SELECTION OF REFERENCE CHEMICALS FOR THE VALIDATION OF IN VITRO CYTOTOXICITY ASSAYS FOR PREDICTING IN VIVO ACUTE SYSTEMIC TOXICITY

R

Selec

Giyce Gibbe Diethy

J A Strickland¹, M W Paris¹, R R Tice¹, W S Stokes², M Balls³, A Worth³, S Casati³

¹Integrated Laboratory Systems, Inc., Durham, NC, USA, ²National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences (NIEHS), RTP, NC USA; ³European Centre for the Validation of Alternative Methods (ECVAM), JRC, Ispra, Italy

Abstract

The Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) and NICEATM convened an international workshop in October 2000 taw jaito MtcL-fm contenied an international workshop in October 2000 taw jaito MtcL-fm status of *in vitro* methods for predicting acute systemic toxicity. Workshop participants recommended that *in vitro* basal cytotoxicity methods should be further evaluated. NtCEATM and ECVAM subsequently designed a multi-laboratory validation study to evaluate the utility of two in vitro cytotoxicity tests for predicting acute oral toxicity in rodents and of two in wire cytotoxicity tests for predicting acute oral toxicity in rodents and humans. A critical aspect of the study design was the selection of appropriate reference chemicals. Selection criteria included: 1) representation of chemicals across the full range of acute toxicity, 2) availability of high quality rodent acute toxicity test data, 3) availability of human toxicity data and/or exposure potential, and 4) representation of the types of regulated chemicals. A list of 116 and 4) representation or the types or regulated chemicals. A list of 1100 candidates was compiled by mining several publicly available databases, including chemicals from the Multicentre Evaluation of *In Vitro* Cytotoxicity and the Registry of Cytotoxicity. Seventy-two chemicals were selected for testing: 12 chemicals for each of the five hazard classified as having no acute toxicity hazard. These reference chemicals and data will now be used to available the nerdireitive nerdromance of the prospect *in with* other methods. to evaluate the predictive performance of the proposed in vitro test methods. Supported by NIEHS contract N01-ES-85424.

he use of animals fo lethality assays in the near-term was the publication of guidance for using in itro cytotoxicity assays to estimate starting doses for acute oral lethality assays (ICCVAM, 2001b). The recommended publication, illustrated above, provides details and examples on how to implement such an approach. NICEATM and ECVAM subsequently designed a multi-laboratory validation study to evaluat the performance of two standardized *in vitro* cytotoxicity tests using this approach

This poster describes the selection rationale, which was based on workshor ndations for selection of validation chemicals, for the 72 chemicals that will be tested during the validation study.

¹ See poster entitled "Validation Study Design to Evaluate *In Vitro* Cytotoxicity Assays for Predicting Rodent and Human Acute Systemic Toxicity" by Stokes et al. for more information on the study designed to implement this approach.

Figure 1. Registry of Cytotoxicity regression between cytotoxicity (IC₅₀₀) and rodent acute oral LD₆₀ values for 347 chemicals. The heavy line shows the fit of the data to a linear regression model, log (LD₆₀) = 0.435 x log (IC₆₀) + 0.625; r=0.67. The thinner lines show the empirical F_c = log 5 acceptance interval for the prediction model that is based on the anticipated precision of LD₅₀ values from rodent studies (Halle 1998). "Outliers" are those chemicals that fall outside these lines:

Methods

The following criteria, recommended by workshop participants (ICCVAM, 2001a), were used to compile a database of 116 candidate chemicals by mining several publicly available databases:

- 1) Representative of all five Globally Harmonised System (GHS) categories of acute oral toxicity as well as unclassified (OECD, 2001).
- 2) The types of chemicals regulated by the various U.S. regulatory agencies.
- 3) Those with human toxicity data and/or human exposure potential. Sources for Database of Candidate Chemicals
- A database of 116 candidates was compiled with chemicals from the following sources, which contained chemicals that met the criteria:
- Chemicals tested in the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC); all have significant human toxicity data that has been collected and analyzed
- by Ekwall et al. (1998). Chemicals recommended by U.S. EPA Office of Pesticide Programs and Office of Pollution Prevention and Toxic Substances.
- Chemicals with the top five highest frequencies of human toxic expos from the Toxic Exposure Surveillance System (TESS) (Litovitz et al., 2000).
- Chemicals recommended by the Guidance Document (ICCVAM, 2001b) for qualifying cytotoxicity assays for this approach.

Chemicals from those evaluated by the U.S. National Toxicology Program (NTP), and/or on the U.S. EPA High Production Volume list, and/or from the RC (Halle, 1998)

Selection of Chemicals for Testing

From the candidate database, 72 chemicals were selected, 12 from each of the five GHS acute oral toxicity hazard categories and 12 unclassified chemicals (OECD, 2001).

gory	Oral LD ₅₀
gory 1	< 5 mg/kg
gory 2	> 5 - < 50 mg/kg
gory 3	> 50 - < 300 mg/kg
gory 4	> 300 - < 2000 mg/
gory 5	> 2000 - < 5000 mg
assified	> 5000 mg/kg

Criteria for selecting 72 chemicals from the 116 candidates: Availability of human acute oral toxicity data (e.g., MEIC database)

Availability of rodent acute oral toxicity data (e.g., RC, RTECS)

Not highly volatile

Cate

Cate Cate Cate Cate

Cate Uncl

- Not strictly controlled by U.S. Drug Enforcement Agency (DEA) (i.e, >
- Schedule II) Corrosivity. Corrosives were given a lower testing priority than nonco
- since regulatory guidelines state that corrosive chemicals should not be tested in animals for acute toxicity. United Nations (U.N.) (also U.S. Department of Transportation) Packing Group (PG) designations were used. Chemicals in U.N. PG I are most corrosive and lowest in testing priority.

				13D/e	1. Selecie	d and Alternate C	nem	cais				
ted Chemicals	_	_		_		Alternate Chemicals	_					
Category/Chemical	RC ² No.	Rodent Oral LDSP (mg/kg)	Indication of Human Exposure Potential/Data*	Corroshilty	Product/Use	GHS ¹ Caregory/Chemical	RC ⁴ No.	Rodent Drai LDSP (mg/kg)	Indication of Human Exposure Potential/Data-	Cornosileity	Notes	ProductUs
< 5 mg/kg					_	LDSD < 5 mg/kg						
iy s chorde	29	1.0	Marc, NTP, Tago	Pal	Manufacturing	Atalician at	"	50		14		contaminant
n selenate han	177	1.6	NTRITESS	PGI	Feed additive Pharmaceutical			_				
eximide fot	12 51	2.0	EPA.	PGI	Pesticide Insecticide			_				
ion rine	49	2.0	NTP, EPA MEIC, EPA, TESS	PGI PGI	Insecticide Pesticide							
piarin Micurea	3 234	20 20	NTP	PGI PGI	Medicinal Pesticide							
ihrine bitarttate stigmine	169	4.0	NTP (HCI sait)	_	Pharmaceutical Pharmaceutical							
>5-<50 mg/kg						LD50 > 5 - < 50 mg/kg						
cine ium cyanide	6 252	10	MEIC/TESS MEIC/TESS	PGI	Pharmaceutical Electropiating	1-Butylamine 2,4-Dinitrophenci	68	30	NTP, HPV, EPA NTP, HPV	PGI		Pesticide, manufacturior
NOL (DOVP)		17	NTP, HPV. EPA, TESS	PGI	Pesticide	Acolein	179	46	NTP, HPV, EPA, TESS	PGI	Volatile RP-52C	Pesticide, manufacturing
s pathrin	22	18	MEIC, TESS EPA	PGI PGII	Pharmaceutical Pesticide			_				
ulfan c III tricxide	153	18 20	EPA, NTP, TESS MERC, NTP, TESS	PGI PGII	Pesticide Pesticide			_				
m l suffate	181	29	MERCITESS	PGI	Pesticide							
nytin hydraxide	132	44	NTP, HPV, EPR.	PGI	Pesícide							
ile Ile	103	50	MEIC, EPA, TESS	PGI	Pharmaceutical							
- 50 - < 300 mg/kg					Duración	LD50 > 50 - < 200 mg/kg			1000.000			200 king a
nan hiorophana	157	61	MERC NTP. TESS	PGII	Disinfectant	Amphetamine sulfate	262	41 55 60	MERC, NTP, TESS	PGI	DEA	Pharmaceutic
um II chioride	20		TESS	Polis	Viterinary pharmaceutical	Futural	14	e e	NTP, HPV	PGI		Solvert, food additive
enil HCI vidal	196	108	MEIC, TESS MEIC, TESS	PGIII	Pharmaceutical Pharmaceutical	p-Pherylenediamine Chiorpynilos	180	80 82	NTP EPA.TESS	PGII		Dyeing Pesticide
n-sxalate barbital	227 118	155	MEIC NTRITESS MEIC TESS		Paints, cleaner Pharmaceutical	Dextroproporghene HDI Methadone	229	82 86	MEIC/TESS MEIC/TESS	PGI	DEA	Phamaceutic Phamaceutic
n I fluoride	106	180	NEW NTP, EPA	PGIII	Electroplating. Touridation	Fpronil Derecharbited		82	EPA			Pesticide
-		221	TESS MEIC/TESS		food additive Pesticide	fromosynil (phena)		190	MEIC, TESS EPA		DEA	Pharnaceutic Pesticide
sulfate * 5 H2O	81	300	MEIC, NTP, EPA TESS	PGIII	Pesticide	Diphenyihydantoin	82	199	MERC, NTP, TESS	PGII		Pharnaceutic
						Metaldehyde	4	250	EPA, TESS			Pesticide
- 300 - < 2000 mg/kg	480	140	100 1000		-	LD60 > 300 - < 2000 mg/kg			HERE WERE			P
i I	115	454	MEIC, NTP, HPV, EPA, TESS	PGI	Disinfectant	Watain	35	324	MEIC, EPA, TESS	PGI		Pharmaceutic peticide
naki HCI i tydate	54 264	470	MEIC, TESS MEIC, NTP, TESS	-	Pharmaceutical Pharmaceutical	Disopyramide Barium II nitrate	246	222 255	MEIC, TESS MEIC/TESS	PGI		Pharmaceutic Pyrotechnic
umide ne suffate	101	600	MEIC/TESS MEIC/TESS	_	Pharmaceutical Pharmaceutical	Thioridazine HCI Methyl pheridate	170	258	MERC, TESS NTP		DEA	Phamaceutic Phamaceutic
c acid		670 714	MEIC/TESS MEIC/TESS		Pharmaceutical	Molinate 2.4-Dichloropheropyracetic	- 29	209	EPA MEIC, NTP, HPV,		-	Pesticide
ualicylic acid	127	1000	MEIC/TESS	PGIII	Pharmaceutical Pharmaceutical	acid Orphenadrine HCI	230	425	EPA, TESS MEIC	PGII		Pesticide Pharmaceutic
n i sultare namide	327	1187 1950	MEIC/TESS MEIC/TESS		Pharmaceutical Pharmaceutical	Trichisrion Quinidine auffate	5 5	451	NTP, EPA MEIC	PGI		Pesticide Pharmaceutic
nacepine		1957	MEIC, TESS		Pharmaceutical	1,3-Dichlorspropene Theophyline	125	470	NTP, HPV, EPA MERC, NTP, TESS			Pesticide Pharmaceutic
						konlazid Diazepam	122	650 709	MEIC/TESS MEIC/NTP/TESS	PGII	DEA	Pharnaceutic Pharnaceutic
						Maprotiline Methyl eugenol		760 810	MERC/TESS NTP			Pharmaceutic Food additive
						Diphenhydramine HCI Malathion	71	855 885	MERC, NTP, TESS MERC, NTP,			Pharnaceutic
						Salicylic acid	272	891	HPV, 1555	254		Planaceutic
	_					Chioroquine diphosphate	208	908	MERC, NTP, HPV MERC	PGII	92041C	Solvers Pharmaceutic
	_					buprolen Nalidixic acid	222 99	1009	TESS NTP			Pharnaceutic Pharnaceutic
						Dichloromethane	228	1597	MERC, NTP, HPV, TESS	PGII	Volatile RPL40C	Solvers
				-		Attpyane	200	1800				Pharmaceutic
• 2000 - « 5000 mg/kg ninophen	112	2454	MEIC, NTP, TESS		Pharmaceutical	LD60 > 2000 - < 5000 mg/kg						
ium I chloride n-chitaide	365	2902	MEIC, TESS MEIC, EPA, TESS		Pharmaceutical manufacturing Pharmaceutical							
mpherical	91	2292	MEIC, NTP		food additive Pharmaceutical							
id acid	241	2660 3720	NTP, EPA, TESS NTP, HPV		Pessicide Food additive							
kid yflomanide	361	2000	NTP, HPV, EPA. HPV		Food additive Solvent							
	301	4300	MEIC. NTP. HPV/TESS		Solvent							
reacete and ittle	294	2798	NTP, HPV		Solvent							
n setrachioride	125	2799	MEIC. NTP. HPV:TESS	PGII	Solvent							
- 5000 mg/kg anci	128	5943	MEIC, HPV,		Construction of Construction	LD50 > 5000 mg/kg		-		-		
ne glycal	360	8567	MEIC, NTP, HPV/TESS		Arthrees							
i .	130	14008	MEIC, NTP, HPV, EPA, TESS		Solvent							
lichipoethane Id	297 361	10298	MEIC, NTP, HPV MESS-NTP.	PGII	Solvent			-				
paraben rosalio/ic acid	209 120	6326 7749	NTP	-	Food address Pharmaceutine		H					
n hypochiarbe	120	2910	TESS		Disinfectant							
ol	131	12691	NTP, HPV		Platicalif Solvent							
en. a0d I phrtulate	128	4179	NTP, HPV	-	Planticizar		\vdash			-		
HS-Globa C is Regis Imbers as	illy try i	Hari of Cy ed/re	monised totoxicity, ported in	Sys a dai Halle	tem cat tabase o (1998).	egories of f chemical sp	acu ecifi	te oi c IC ₅	ral toxicit ₀ s and LD	y (O ₅₀ s. F	ECD IC N), 2001 p. reflec

⁴The following items signify human toxicity/exposure data or potential for human exposure is Multicentre Evaluation of III vitro Cytotoxidy and indicates chemicate with monographs or toxic and lefth human blood concentrations and analysis. EDT is Evaluation-guided Develop of New In vitro Tests and denotes the chemicals (C. Clemedson, Personal communication) for a follow-on project to MEIC to develop a battery of III vitro tests to predict human toxic indicates chemicals, cheen by the likelihood of human exposure, evaluated by the National TC Program. U.S. EPA indicates U.S. EPA registered pecidos (indicates chemicates of the test) HPV indicates High Production Volume Chemicals that are imported or produced in an 1.00.000 Ibsyster. TESS indicates chemicals for human posoare. oxic Exposure Surveillance System (Litovitz et al., 2000).

⁵Corrosivity. PGI-III refers to U.N. and U.S. Department of Transportation 6.1 packing groups. PG1 denotes the most corrosive chemicals. PGIII is the least corrosive. Chemicals with no PG designation are expected to be noncorrosive.

affé expected to be nuncurus-re. ⁵Notes. Only chemicals expected to be too volatile for the cytotoxicity assay system have 'volatili notations. BP = Bolling point. DEA (U.S. Drug Enforcement Agency) refers to Schedule II controlls substances. Chemicals with no "DEA" notation are expected to be under less strict contro

12/13	2/2
12/15	6/6
12/26	11/17
12/38	12/29
12/12	6/6
12/12	5/5
72/116	42/65
	12/13 12/15 12/26 12/38 12/12 12/12 72/116

ment of New In Vit ity Tests (Ekwall et al., 1999 EDIT: Evaluation-guide 4TESS: Chemicals for which human poisonings were reported by the Toxic Exposure Surveillance classification (OECD. 2001)

Registry of Cytotoxicity		
GHS ² Category	"Outliers"/Total Chemicals	
Category 1	9/11 (82%)	
Category 2	15/26 (58%)	
Category 3	24/70 (34%)	
Category 4	14/139 (10%)	
Category 5	12/57 (21%)	
Unclassified	20/44 (45%)	
Total	94/347 (27%)	

References

Ekwall B, Clemedson C, Crafoord B, Ekwall Ba, Ring P, Romert L. 1999. EDIT: A new international multicentre programme to develop and evaluate batteries of in vitro tests for acute and chronic systemic toxicity. ATLA 27:339-349. Ekwall B, Clemedson C, Crafoord B, Ekwall Ba, Hallander S, Walum E, Bondesson I. 1998. MEIC evaluation of acute systemic toxicity. Part. V. Rodent and human toxicity data for the 50 reference chemicals. ATLA 26: 571-616.

- http://iccvam.niehs.nih.gov/
- 2, p.21. OECD, Paris. http://www.oecd.org/ehs/class/HCL6htm.

cals falling outside the empirical $F_G = \pm \log 5$ acceptance interval for the RC

Table 2 shows the distribution, by GHS category, of candidate and selected Acher 2 shows music using using the state of the state of

Chemi	cal Distribution b	y GHS ⁵ Oral Tox	ticity Category
EIC/ dates	Selected EDIT/ EDIT Candidates	Selected NTP/ NTP Candidates	Selected TESS/ TESS Candidates
	1/1	5/5	3/3
	5/5	5/8	9/10
	4/5	6/12	11/19

2/14 12/27 9/9 6/6 10/10 5/5

Table 3 summarizes the number of RC chemicals in each GHS oral toxicity category, the number of RC chemicals considered as candidates for this study, the number of RC chemicals selected for testing, the number of "outliers" in the RC, and the number of RC "outliers" selected for testing. Although the percentage of "outliers" for the selected chemicals in most GHS categories is similar to the RC, the total percentage of RC "outliers" identified in the set of selected chemicals (i.e., 38%) is greater than the total percentage of outliers in the RC (i.e., 27%).

toxicity (RC) Chemicals and "Outliers"¹ by Chemical Clas

Candidate Chemicals	Selected RC Chemicals/ RC Candidates	Selected RC "Outliers") Selected RC Chemicals		
13	9/10	8/9 (89%)		
15	8/10	4/8 (50%)		
26	10/17	4/10 (40%)		
38	8/28	0/8 (0%)		
12	10/10	0/10 (0%)		
12	11/11	5/11 (45%)		
116	56/86	21/56 (38%)		

ication (OECD, 2001

Halle W. 1998. Toxizitätsprüfungen in Zellkulturen für eine Vorhersage der akuten Toxizität (LD₅₀) zur Einsparung von Tierversuchen. Life Sciences/ Lebens-wissenschaften, Volume 1, 94 pp., Jülich: Forschungszentrum Jülich.

1, 94 pp., Jourd. Protectingszemular Jaint. Litovitz TL, Klein-Schwartz W, White S, Cobaugh DJ, Youniss J, Drab A, Benson BE. 2000. 1999 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 18:517-74.

ICCVAM (Interagency Coordinating Committee on the Validation of Alternative Methods). 2001a. Report of the international workshop on *in vitro* methods for assessing acute systemic toxicity. NIH Publication 01-4499. NIEHS, Research Triangle Park, North Carolina. <u>http://iccvam.niehs.nih.gov/</u>

ICCVAM (Interagency Coordinating Committee on the Validation of Alternative Methods). 2001b. Guidance document on using in vitro data to estimate in vivo starting doses for acute toxicity. NIH publication 01-4500. NIEHS, Research Triangle Park, North Carolina.

DECD (Organisation for Economic Co-operation and Development). 2001. Harmonised Integrated Classification System for Human Health and Environmental Hazards of Chemical Substances and Mixtures as Endorsed by the 28th Joint Meeting of the Chemicals Committee and the Working Party on Chemicals in November 1998, Part

21 p.21 OCO, Fains <u>INDEXWWWEECONDENSITIES TO CONTIN</u> ielemann H, Genschow E, Liebsch M, and Halle W. 1999. Determination of the st dose for acute oral toxicity (LD₂₀) testing in the up and down procedure (UDP cytotoxicity data. ATLA 27: 957-966. ation of the starting