be of interest to microwave engineering and nanopho-
tonics.

4 Multigrid and Multigrid Timestep

The Chombo multigrid is not constructed by cutting out a fragment of a low-
resolution grid and filling the hole with a high-resolution grid, as is the case
in some nonuniform orthogonal grid methods. Instead, in regions designated
for grid refinement, an additional layer of higher-resolution grid is applied.
Within this layer further refinement may be sought, producing multiple layers
of ever increasing grid resolution. These layers are referred to as levels, with
level 0 grid being the lowest-resolution grid that covers the whole computa-
tional domain, and level k−1 grid being the highest-resolution grid in a k-level
system.

A level 1 grid is constructed by first using application-dependent criteria to
tag level 0 grid cells for refinement. shapes provides three options. Cells can
be tagged for refinement if

(1) the energy density within the cells exceeds a certain threshold value;
(2) the energy density within the cells changes faster than a certain threshold

value;
(3) the cells are located in static regions defined by the user.

8



Fig. 2. Grid refinement for the refinement ratio of 2. On the left is a level 0 grid with
tagged cells shaded. The result is a refined and, in this case, disconnected level 1
grid, shown on the right, that covers the shaded regions only.

The user can choose one or more of these options. The static regions are defined
by using semantics similar to the semantics used to define media layouts;
that is, they can be defined in terms of the five elementary shapes: circles,
quadrangles, ellipses, rings, and triangles, which can be repeated, overlapped,
and cut into with masks.

The tagged level 0 grid cells constitute a subset of level 0. The level 1 grid is
constructed on this subset by dividing the tagged level 0 cells into quarters or
into smaller portions as long as the ratio of level 1 to level 0 grid constants is
a power of 2. This number is called the refinement ratio. The collection of the
subcells resulting from the division constitutes the level 1 grid. This collection
may be disjoint. The level 1 grid is contained within the level 0 grid. We also
say that levels 0 and 1 are adjacent.

When Chombo generates the level 1 grid, it may be oversized depending on
the tightness of fit parameter and other logistics, for example, the distribution
of the grid among processes of the MPI pool.

The grid refinement procedure is illustrated in Figure 2.

Once the level 1 grid has been constructed, the procedure may be repeated,
this time by tagging level 1 grid cells and subdividing them by the same or
some other refinement ratio to generate a level 2 grid, and so on, until a desired
number of levels is reached. The level 2 grid is contained within the level 1
grid. Levels 1 and 2 are adjacent, but levels 0 and 2 aren’t. Progressively finer
grids of multiple levels are nested within each other like Russian dolls.

Initial field data for higher-level grids are generated by linear or higher-order
interpolation from the adjacent coarser grids. This is normally done at the
time the finer grid is constructed.

9



The field data defined on the hierarchy of grids so constructed must be ad-
vanced in time. The advance must be designed so that all levels step in syn-
chrony, a non trivial task if the basic time step is to be the FDTD leapfrog.
Data flow only between adjacent levels. Coarser levels provide finer levels with
boundary conditions; in return, they receive field updates from the finer levels,
which are then spread over the coarser levels by averaging. These replace the
coarser levels’ own updates—needed to generate the boundary conditions—as
the field updates are deemed more accurate.

The data movement between the levels represents the major cost of the method.
Nevertheless, we will demonstrate that the gains outweigh the costs consider-
ably in cases for which the use of the multigrid is justified.

A leapfrog time step in a multigrid system can be implemented in two ways.
One way is to select a time step, ∆t, which is appropriate for the finest level—
based on the Courant stability criterion for electromagnetic wave propagation
in a vacuum:

∆t ≤ ∆x√
N

, (13)

where ∆x is the finest-level grid spacing and N is the number of dimensions.
We can then use the selected ∆t to advance all levels at the same pace.

Let us define the following two procedures that operate on level i:

update e(i)

(1) Advance the ~Di(tn) field of level i by ∆t to ~Di(tn+1).

(2) Convert ~Di(tn+1) to ~Ei(tn+1) where media are present.

(3) Interpolate ~Di−1(tn+1) and ~Ei−1(tn+1) from level i − 1 onto the level i
boundary.

(4) If level i + 1 exists, call update e(i + 1).

(5) Average ~Di(tn+1) and ~Ei(tn+1) of level i onto level i−1 cells that overlap
with level i cells.

comment 1 Level 0 has its own version of update e that takes care of
PML boundaries and incident signal injection and extraction at the total
field region boundary. The level 0 version does not, obviously, interpolate
boundary data from a coarser level, but it calls update e(1) if level 1
exists.

comment 2 This procedure is recursive, that is, data of level i are going
to be “corrected” by level i + 1 before update e(i + 1) returns. Similar
considerations hold for level i+1. By means of this recursion, data cascade

10



from the highest level back to level 0.

update h(i)

(1) Advance the ~H i(tn + ∆t/2) field of level i by ∆t to ~H i(tn+1 + ∆t/2).

(2) Interpolate ~H i−1(tn+1 +∆t/2) from level i−1 onto the level i boundary.
(3) If level i + 1 exists, call update h(i + 1).

(4) Average ~H i(tn+1 + ∆t/2) of level i onto level i − 1 cells that overlap
with level i cells.

comment 1 Level 0 has its own version of update h that takes care of
PML boundaries and incident signal injection and extraction at the total
field region boundary. The level 0 version does not interpolate boundary
data from a coarser level, but it calls update h(1) if level 1 exists.

comment 2 This procedure is recursive: that is, that data of level i is going
to be “corrected” by level i + 1 before update h(i + 1) returns. Similar
conditions hold for level i + 1. By means of this recursion, data cascade
from the highest level back to level 0.

Now calling update e(0) followed by update h(0) triggers a recursive syn-

chronized unistep leapfrog advance for all levels. This procedure works well.
An obvious question is, where are the savings if we advance all levels at the
same short time step of the finest grid. The savings are in reducing exponen-
tially the total number of cells that have to be advanced, because we don’t
spread the finest grid over the whole computational domain.

Programmers working with multigrid methods must be aware that the way
data are averaged or interpolated between levels is different for cell-centered
data and for face-centered data 1 . Figure 3 illustrates why this is the case.

Can we improve on the synchronized unistep procedure? An alternative ap-
proach is to advance each level at its own time step, different from one level to
the other but still maintaining synchronization at shared ~E time slices across
all levels and at shared ~H time slices across all levels. For the refinement ratio
of 2 this approach is possible if the time step is refined by 3 between adjacent
levels, not by 2, that is,

∆t1 = ∆t0/3

∆t2 = ∆t1/3 = ∆t0/9.

1 Chombo provides methods for exchange of cell-centered data only. Methods for
exchange of face-centered data were provided by Dr. Dan Martin of the Applied
Numerical Algorithms Groups at the Lawrence Berkeley National Laboratory.

11



Fig. 3. Geometric relationships between adjacent level data for cell-centered data
such as Hz (left panel), data centered on north-south faces such as Ex (central
panel), and data centered on east-west faces such as Ey (right panel). White dots
represent coarse-grid data, and black dots represent fine-grid data. Data averaging
and interpolation routines developed for cell-centered data will return incorrect
results if applied to face-centered data and vice versa.

level 0 ~E0 ~H0 ~E0 ~H0

level 1 ~E1 ~H1 ~E1 ~H1 ~E1 ~H1 ~E1 ~H1 ~E1 ~H1

t0 t0 + ∆t0

2
t0 + ∆t0 t0 + 3∆t0

2

Fig. 4. The two-level synchronized multistep leapfrog showing communication lines
between the levels. Communication on vertical lines is bidirectional, since these
are sync lines and level 1 data can be used to correct (by averaging) level 0 data.
Communication on angled lines is from level 0 to level 1. Here level 0 data are used
to provide data for the level 1 boundary.

More generally, for a space refinement ratio of n, the time-step refinement
between adjacent levels should be n + 1. In the following considerations we
will focus on the space refinement ratio of 2.

Figure 4 illustrates why this is so. We have only two levels in this figure, but
its meaning can be extended by simply relabeling the levels. We can see that
the level 0 ~E0 coincides with the level 1 ~E1 and that the level 0 ~H0 coincides
with the level 1 ~H1. We call this procedure a synchronized multistep. In this
case every level maintains its own separate time variable, t0 for level 0, t1 for
level 1, and so on.

Figure 4 also shows interlevel communication for the synchronized multistep.
For the level 1 points, where two angled lines meet, time interpolation is
implied between the level 0 points from which the lines originate.

Let us consider two adjacent levels, i and i − 1. Let us assume that the data
are defined for the following time slices.

12



~Di−1
old at ti−1

~Di−1 at ti−1 + ∆ti−1

~Ei−1
old at ti−1

~Ei−1 at ti−1 + ∆ti−1

~H i−1
old at ti−1 −∆ti−1/2

~H i−1 at ti−1 + ∆ti−1/2

~Di at ti = ti−1

~Ei at ti = ti−1

~H i at ti + ∆ti/2 = ti−1 + ∆ti−1/3/2

We can provide boundary data to ~Ei(ti) because we have ~Ei−1(ti−1) = ~Ei−1(ti),

and we can provide boundary data to ~H i(ti + ∆ti/2) = ~H i(ti−1 + ∆ti−1/3/2)

by time interpolating between ~H i−1
old (ti−1−∆ti−1/2) and ~H i−1(ti−1 + ∆ti−1/2)

at t = ti−1 + ∆ti−1/3/2

We can implement the two-level time step for this system and at the same
time extend it recursively to an arbitrary number of levels by redefining our
level update routines update e and update h as follows.

update e(i)

(1) Advance the ~Di(ti) field of level i by ∆ti to ~Di(ti + ∆ti).

(2) Convert ~Di(ti + ∆ti) to ~Ei(ti + ∆ti) where media are present.

(3) Time and space interpolate between ~Di−1
old (ti−1) and ~Di−1(ti−1 + ∆ti−1)

and between ~Ei−1
old (ti−1) and ~Ei−1(ti−1 + ∆ti−1) at ti−1 + ∆ti−1/3 to fill

the boundary of level i.
(4) If level i + 1 exists, call update e(i + 1).

(5) Advance the ~H i(ti+∆ti/2) field of level i by ∆ti to ~H i(ti+∆ti/2+∆ti);

(6) Space interpolate ~H i−1 onto the boundary of level i. Because ti+∆ti/2+

∆ti = ti−1 + ∆ti−1/3/2 + ∆ti−1/3 = ti−1 + ∆ti−1/2 we find that ~H i and
~H i−1 are synchronized, and so there is no need to time interpolate.

(7) If level i + 1 exists, call update h(i + 1).

(8) Because ~H i and ~H i−1 are in sync, average ~H i onto level i− 1 cells that
overlap with level i cells.

(9) Advance the ~Di(ti + ∆ti) field of level i by ∆ti to ~Di(ti + 2∆ti).

(10) Convert ~Di(ti + 2∆ti) to ~Ei(ti + 2∆ti) where media are present.

(11) Time and space interpolate between ~Di−1(ti−1) and ~Di−1(ti−1 + ∆ti−1)

and between ~Ei−1(ti−1) and ~Ei−1(ti−1 + ∆ti−1) at ti−1 + 2∆ti−1/3 to fill
the boundary of level i.

(12) If level i + 1 exists, call update e(i + 1).

13



comment 1 Level 0 has its own version of update e that takes care of
PML boundaries and incident signal injection and extraction at the total
field region boundary. The level 0 version does not, obviously, interpolate
boundary data from a coarser level, but it calls update e(1) if level 1
exists.

comment 2 This procedure is mutually recursive with update h. The first
call to update e(i + 1) corrects by averaging higher-resolution data
~H i(ti + ∆ti/2) before it is used in the level i update. The following call

to update h(i + 1) similarly corrects ~Ei(ti + ∆ti). The second call to

update e(i + 1) corrects ~H i(ti + ∆ti/2 + ∆ti). Similar conditions hold

for level i + 1. By means of this mutual recursion, both ~E and ~H data
cascade from the highest level back to level 0.

update h(i)

To understand this routine, we should assume that update e has already
been called. So ~H i is now ~H i(ti + 3∆ti/2) = ~H i(ti−1 + 3∆ti−1/3/2) =
~H i(ti−1 + ∆ti−1/2), meaning that it is synchronized with ~H i−1. But by this
time the lower-level calls to update e and update h would have advanced
~H i−1 to ~H i−1(ti + ∆ti/2 + ∆ti) and ~Hold to ~H i−1

old (ti + ∆ti/2), so ~H i is, in

fact, synchronized with ~H i−1
old , not with ~H i−1.

Let us then advance ti to ti = ti−1 ← ti−1 +∆ti−1/2, so as to align it with

the slice where ~H i−1
old and ~H i are defined.

(1) Advance the ~H i(ti) field of level i by ∆ti to ~H i(ti + ∆ti) = ~H i(ti−1 +
∆ti−1/3.

(2) Time and space interpolate between ~H i−1
old (ti−1) and ~H i−1(ti−1 + ∆ti−1)

at ti−1 + ∆ti−1/3 to fill the boundary of level i.
(3) If level i + 1 exists, call update h(i + 1).

(4) Advance the ~Di(ti +∆ti/2) field of level i by ∆ti to ~Di(ti +∆ti/2+∆ti).

(5) Convert ~Di(ti + ∆ti/2 + ∆ti) to ~Ei(ti + ∆ti/2 + ∆ti) where media are
present.

(6) Space interpolate ~Di−1 and ~Ei−1 onto the boundary of level i. Because
ti + ∆ti/2 + ∆ti = ti−1 + ∆ti−1/3/2 + ∆ti−1/3 = ti−1 + ∆ti−1/2, we find

that ~Ei and ~Ei−1 are in synchrony, as are ~Di and ~Di−1, and so there is
no need to time interpolate.

(7) If level i + 1 exists, call update e(i + 1).

(8) Because ~Ei and ~Ei−1 are in sync, as are ~Di and ~Di−1, average ~Ei and
~Di onto level i− 1 cells that overlap with level i cells.

(9) Advance the ~H i(ti + ∆ti) field of level i by ∆ti to ~H i(ti + 2∆ti).

(10) Time and space interpolate between ~H i−1
old (ti−1) and ~H i−1(ti−1 + ∆ti−1)

at ti−1 + 2∆ti−1/3 to fill the boundary of level i.
(11) If level i + 1 exists, call update h(i + 1).

14



comment 1 Level 0 has its own version of update h that takes care of
PML boundaries and incident signal injection and extraction at the total
field region boundary. The level 0 version does not interpolate boundary
data from a coarser level, but it calls update h(1) if level 1 exists.

comment 2 This procedure is mutually recursive with update e. The first
call to update h(i + 1) corrects by averaging higher resolution data
~Ei(ti+∆ti/2) and ~Di(ti+∆ti/2) before they are used in the level i update.

The following call to update e similarly corrects ~H i(ti +∆ti). The second

call to update h corrects ~Ei(ti + ∆ti/2 + ∆ti) and ~Di(ti + ∆ti/2 + ∆ti).
Similar conditions hold for level i+ 1. By means of this mutual recursion,
~E, ~D, and ~H data cascade from the highest level back to level 0.

Calling update e(0) followed by update h(0) triggers a recursive synchro-
nized multistep leapfrog advance for all levels.

As with many complex procedures, the synchronized multistep is not without
problems.

The first problem arises from having to divide the time step by a number
that is larger than the refinement ratio. We have to set our ∆t0 to satisfy
the stability criterion for level 0. But then ∆ti for the higher levels ends up
being shorter than needed for those levels, and this may become costly for
systems with a large number of levels. For example, for a 10-level system,
∆t9 = ∆t0/39 = ∆t0/19683 compared with ∆t0/29 = ∆0/512. This is some
38 times shorter than it would really have to be. A remedy here could be to
refine not by 2 but, say, by 4. Then ∆t0/∆t1 = 5, the difference is no longer
this large, and we no longer need so many levels, either.

The second problem is caused by time interpolation, which is costly and intro-
duces error that can destabilize the procedure. We have observed emergence
of high-frequency noise on the level boundaries. Because the lower-resolution
grid of the lower level cannot propagate the high-frequency noise away to
the perfectly matched layer, where it would be absorbed, the noise becomes
trapped within the high-resolution mesh and is continuously fed by the inter-
polation. This is a common problem for multigrid methods when applied to
hyperbolic equations. In computational fluid dynamics various devices such as
artificial viscosities can be deployed to absorb the noise. But we do not have
artificial viscosities in FDTD. The remedy here can be to resort to a more
elaborate, higher-order time interpolation (we use linear interpolation in the
code), which would make the procedure even costlier, or to deploy a noise
elimination method, for example, based on the Fourier analysis of the field.

Luckily, the synchronized unistep method, which is free of time interpolations,

15



works well and affords us considerable savings. We have implemented both
methods in the code, and the user is free to choose between them.

5 Parallelization and Output

Chombo parallelizes its operations by dividing all cells of a given level into
boxes and then distributing the boxes of cells among the MPI processes. Thus,
a Chombo box of cells is a quantum of parallelism. But a given MPI process
may end up with more than one box for a given level, and then it may have to
compute on boxes covering other levels, too. Chombo attempts to distribute
the load evenly. This process, however, depends also on the specific shape of
the subgrids. Intricate shapes may require a large number of small boxes to
cover them.

A shapes user can specify the smallest size of a box to be used in covering
the subgrids, the largest size of a box, and the extent to which the covering
is allowed to be relaxed. A very relaxed covering may simply place a single
large box on the designated area of the grid. A very tight covering may end
up tracing the shape of the area closely—generating many small boxes in the
process.

Chombo takes care of communicating data between the boxes and between
the levels, both in a sequential and in a parallel context.

We have tested shapes on IA32 and IA64 Linux clusters, as well as on the
Cray XT3 supercomputer, varying the number of MPI processes between 4
and 1024. When shapes runs in parallel, all I/O is done in parallel, too.
shapes diagnostics are written by participating MPI processes on their own
process-specific files. Field data is written on HDF5-structured MPI-IO files,
which are accessed by all MPI processes simultaneously. Such files are best
created on a parallel file system, for example, PVFS, GPFS, or Lustre.

When the code is run sequentially, the data can also be dumped in a human-
readable format suitable for display and postprocessing with Gnuplot. In both
cases, the data files are substantially annotated.

The HDF5 files can be perused with standard HDF5 tools that list their
content; but in order to visualize the data, a special tool is needed because
the structure of HDF5 data within HDF5 files is application dependent.

Chombo provides such a tool, called ChomboVis. It is a Python/VTK package
that understands the way Chombo writes its multigrid data on the HDF5 files.
The tool provides a considerable number of visualization options that can be

16



Table 1
Drude/Lorentz parameters for silver

Symbol Value Unit

ǫ∞ 2.36461

ωD 1.3257 × 1016 Hz

ΓD 1.136268 × 1014 Hz

ω1 6.6457856 × 1015 Hz

g1 0.266286

δ1 4.2487 × 1014 Hz

ω2 7.863688 × 1015 Hz

g2 1− g1

δ2 8.316865 × 1014 Hz

∆ǫ 1.1830916

additionally enhanced or customized by Python scripting.

6 Scattering off a Drude/Lorentz Dispersive Metallic Cylinder

A good example is the interaction of radiation with a metallic cylinder. We
illustrate in this section how this problem is handled by shapes, at the same
time indicating where our code is unique.

We assume the cylinder to be made of silver, and we use the following phe-
nomenological model for the material:

~D(ω) = ǫ0

(

ǫ
∞
− ω2

D

ω2 − iΓDω
+

g1ω
2
1∆ǫ

ω2
1 + 2iωδ1 − ω2

+
g2ω

2
2∆ǫ

ω2
2 + 2iωδ2 − ω2

)

~E(ω),(14)

where the values of the parameters are given in Table 1. These parameters
were shown to accurately describe empirical data for the complex dielectric
constant of silver over a wide range of frequencies [17].

We normalize this material model to that given by equation (4) by dividing
both the numerator and the denominator of each resonance term by the square
of its resonance frequency. The result is the following transformation of the
coefficients for the Lorentz terms:

αk← 1 (15)

17



δk←
δk

ωk

(16)

ǫk← gk∆ǫ (17)

and the following transformation for the Drude term:

αk← 0 (18)

δk←
ΓD

2ωD

(19)

ǫk← 1. (20)

Because our unit of time is the same as the unit of length on account of the
t = ctSI substitution, we have to scale the resonance frequencies accordingly.
To this end, we multiply each frequency by the time it takes for light to traverse
a unit length chosen for the simulation. In this example we have chosen the
unit of length to be 15 nm. Light traverses this distance in 5× 10−17 seconds
(0.05 fs), so this is the number we need to multiply the resonance frequencies
by.

The cylinder itself is located in the center of the computational domain, and
its radius is 1.25 units of length, that is, 18.75 nm. Table 2 lists the resulting
simulation parameters.

The injected signal is an x-polarized Gaussian wave packet moving in the y-
direction. The Gaussian envelope has a half-width σ of 900 nm (i.e., 60 units
of length), and the wavelength λ of the harmonic component of the signal
is 300 nm (i.e., 20 units of length), in the near ultraviolet range. The metal-
lic optical properties determined by κ(ω), equation (14), are such that sur-
face plasmon resonances exist in the 300 to 500 nm spectral range [2]. Our
injected signal’s frequency falls right at the edge of this region, where scatter-
ing, extinction, and absorption cross-sections are still minimal (cf. Figure 2 in
[2]). Nevertheless, we observe intensification of electromagnetic fields near the
metallic surfaces of the cylinder in agreement with observations made in [2].
The exact formula describing the signal is

f(ζ) = exp

(

− ζ2

2σ2

)

sin
2π

λ
ζ

ζ = nx(x− x0) + ny(y − y0)− (t− t0)

n2
x + n2

y = 1

Hz = f(ζ)

Ex = −nyf(ζ)

Ey = nxf(ζ),

where the parameters nx, ny, x0, y0, t0, σ, and λ are shown in Table 2. The

18



Table 2
Signal and material parameters used in the cylinder simulation.

Units

Length 15 nm

Time 0.05 fs

Geometry of the Region

Computational

Domain

PML-Free

Region

Total Field

Region

(xmin, ymin) (0, 0) (5, 5) (30, 30)

(xmax, ymax) (100, 100) (95, 95) (70, 70)

Injected Signal

(nx, ny) (0, 1)

(x0, y0) (0, 30)

t0 300

λ 20

σ 60

Material Parameters

ǫ∞ 2.36461

k = 1 k = 2 k = 3

ωk 0.66285 0.33229 0.39318

αk 0.00000 1.00000 1.00000

δk 0.00429 0.06393 0.10576

ǫk 1.00000 0.31504 0.86805

Layout Parameters

(xc, yc) (50, 50)

rc 1.25000

Grid Refinement Parameters

(xmin, ymin) (44, 44)

(xmax, ymax) (56, 56)

Levels 5

Refinement
ratio 2

19



signal is injected and extracted at a rectangular total field region boundary
defined by (xmin, ymin) and (xmax, ymax), also shown in Table 2.

Dispersive problems such as the present one do not trivially scale with system
size as simple dielectric ones do. However, the solution discussed here could be
related to problems of other scale under appropriate circumstances because
the unit of length does not appear in the computations explicitly and can
be changed arbitrarily. The material properties are characterized here by di-
mensionless ratios of damping coefficients (ΓD, δ1, and δ2) to their respective
resonance frequencies and by the ratio of the resonance frequency to the fre-
quency of the incident signal. If a material with similar ratios could be found,
or made, for example, in the microwave regime, the solution would apply just
as well.

We solved this problem on five levels, with level 0 ∆x = ∆y = 0.25 (i.e.,
3.75 nm) and ∆t the same for all levels—we used the synchronized unistep in
the computation—and set somewhat below what is dictated by the stability
criterion for level 4, to 0.00390625, which is ∆x0/(4× 24).

The level 0 grid had 400×400 nodes. It was refined within the rectangle defined
by its lower left corner at (44, 44) and its upper right corner at (56, 56), and
the refinement ratio between adjacent levels was 2. The level 4 grid would
have 6400× 6400 nodes if it were to cover the whole computational domain.
We performed single-level computations on such a grid, too, to demonstrate
the gains that resulted from using the multigrid method in this context.

The scattered field region was left quite wide in order to display the long-range
scattered field for this configuration. For the same reason the diameter of the
cylinder was made very small. It is not resolved sufficiently within the level 0
grid.

Figure 5 illustrates the geometry of the computational domain. The cylinder
is represented by the small circle in the center. It is enclosed within the tag
box, which is, in turn, enclosed within the total field region box. The scattered
field region around it is wide. Eventually we get to the PML boundary and
finally the boundary of the computational domain.

Figure 6 shows how the cylinder is resolved at various levels, beginning with
level 0 on the left through level 4 on the right. To resolve the edge of the
cylinder very finely helps mitigate staircase spikes, which become smaller with
increasing resolution.

Figure 7 shows images of the Ex field for t = 325 (16.25 fs), which corresponds
to the peak of the Gaussian packet traversing through the cylinder. The left-
most panel shows the whole computational domain, 1, 500 nm×1, 500 nm, with
the total field region and the incident signal clearly visible in the center. The

20



Fig. 5. Definition of various regions in the simulation. The innermost box is the tag
region; the next box from the center is the total field region. It is surrounded by
a fairly wide scattered field region. Then we have the PML boundary and finally
the boundary of the computational domain. The circle in the center represents the
cylinder. All objects are drawn to scale.

Fig. 6. Resolving the cylinder at 5 levels.

Fig. 7. ChomboVis images of the Ex field for the 5-level run for t = 325 (16.25 fs).
The leftmost panel shows the whole computational domain with the incident wave
itself visible in the total field region. The center panel shows the magnified image of
the Ex field in the middle of the computational domain. The rightmost panel shows
the field in the scattered field region. In order to see the field in the scattered field
region, the colormap had to be adjusted. This adjustment resulted in the blotting
out the total field region.

rightmost panel shows the scattered field. Because the scattered field is much
weaker than the incident field, we had to blot out the total field region, which
appears black. Finally the center panel zooms on the cylinder itself to illus-
trate the highly resolved features of the field around and inside the cylinder.
The diameter of the cylinder is 37.5 nm, and the field in its vicinity is resolved
down to about 0.2 nm. On the other hand, the field in the scattered field region

21



is resolved down to about 4 nm. An important feature of this solution is that
in this single simulation we compute simultaneously the far field and the near
field, in both cases with such resolution as is needed.

7 Mitigating the Cost of High Resolution

How much do we save by running this example in multigrid, rather than in
the target resolution covering the whole region?

This example was run on four nodes of a typical IA32 cluster, and field snap-
shots were dumped every 7 minutes. The target resolution is very high. The
∆x0 = 0.25 is refined 4 times down to ∆x4 = ∆x0/2/2/2/2 = 0.25/16 =
0.015625. As we remarked earlier, at this resolution the 100 × 100 domain
would be covered by 6, 400× 6, 400 grid cells, which is more than 40 million
cells. This would be a very large problem, and it would no longer fit in the
memory of four nodes. When run on sixteen nodes, the program takes 70
minutes between the snapshots, instead of just 7 minutes for the 5-level simu-
lation, and the produced data files are 3.36 GB each. One hundred and thirty
of these files fills more than 436 GB of disk space.

If the problem could somehow be executed on four nodes instead of sixteen, it
would take four times longer to run (the single-level computation parallelizes
well, and the scalability is almost linear), that is, 4 hours and 40 minutes per
snapshot. In order to complete the run, nearly a month would be needed.

The Fortran subroutines used with the program at present are not highly
optimized, but even if we managed to optimize them, say, five times—which
would be a lot—the single-level configuration would still take days to complete
when run on four nodes.

But the size of the resulting data files is the worst problem. It is very difficult to
postprocess data files as large as 3.36 GB. Computer memory is still expensive,
and we seldom have more than 2GB in our desktops, even though the EM64T
architecture does away with the previous 32-bit limitation.

Table 3 compares resources used by five shapes input configurations, all of
which model the example discussed in this section. For all configurations the
computational domain is 1, 500 nm× 1, 500 nm, the cylinder is located in the
center, and its diameter is 37.5 nm. For all multilevel configurations, the tag
regions are defined in the same way. The target resolution for all runs is the
same, but in the Cylinder-5 configuration it is reached within level 5, as dis-
cussed above. In the Cylinder-4 configuration we have 4 levels only, and the
target resolution is reached within level 4. To accomplish this, we must en-

22



Table 3
Resources consumed by cylinder runs with varying numbers of levels but with a
fixed target resolution of the finest level, identical physical configuration, and a
fixed number of processors.

Configuration No. of levels nx × ny Snapshot

Time (min) Size (MB)

Cylinder-5 5 400 × 400 7 28.55

Cylinder-4 4 800 × 800 17 94.32

Cylinder-3 3 1600 × 1600 32 269.43

Cylinder-2 2 3200 × 3200 79 909.15

Cylinder-1 1 6400 × 6400 280 3437.51

large the level 0 grid to 800 × 800 nodes. Similarly, we have to enlarge the
level 0 grid for the 3-level configuration to 1, 600× 1, 600 nodes, then for the
2-level configuration to 3, 200 × 3, 200 nodes, and finally for the single-level
configuration to 6, 400× 6, 400 nodes.

All runs were carried out on four processors. Table 3 shows that the resources
were consumed exponentially with the decreasing number of levels:

• The 4-level run takes 2.4 times longer to execute than the 5-level run, and
the generated data files are 3.3 times larger.
• The 3-level run takes 1.8 times longer than the 4-level run, and the generated

data files are 2.8 times larger.
• The 2-level run takes 2.5 times longer to execute than the 3-level run, and

the generated data files are 3.4 times larger.
• The 1-level run takes 3.5 times longer to execute than the 2-level run, and

the generated data files are 3.8 times larger.

Another way to look at multigrid savings is to emphasize the cost of improving
resolution. The cost of improving resolution can be exponential—improving
the resolution twice in each dimension results in increasing the number of grid
points 2 × 2 = 4 times, improving the resolution twice again increases the
number of grid points 4 times again, and so on. For n such improvements, the
size of the problem grows like 4n.

Of course, this is not the only way of improving resolution. Resolution may be
improved more gradually, not by dividing each cell in half but, for example,
by switching from a 400 × 400 grid to a 500 × 500 one for the same domain
size. But such gradual improvements do not yield significant results, and they
cannot be incorporated into the multigrid scheme of Chombo.

23



When resolution is improved exponentially in a small patch only, the equation
changes. Let us suppose the computational domain is square and the small
patch to be refined is square, too, and comprises Np nodes in each direction.
Let us suppose, to make the reasoning easier, that the patch is located in the
lower left corner of the computational domain. Then the total number of nodes
in each direction is N = Np + N0, where N0 is the number of nodes in each
direction that are not refined. The total number of nodes in the 2D region is

(Np + N0)2 = N2
p + 2NpN0 + N2

0 . (21)

Refining the small patch replaces Np with

Np + 2Np + 2 · 2Np + 2 · 2 · 2Np + . . . = Np

n
∑

k=0

2k = Np

(

2n+1 − 1
)

, (22)

where n is the number of levels and where we have made use of the fact that
∑n

k=0 2k is the sum of a geometric series. Hence, the size of the problem grows
with the number of levels n as follows:

(

Np

(

2n+1 − 1
))2

+ 2Np

(

2n+1 − 1
)

N0 + N2
0

= N2
0

(

1 + 2
Np

N0

(

2n+1 − 1
)

+
(

Np

N0

)2
(

2n+1 − 1
)2
)

. (23)

For Np (2n+1 − 1) ≪ N0 the growth in the size of the problem with n is
negligible, but when Np (2n+1 − 1) approaches N0, we encounter the original
problems, with their onset merely delayed and with the added burden of having
to carry out computations for intermediate levels.

This observation gives us a criterion for selecting a good number of levels in
a given simulation. We are going to look for such n that

Np

(

2n+1 − 1
)

= N0. (24)

From this

n =
1

ln 2
ln

(

N

2Np

)

. (25)

Let us consider the example discussed in Section 6. We had there that Np = 12
and N = 400. Using the above formula, we obtain

n =
1

ln 2
ln
(

400

2× 12

)

= 4.05889. (26)

24



Table 4
Cost of adding levels. The multilevel runs on the left-hand side of the table all start
with the same level 0 resolution of 400 × 400 nodes. The single-level runs on the
right-hand side stretch the target resolution that is the same as for the runs on the
left-hand side over the whole computational domain.

Multi-Level Runs Single-Level Runs

Configuration No. of Levels Snapshot Configuration nx × ny Snapshot

Time Size Time Size

(min) (MB) (min) (MB)

Cylinder-1a 1 0.15 13.44 Cylinder-1b 400× 400 0.15 13.44

Cylinder-2a 2 0.29 14.25 Cylinder-2b 800× 800 0.59 53.72

Cylinder-3a 3 0.74 15.71 Cylinder-3b 1600 × 1600 4.00 214.85

Cylinder-4a 4 2.00 19.07 Cylinder-4b 3200 × 3200 34.00 852.38

Cylinder-5a 5 7.00 28.55 Cylinder-5b 6400 × 6400 280.00 3437.51

So, our choice of the maximum level being n = 4 was fortuitous.

The above consideration ignores the added cost of communication, both within
a node and between nodes, which is very considerable for the multigrid method.

8 The Cost of Adding Levels

Table 4 illustrates the empirical cost of improving resolution by adding levels.
The configurations in the Cylinder-xa series of runs, where x = 1, 2, 3, 4, 5,
were constructed by fixing level 0 resolution at 400 × 400 nodes and then
adding levels. The target resolution achieved in these models is obviously
different. It is 400 × 400 for Cylinder-1a, 800 × 800 for Cylinder-2a, and so
on until we reach 6400 × 6400 for Cylinder-5a. Similarly, the length of the
time step shrinks for these models, in order to fit the stability criterion for
the finest subgrid. Otherwise the models are the same as the model discussed
in Section 6. The numbers in the third column of Table 4 correspond to the
wait, in minutes, between successive snapshots. This number grows somewhat
faster than exponentially with the number of levels added, but it remains
acceptably short, even for the 5-level run (7 minutes). Column 4 shows the
size of the snapshot in megabytes. Here the growth is also somewhat faster
than exponential, but the size of the data file remains reasonable even for the
5-level run.

The right-hand side of Table 4 shows run times and snapshot sizes for single-

25



Fig. 8. Scattering on a grid of elliptical cylinders. Fourier transform of the energy
density at t = 650 (32.5 fs) and ω = 0.62831853 (12.566 PHz). A 400 nm × 400 nm
portion of the full 1, 500 nm × 1, 500 nm grid is displayed.

level configurations, where the target resolution was stretched to cover the
whole computational domain. These configurations are called Cylinder-xb,
where x = 1, 2, 3, 4, 5. We note that the Cylinder-1a and Cylinder-1b configu-
rations are identical, as are the Cylinder-5b configuration and the Cylinder-1
configuration from Table 3. We observe explosive growth in the snapshot size
in the last column. Here, the cost of high resolution becomes especially signif-
icant. The growth in the size of the output is also reflected in the execution
time, which is shown in column 7. The savings provided by the multigrid
method become substantial in the high-resolution regime.

9 Conclusions

The example introduced in Section 6 is indeed simple. Yet, with only a few
small changes to the input file, we can modify it into scattering on a grid of
elliptical wires.

Figure 8 shows Fourier transform of the energy density at t = 650 (32.5 fs)
and ω = 0.62831853 (12.566 PHz) for this system. Here, material and incident
signal parameters are the same as in the single cylinder simulation; in other
words, the metal is described by a realistic dispersive and absorbing model,
and the incident signal is an x-polarized Gaussian wave packet. This is a more
complicated simulation and with a larger refined region. Consequently this
computation was carried out on 16 IA64 nodes.

Chombo grid manipulation and I/O tools made this computation possible

26



and easy. Without Chombo we would have to attend to complex logistics
of parallel multigrid programming ourselves—a considerable burden. Instead
we were able to focus on the physics, solution methodology, and program
functionality. Other utilities provided by Chombo, such as visualization and
input data handling, proved equally helpful.

Chombo represents a second generation of parallel programming utilities that
are now being built on top of MPI. There are still too few of these, but where
they are becoming available, they have the potential to revolutionize the way
we do scientific computing.

The resulting program is flexible and powerful, allowing us to simulate effi-
ciently and with ease complex, multiscale nanophotonic structures both se-
quentially and in parallel on systems of varying size, from a single PC to
1024-CPU simulations on the Cray XT3.

The multigrid technique proved highly effective at reducing solution time and,
just as important, the size of the output files. To match the speed of the 5-level
simulation that was carried out on four PCs, we had to resort to executing
the single-level 6, 400× 6, 400 node job on 256 CPUs of the Cray XT3.

By working in two dimensions we were able to develop and debug the basic
framework of shapes without getting bogged down in considerable difficul-
ties of handling, analyzing, and visualizing three-dimensional data sets. Yet,
the final objective of this research is to develop tools for three-dimensional
simulations that will be also applicable to nonlinear materials, essential to
nanophotonics. Clearly, the savings offered by the combination of FDTD and
multigrid will be even more substantial in three dimensions. In some cases
three-dimensional problems of interest to nanophotonics are not even tractable
without multigrid. We expect that a three-dimensional extension of shapes—
called forms and currently under development—will become a valuable design
and exploration tool for nanophotonics engineers.

Acknowledgments

This work has been supported by the U. S. Department of Energy, Office
of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and
Biosciences, under DoE contract W-31-109-ENG-38. We thank Dr. Tae-Woo
Lee, Dr. Misun Min, and Dr. Barry Smith for helpful discussions and their
many valuable suggestions.

27



References

[1] Allen Taflove, Susan C. Hagness, Computational Electrodynamics, Second
Edition, Artech House, Boston, 2000.

[2] S. K. Gray, T. Kupka, Phys. Rev. B 68(4), pp. 045415(11), 2003.

[3] T.-W. Lee, S. K. Gray, “Controlled spatiotemporal excitation of metal
nanoparticles with chirped optical pulses,” Phys. Rev. B, 71, pp. 035423 (1–
9), 2005.

[4] M. S. Min, T.-W. Lee, P. F. Fischer, S. K. Gray, “Fourier spectral simulations
and Gegenbauer reconstructions for electromagnetic waves in the presence of a
metal nanoparticle,” J. Comp. Phys. 213, pp. 730–747, 2006.

[5] J. B. Bell, P. Colella, J. Trangenstein, M. Welcome, “Adaptive methods for high
Mach number reacting flow,” in Proceedings, AIAA 8th Computational Fluid
Dynamics Conference, Honolulu, Hawaii, June 9–11, 1987, pp. 717–725.

[6] J. B. Bell, P. Colella, J. Trangenstein, M. Welcome, “Godunov methods
and adaptive algorithms for unsteady fluid dynamics,” in Proceedings,
11th International Conference on Numerical Methods in Fluid Dynamics,
Williamsburg, Virginia, June 1988, Springer Lecture Notes in Physics, Vol. 323,
pp. 137–141.

[7] J. B. Bell, P. Colella, J. Trangenstein, M. Welcome, “Adaptive mesh refinement
on moving quadrilateral grids,” in Proceedings, 9th AIAA Computational Fluid
Dynamics Conference, Buffalo, New York, June 1989, pp. 471–479.

[8] M. J. Berger, P. Colella, “Local adaptive mesh refinement for shock
hydrodynamics,” J. Comp. Phys., 82(1), pp. 64–84, 1989

[9] D. Govan, E. Bekker, J. D. Paul, S. Greedy, Y. Liu, K. Biwojno, J. Wykes,
A. Vukovic, D. W. P. Thomas, T. M. Benson, P. Sewell and C. Christopoulos,
“Computational electromagnetics: current applications and future trends,”
Microwave Review (Mikrotalasna revija), November 2004

[10] G. W. Burr, “FDTD as a nanophotonics design optimization tool,”
International Symposium on Photonic and Electromagnetic Crystal Structures
V (PECS-V), March 7–11, 2004, poster Mo-P49.

[11] X. Zhu, L. Carin, “Multiresolution time-domain analysis of plane-wave
scattering from general three-dimensional surface and subsurface dielectric
targets,” IEEE Transactions on Antennas and Propagation, 49(11), pp. 1568–
1578, November 2001.

[12] M. J. White, Z. Yun, M. F. Iskander, “A new 3D FDTD multigrid technique
with dielectric traverse capabilities,” IEEE Transactions on Microwave Theory
and Techniques, 49(3), pp. 422–430, March 2001.

28



[13] R. Schuhmann, F. Mayer, T. Weiland, “Consistent 3D-FDTD subgrids for
microwave applications,” in Proceedings of the International Conference on
Electromagnetics in Advanced Applications (ICEAA 2003), pp. 125–128, 2003

[14] P. Chow, T. Kubota, T. Namiki, “A block-solve multigrid-FDTD method,” The
22nd Annual Review of Progress in Applied Computational Electromagnetics,
Miami, Florida, March 12–16, 2006.

[15] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano,
D. B. Serafini, B. Van Straalen, “Chombo software package for AMR
applications design document,” Applied Numerical Algorithms Group, NERSC
Division, Lawrence Berkeley National Laboratory, Berkeley, California,
September 12, 2003. For more information and to download the package, see
http://seesar.lbl.gov/anag/chombo/.

[16] Dennis M. Sullivan, “Electromagnetic simulation using the FDTD method,”
IEEE Press Series on RF and Microwave Technology, IEEE Press, New York,
2000, ISBN 0-7803-4747-1.

[17] T.-W. Lee, S. K. Gray, Optics Express 13, pp. 9652-9659, 2005.

[18] Dennis M. Sullivan, “An unsplit step 3-D PML for use with the FDTD method,”
IEEE Microwave and Guided Wave Letters, 7, pp. 184-186, July 1997.

29


