A Unique Equation to Estimate Flash Points of Selected Pure Liquids Application to the Correction of Probably Erroneous Flash Point Values

Laurent Catoire^{a)}

Laboratoire de Combustion et Systèmes Réactifs (LCSR), Centre National de la Recherche Scientifique (CNRS) and University of Orleans, 1C, avenue de la Recherche Scientifique, F-45071 Orleans cedex 02, France

Valérie Naudet^{b)}

Air Liquide/CRCD, 1 Chemin de la Porte des Loges, Les Loges-en-Josas, F-78354 Jouy-en-Josas, France

(Received 18 February 2004; revised manuscript received 24 August 2004; accepted 15 September 2004; published online 25 January 2005)

A simple empirical equation is presented for the estimation of closed-cup flash points for pure organic liquids. Data needed for the estimation of a flash point (FP) are the normal boiling point (T_{eb}) , the standard enthalpy of vaporization at 298.15 K $[\Delta_{vap}H^{\circ}(298.15 \text{ K})]$ of the compound, and the number of carbon atoms (n) in the molecule. The bounds for this equation are: $-100 \le FP(^{\circ}C) \le +200$; $250 \le T_{eb}(K)$ ≤ 650 ; $20 \leq \Delta_{\text{vap}} H^{\circ}(298.15 \text{ K})/(\text{kJ mol}^{-1}) \leq 110$; $1 \leq n \leq 21$. Compared to other methods (empirical equations, structural group contribution methods, and neural network quantitative structure-property relationships), this simple equation is shown to predict accurately the flash points for a variety of compounds, whatever their chemical groups (monofunctional compounds and polyfunctional compounds) and whatever their structure (linear, branched, cyclic). The same equation is shown to be valid for hydrocarbons, organic nitrogen compounds, organic oxygen compounds, organic sulfur compounds, organic halogen compounds, and organic silicone compounds. It seems that the flash points of organic deuterium compounds, organic tin compounds, organic nickel compounds, organic phosphorus compounds, organic boron compounds, and organic germanium compounds can also be predicted accurately by this equation. A mean absolute deviation of about 3 °C, a standard deviation of about 2 °C, and a maximum absolute deviation of 10 °C are obtained when predictions are compared to experimental data for more than 600 compounds. For all these compounds, the absolute deviation is equal or lower than the reproductibility expected at a 95% confidence level for closed-cup flash point measurement. This estimation technique has its limitations concerning the polyhalogenated compounds for which the equation should be used with caution. The mean absolute deviation and maximum absolute deviation observed and the fact that the equation provides unbiaised predictions lead to the conclusion that several flash points have been reported erroneously, whatever the reason, in one or several reference compilations. In the following lists, the currently accepted flash points for bold compounds err, or probably err, on the hazardous side by at least 10 °C and for the nonbolded compounds, the currently accepted flash points err, or probably err, on the nonhazardous side by at least 10 °C: bicyclohexyl, sec-butylamine, tert-butylamine, 2-cyclohexen-1-one, ethanethiol, 1,3-cyclohexadiene, 1,4-pentadiene, methyl formate, acetonitrile, cinnamaldehyde, 1-pentanol, diethylene glycol, diethyl fumarate, diethyl phthalate, trimethylamine, dimethylamine, 1,6-hexanediol, propylamine, methanethiol, ethylamine, bromoethane, 1-bromopropane, tert-butylbenzene, 1-chloro-2-methylpropane, diacetone alcohol, diethanolamine, 2-ethylbutanal, and formic acid. For some other compounds, no other data than the currently accepted flash points are available. Therefore, it cannot be assessed that these flash point data are erroneous but it can be stated that they are probably erroneous. At least, they need experimental re-examination. They are probably erroneous by at least 15 °C: 1,3-cyclopentadiene, di-tert-butyl sulfide, dimethyl ether, dipropyl ether, 4-heptanone, bis(2-chloroethyl)ether, 1-decanol, 1-phenyl-1-butanone, furan, ethylcyclopentane, 1-heptanethiol, 2,5-hexanediol, 3-hexanone, hexanoic acid methyl ester, 4-methyl-1,3-pentadiene, propanoyl chloride, tetramethylsilane, thiacyclopentane, 1-chloro-2-methyl-1-propene, trans-1,3-pentadiene, 2,3-dimethylheptane, triethylenetetramine, methylal, N-ethylisopropylamine, 3-methyl-2-pentene, and **2,3-dimethyl-1-butene**. © 2005 American Institute of Physics. [DOI: 10.1063/1.1835321]

Key words: flammability data; flash points; hazards; ignition; safety

Contents

1. 2.	Introduction	1085
		1085
	2.1. One Equation Per Chemical Family	1085
	2.2. A Unique Equation for All Chemical	
	Families	1086
3.	Neural Networks Quantitative Structure-	
	Property Relationships	1086
4.	Structural Group Contribution Methods	1086
5.	Other Methods.	1087
6.	Scopes of the Study	1087
7.	Flash Point Data.	1088
8.	Results.	1088
	8.1. Establishment of the Equation	1088
	8.2. Comparisons Between the Estimations	
	Obtained with the Equation Proposed	
	Here and Previous Equations.	1090
	8.3. Validation of Eq. (4a).	1090
	8.4. Erroneous and Probably Erroneous Flash	
	Point Data.	1105
	8.5. Limitations of this Estimation Technique	1108
	8.6. FP Estimation for Compounds for Which	
	No Experimental FP Data are Available	1110
9.	Conclusions.	1110
10.	References	1110
- 0.		

List of Tables

1	Comparison between estimated and experimental	
	flash points (FP) as given in Tetteh et al. ^a FP are	
	estimated according to neural network models.	
	The present study shows that these compounds do	
	not exhibit anomalous experimental flash points	1087
2	Comparison between calculated and experimental	
	closed-cup (CC) flash points of the 59 compounds	
	selected in the database test set. Mean absolute	
	deviation is 2.9 °C and Maximum absolute	
	error is 7 °C (1-propanol) between experimental	
	and estimated FP, with Eq. (4a)	1089
3	Comparison between the estimations made by	
	using Eq. (2) of Hshieh, and Eq. (4a) presented	
	here for some compounds of Table 2. For	
	the 59 compounds of Table 1, the mean absolute	
	deviations are 9 and 2.9 °C for Eqs. (2) and	
	(4a), respectively, and maximum absolute errors	
	are 28 and 7 °C for Eqs. (2) and (4a),	
	respectively	1090
4	Comparison between calculated, with Eq. (4a),	
	and experimental flash points for compounds	
	from the ICSCs or from various references from	

the 59 compounds of Table 1, the mean absolute			
deviations are 9 and 2.9 °C for Eqs. (2) and		1	Comparison b
(4a), respectively, and maximum absolute errors			flash points w
are 28 and 7 °C for Eqs. (2) and (4a),			line experiment
respectively	1090		fit of the 59 p
Comparison between calculated, with Eq. (4a),		2	Absolute devia
and experimental flash points for compounds			point value. T
from the ICSCs or from various references from			indicates that
the literature. Maximum absolute error is			in the -100°
10 °C for adiponitrile (high FP)	1091		Absolute devia

5	Comparison between calculated, with Eq. (4a), and experimental flash points for compounds	
6	from Kuchta. ^a Maximum absolute error is $8 ^{\circ}$ C Comparison between calculated, with Eq. (4a), and experimental flash points for compounds	1094
	from the compilation of Kanury." All experimental flash points are CC flash points, except	
7	1-heptanol, Maximum absolute deviation is 8 °C. Comparison between calculated, with Eq. (4a), and closed-cup experimental flash points for compounds from Patil ¹² Maximum absolute error	1095
	is 8 °C	1095
8	Comparison between calculated, with Eq. (4a), and experimental closed-cup flash points for	
	compounds from Tetteh <i>et al.</i> " Maximum absolute	1096
9	Comparison between calculated, with Eq. (4a), and experimental flash points of compounds as	1070
	reported in the chemical manufacturers'	
	MSDS and other sources. Maximum absolute	1007
10	Comparison of the estimations of closed-cup	1097
10	flash points with Eq. (5) and Eq. (4a) for	
	organic silicon compounds. Literature values are from Hebieb ^a	1103
11	Comparison between estimated flash points, with Eq. (4a), and experimental flash points for	1105
	organic tin, organic nickel, organic phosphorus,	
	organic boron, organic germanium and	
10	organic deuterated compounds	1104
12	Erroneous flash points and probably erroneous	
	compounds belonging to the same chemical	
	family for which Eq. (4a) performs reasonably	
	well.	1106
13	Agreement between the "half-stoichiometric rule" and Eq. (4a) for the search of erroneous	
	flash points in the literature	1108
14	Limitations of Eq. (4a)	1108
15	Estimated FP, by using Eq. (4a), for compounds	
	for which no data are available in the literature	1100
		1109

List of Figures

1	Comparison between experimental and calculated	
	flash points with Eq. (4a). Full line is both the	
	line experimental FP=calculated FP and the best	
	fit of the 59 points.	1088
2	Absolute deviation as a function of the flash	
	point value. The linear regression (full line)	
	indicates that Eq. (4a) behaves almost identically	
	in the $-100 \circ C/200 \circ C$ FP temperature range.	
	Absolute deviation = $ FP_{exp}-FP_{calc} $	1104

3	Absolute deviation as a function of the correlation parameter T_{eb} . The linear regression (full line)	
	indicates that Eq. (4a) behaves almost	
	identically in the 250–650 K. T_{eb} temperature	
	range. Absolute deviation = $ FP_{exp}-FP_{calc} $	1104
4	Absolute deviation as a function of the correlation	
	parameter $\Delta_{\rm vap} H^{\circ}(298.15 \text{ K})$. The linear	
	regression (full line) indicates that Eq. (4a)	
	behaves almost identically in the	
	$20-110 \text{ kJ mol}^{-1}$ standard enthalpy of	
	vaporization at 298.15 K range. Absolute	
	deviation = $ FP_{exp}-FP_{calc} $	1104
5	Absolute deviation as a function of the correlation	
	parameter n . The linear regression (full line)	
	indicates that Eq. (4a) behaves almost identically	
	whatever the number of carbon atoms in the	
	molecule. Absolute deviation = $ FP_{exp}-FP_{calc} $	1104
6	Standard enthalpy of vaporization at 298.15 K as	
	a function of the number of carbon atoms in the	
	molecule	1105
7	Normal boiling points as a function of the	
	number of carbon atoms in molecule	1105
8	Standard enthalpy of vaporization at 298.15 K as	
	a function of the normal boiling point	1105

1. Introduction

Flash points (FPs) are of great significance to assess fire hazards of liquids and to minimize fire risk during normal storage and handling. The FP is the lowest temperature at which a liquid produces enough vapor to ignite in air at atmospheric pressure when an ignition source (external flame for instance) is applied under specified test conditions. Several methods have been proposed to estimate flash points for many organic compounds. These methods can be divided into four categories: empirical equations,^{1–18} neural networks quantitative structure–property relationships,^{19,20} structural contribution group methods,^{21–23} and other methods.²⁴

Several test methods for the reliable measurement of closed-cup flash points in air at atmospheric pressure exist: ASTM E1232-standard test method for temperature limit of flammability of chemicals; ASTM D56-standard test method for flash point by Tag closed cup tester; ASTM D93-standard test methods for flash point by Pensky-Martens closed cup tester; and ASTM D3278-standard test methods for flash points of liquids by small scale closed cup apparatus, among others. Strictly speaking, ASTM E1232 does not define flash point but lower temperature limit (LTL) of flammability. The ignition source for ASTM D56, ASTM D93, and ASTM D3278 is a hydrocarbon gas flame and the ignition source for ASTM E1232 is an electrical arc or a fuse wire. For most of the compounds, the LTL of a compound measured using the method of ASTM E1232 would be the same as the flash point measured using the flash point test methods ASTM D56, ASTM D93, and ASTM D3278. Some of these methods and related apparatus are described by Lance et al.²⁵ Repeatability and reproductibility are important data needed to quantify experimental scatter. Those data, and in particular reproductibility as it deals with interlaboratory measurements, are also needed to compare estimated data and experimental data. Montemayor et al.²⁶ report recent repeatability and reproductibility results for ASTM D56 and ASTM D93. For ASTM D56, with a FP in the region between 38 and 85 °C, the repeatability at a 95% confidence level is found to be about 1 °C for FP below 60 °C and about 1.5 °C for FP at or above 60 °C. The reproductibility (22 labs) at a 95% confidence level is found to be about 4 °C for a FP below 60 °C and to be between 5 and 6 °C for a FP above 60 °C (up to 85 °C). For ASTM D93, with a FP in the region between 60 and 291 °C, both the repeatability and reproductibility at a 95% confidence level are found to be dependent on the FP value: about 0.033×FP (°C) for the repeatability and about 0.075×FP (°C) for the reproductibility (22 labs). These data represent a reproductibility of 4.5 °C for a FP of 60 °C quite coherent with the one observed for the ASTM D56, namely 5 °C. At 100 °C a reproductibility of about 7-8 °C is expected. It is generally reported in the literature whether the flash point has been measured in a closed-cup apparatus or in an open-cup apparatus but it is not always specified which test method was used. It is however possible to consider a reproductibility of 4-5 °C in the 30-60 °C FP temperature range, of 5-6 °C in the 60-85 °C FP temperature range, of 7-9 °C in the 85-120 °C temperature range, of 9-11 °C in the 120-150 °C FP temperature range, of 11-13 °C in the 150-175 °C FP temperature range, and of 13-15 °C in the 175-200 °C FP temperature range. Clearly, reproductibility is worse as the FP temperature increases in the 30-200 °C temperature range. This is quite logical due to experimental difficulties encountered well above the ambient. Although not discussed,²⁶ reproductibility should also be worse well below 0 °C and at 5-6 °C in the 0-30 °C FP temperature range.

2. Empirical Equations and Semiempirical Equations

Concerning empirical equations, two approaches are possible: either a unique equation for all the compounds, whatever their chemical structure, or several equations, each dealing with a class of compounds.

2.1. One Equation Per Chemical Family

Up to now, the second approach has been shown to be more accurate. Several compounds can have the same boiling point and completely different flash points and this seemed to prevent the establishment of a unique equation predicting the flash point as a function of the normal boiling point. The same experimental evidence holds for the vapor pressure at a given temperature. Therefore, several equations have to be established, each dealing with a class of com-

^{a)}Electronic mail: catoire@cnrs-orleans.fr

^{b)}Electronic mail: valerie.naudet@airliquide.com

pounds. In these equations, flash points are expressed in terms of the normal boiling point of the liquid or in terms of the vapor pressure of the liquid at a given temperature. Satyanarayana and Rao¹⁰ proposed empirical equations in which the flash point is expressed in terms of the normal boiling point. The predictions of the proposed equations are found to be reliable for many compounds, but this does not mean that the agreement between estimation and experiment is correct for all the compounds considered. This point is not mentioned in the paper of Satyanarayara and Rao.¹⁰ In fact, no indication is given in this paper concerning the mean absolute deviation (MAD), the standard deviation and the maximum absolute error from experiment. It should be observed that the search for possible erroneous flash points was beyond the scope of the study of Satyanarayara and Rao.¹⁰

Flash points also have been expressed as a function of vapor pressures by Fujii and Hermann.¹¹ In this paper, several expressions were needed. For a class of compounds, linearity seems to be the most appropriate correlation to explain the relationship between the inverse of flash points and the logarithm of vapor pressures at 298.15 K for pure organic compounds. The estimations obtained with these equations were found to be poor.

Although very interesting at first glance, this stategy has, in fact, numerous drawbacks in terms of prediction (or estimation) of flash points. First, there is a need for about 50 such equations to treat the "simple" chemical families (including normal alkanes, branched alkanes, cyclic alkanes, aromatic hydrocarbons, aldehydes, and ketones) and several others have to be established for the less-common chemical families. Second, such an equation can hardly be established for families for which experimental data are scarce and third, it is nearly impossible to estimate a flash point for multifunctional (or polyfunctional) compounds.

2.2. A Unique Equation for All Chemical Families

The use of a unique equation for the estimation of the flash points for chemically different compounds is of much interest. Some attempts have been made in that way. Patil¹² suggests the use of a unique equation for the estimation of the flash point of organic compounds:

$$FP(K) = 4.656 + 0.844T_{eb} - 0.234 \times 10^{-3}T_{eb}^2, \quad (1)$$

where T_{eb}/K is the normal boiling point temperature. Satyanarayana and Rao¹⁰ and Hshieh¹³ found that this equation does not represent the experimental data correctly. Hshieh¹³ proposed a unique empirical correlation for the estimation of general organic compounds and organic silicon compounds:

$$FP(^{\circ}C) = -54.5377 + 0.5883T_{eb} + 0.00022T_{eb}^2, \quad (2)$$

where $T_{eb}/^{\circ}C$ is the normal boiling temperature. This equation is shown to predict the flash points for a wide variety of organic compounds (including organic silicon compounds) with a standard error of 11.66 °C and a probable maximum absolute deviation of at least 30 °C (although this latter point is not discussed by Hiesh¹³). Equation (2) is therefore not

sufficiently accurate to be of interest for the reliable prediction of flash points. This statement will be discussed later in this paper (refer to Sec. 8.2).

Metcalfe and Metcalfe,¹⁴ following Satyanarayana and Kakati,¹⁵ proposed a unique empirical equation

$$FP(^{\circ}C) = -84.794 + 0.6208T_{eb} + 37.8127 \times d, \quad (3)$$

with FP in °C, T_{eb} , the normal boiling temperature in °C, and d, the liquid density expressed in $g \text{ cm}^{-3}$. However, Hshieh¹³ showed previously that there is no statistical correlation between liquid density and flash points so that the introduction of this liquid density term is questionable. The equation performs relatively poorly. The authors report a standard deviation of 10.3 °C and a maximum deviation of 30.3 °C for the 249 organic compounds considered. The standard deviation and the maximum deviation are too high to expect reliable predictions from the use of this equation. Metcalfe and Metcalfe,¹⁴ after exclusion from their data sets of 48 hydroxyl compounds, obtained a new equation which performs slightly better for the 201 remaining compounds than the previous one but still insufficiently for predictive purposes (standard deviation is 8.6 °C and maximum deviation is 26.2 °C). Moreover, the logic followed here should lead, in fact, to the establishment of different equations for different chemical families, and one can believe from the results reported above that the establishment of a unique equation is impossible. Therefore, two other approaches have been developed for the estimation of flash points, namely neural networks quantitative structure-property relationships and structural group contribution methods.

3. Neural Networks Quantitative Structure–Property Relationships

Tetteh *et al.*¹⁹ use radial basis function neural network models for the simultaneous estimation of flash point and boiling point. With this method, they obtained a MAD of about $12 \degree C$ for 400 general organic compounds (Si compounds not included) but as well, although not discussed in the paper, the maximum absolute error reaches about $40 \degree C$ as shown in Table 1. The mean absolute deviation and the maximum absolute error are too high to allow a reliable estimation of a flash point; more exactly the flash point predicted can be either very accurate or far off. The literature describing neural network modeling to predict physiocochemical properties of organic compounds was reviewed by Taskinen and Yliruusi.²⁰

4. Structural Group Contribution Methods

The structural group contribution methods have been used extensively for years to predict physicochemical properties, in particular, the enthalpy of formation. Two methods have been proposed concerning flash points: the method of Suzuki *et al.*²¹ and the method of Albahri.²² These methods were only devoted to the estimation of the flash points of hydrocarbons.

TABLE 1. Comparison between estimated and experimental flash points (FP) as given in Tetteh *et al.*^a FP are estimated according to neural network models. The present study shows that these compounds do not exhibit anomalous experimental flash points

Compound name	Estimated FP (°C)	Experimental FP (°C)
diethylamine	4.4	-23
fluorobenzene	9.1	-15
2,2-dimethylbutane	-23.8	-48
2-methylaniline	48	85
2,3-dimethylaniline	59.9	97
Nitroethane	0.5	28
Methanol	-11.6	11
Ethanol	1.2	13
n-pentane	-28.2	-49

^aSee Tetteh et al.¹⁹

For about 500 compounds, a mean absolute deviation of $5.3 \,^{\circ}$ C was obtained with the method of Albahri.²² This is quite good, but the maximum absolute error obtained is too high: $35.7 \,^{\circ}$ C. A limitation of this method is the considerable work needed to determine the structural group contributions for compounds other than hydrocarbons.

Katritzky *et al.*²³ performed a quantitative structure property relationship analysis of flash points of organic compounds. They propose 20 equations able to predict flash points. The better of these equations is:

$$FP(K) = (0.72 \pm 0.014)T_{eb} + (76.99 \pm 11.97)RNCG + (2.05 \pm 0.33)HDCA - (8.40 \pm 7.63) \quad (3')$$

and exhibits a standard deviation of 11 °C and a maximum absolute deviation of 46 °C. In this equation, $T_{\rm eb}/K$ is the normal boiling point, RNCG is defined as the ratio of maximum (by absolute value) atomic partial negative surface charge and the sum of similar negative charges in the molecule and HDCA represents the sum of solvent-accessible surface area of the H-bonding donor atoms. More details can be found in Katritzky *et al.*²³

5. Other Methods

The flash point of a compound can also be estimated accurately if the lower flammability limit (LFL) and the vapor pressure curve of the compound are known.²⁴ However, LFL are unknown for many compounds although those compounds are known to be combustible and, when known, LFL are generally available only at 25 °C or at an unspecified temperature (equal to the FP temperature or above). This can be a problem because LFL are temperature dependent (even if this dependency is generally rather weak).

Another method is called the "half-stoichiometric rule." It is actually a rule of thumb estimate for the LFL and, if the vapor pressure curve of the compound is known, this rule allows the determination of the FP. However, the half stoichiometric rule is very rough and can be far off for some compounds.

6. Scopes of the Study

All the above studies were not devoted to the discussion of the reliability of the experimental flash points reported in the literature and it can be stated that about all the above methods failed probably because erroneous data have been included in the data sets used for the establishments of these methods. This point is briefly discussed by Kline et al.²⁷ However, anomalous flash points have been observed for some compounds (for instance a flash point value above the normal boiling point of the compound). In some cases, typographical errors and in some cases unit conversion errors (mostly from °F to °C) or both are the cause of this. Jones,^{28,29} Jones and Godefroy,³⁰ Godefroy and Jones,³¹ fol-lowing Griffiths and Barnard,³² used the "half-stoichiometric rule" and found that a difference between calculated and measured flash points values of more than a few degrees is the exception rather than the rule. By using the halfstoichiometric rule, it was found that flash points for six compounds, benzoic acid, formic acid, dimethylether, ethylamine, dimethylamine, and glycerol, need reexamination because the predicted flash points are by about 15 °C or more lower than the experimentally measured flash points. The search for likely erroneous flash points is of importance for safety reasons, in particular when the "true" flash point is well below the commonly reported flash point. The "halfstoichiometric rule" has been validated experimentally by Jones with formic acid whose flash point $(43\pm5 \,^{\circ}C)$ was found experimentally about equal with the one predicted according to the half-stoichiometric rule (46-47 °C), that is more than 20 °C lower than the experimental reported flash point for formic acid (69 °C), which is more probably the flash point of a water/formic acid solution. However, it appears that not all compounds conform closely to the halfstoichiometric rule; for instance, aniline and chlorobenzene for which the vapor pressure at the flash point is not half of stoichiometric but 0.72 and 0.76 of stoichiometric, respectively. This ratio to the stoichiometric concentration can actually range from 0.2 up to 1. The strict use of the halfstoichiometric rule can therefore lead to the wrong conclusion that the flash point of some compounds is probably erroneous. Therefore, the predictions of the halfstoichiometric rule cannot be assessed unambiguously even if it is a valuable tool for a lot of compounds.

The goals of this work are:

- to propose a unique empiric equation able to estimate accurately, quickly, and without computational resources the flash point of a carbon-containing compound whatever its chemical structure is;
- (2) to validate this equation with a lot of carbon-containing compounds other than the ones just considered for Eq. (4a);
- (3) to detect compounds for which the reported flash points are probably erroneous and to build a reliable database; and
- (4) to estimate flash points for compounds for which no

flash point data are available in the literature, in the chemical manufacturers materials safety data sheets (MSDS), or on the internet, although these compounds are known to be combustible.

7. Flash Point Data

There are several sources for flash point data. These include:

- (1) International Chemical Safety Cards (ICSCs)³³ on the internet;
- (2) CRC Handbook of Chemical Physics and Physical Chemistry³⁴ or other handbooks,^{35,36}
- (3) US Bureau of Mines (now Pittsburgh Research Center) reports and compilations,^{37,38}
- (4) chemical manufacturer's MSDSs,^{39,40}
- (5) Physical and Theoretical Chemistry Laboratory (PTCL) Oxford University chemical and other safety information,⁴¹
- (6) National Institute for Occupational Safety and Health (NIOSH) Pocket Guide (NPG) to Chemical Hazards,⁴² and
- (7) the NFPA publication "Fire Protection Guide to Hazardous Materials." ⁴³

ICSCs³³ published by UNEP/ILO/WHO/EU in the frame of the International Program on Chemical Safety (IPCS) are considered here as the major source of reliable data because the data are updated when necessary. A U.S. version of the ICSCs published by the NIOSH exists. About 1300 compounds, not all organic, not all combustible, are reported in the ICSCs against less than 150 in the *CRC Handbook of Chemical Physics and Physical Chemistry*.³⁴ These cards are also available on the Internet. Several hundred flash points are not available in these cards, but in chemical manufacturers' MSDS or other compilations.

8. Results

8.1. Establishment of the Equation

Fifty nine carbon-containing compounds have been selected mostly from the ICSCs³³ for the establishment of the equation. The number of compounds should not be too small and also should not include erroneous data. The six compounds suggested for reexamination by Jones,^{28,29} Jones and Godefroy,³⁰ and Godefroy and Jones³¹ have been excluded from this list. The compounds were selected to cover a wide temperature range (from very low temperature flash points up to high temperature flash points) and a wide range of chemical structures (linear, branched, cyclic compounds, from 1 up to 16 carbon atoms in the molecule). Basically, the compounds of interest here are hydrocarbons, organic oxygen compounds, organic nitrogen compounds, organic sulfur compounds, organic halogen compounds, and in general, C-H-N-O-S-X compounds whatever their structures. In this database the following chemical classes are included

FIG. 1. Comparison between experimental and calculated flash points with Eq. (4a). Full line is both the line experimental FP=calculated FP and the best fit of the 59 points.

with one or more compounds: alkanes (linear, branched, cyclic), aromatics, alcohols (linear, branched, cyclic), ethers, thiols, sulfides, ketones, esters, carboxylic acids, alkenes, chloroalkanes, aldehydes, amines, and nitro compounds. The establisment of a unique equation against only one parameter such as the normal boiling point would only lead to a rough estimation as several compounds can have the same normal boiling point with completely different flash points. To obtain a unique equation, the flash point has to be expressed as a function of two or three parameters. The three parameters considered here are the normal boiling point (T_{eb}), the standard enthalpy of vaporization at 298.15 K, and the number (*n*) of carbon atoms in the molecule. Of all the types of equations tested, it appears that the closed cup (CC) FP can best be expressed for the 59 selected compounds by

$$FP(K) = 1.477 \times T_{eb}^{+0.79686} \times \Delta H_{vap}^{\circ + 0.16845} \times n^{-0.05948},$$
(4a)

where $T_{\rm eb}/{\rm K}$ is the normal boiling temperature of the compound, $\Delta H^{\circ}{}_{vap}$ the standard enthalpy of vaporization at 298.15 K of the compound expressed in kJ mol⁻¹, and n the total number of carbon atoms in the molecule. It was not possible to get a reliable expression without including the nterm in the equation. Indeed, the equation obtained without the *n* term with this power law form does not allow a reliable estimation of the flash point of the molecules containing 1 or 2 carbon atoms (mean absolute deviation 5.3 °C, but absolute maximum deviation of 29 °C for nitromethane and 20 °C for methanol). Figure 1 shows the agreement between estimated and experimental flash points. With this equation the mean absolute deviation is $2.9 \degree C$ for the $-50-133.9 \degree C$ FP temperature range considered, with a maximum absolute error of 7 °C. For FP below 0 °C, the mean absolute deviation is 2.3 °C, for FP comprised between 0 and 30 °C the mean absolute deviation is 3.2 °C, for FP comprised between

	<u></u>			
с. ·	Calculated	Experimental	D.C. ab	CAS Registry
Species	$FP(^{\circ}C)$	$FP(^{\circ}C)$	References	Number
acetone	-22	-18	ICSCs CC	67-64-1
butanal	-12	-7	ICSCs	123-72-8
1-butanethiol	5	2	ICSCs CC	109-79-5
butanoic acid	69	72	ICSCs CC	107-92-6
1-butanol	33	29	ICSCs CC	71-36-3
2-butanol	21	24	ICSCs CC	78-92-2
2-butanone	-8	-9	ICSCs CC	78-93-3
butyl acetate	24	22	ICSCs CC	123-86-4
n-butylamine	-8	-12	ICSCs CC	109-73-9
1 (1 (10	10	-8.5 °C BASF MSDS	500.84.7
butyl formate	12	18	ICSCs CC	592-84-7
1-chlorobutane	-11	-12		109-69-3
chloroethane	- 51	- 50		/5-00-5
cyclonexalle	-17	-18		110-82-7
1-1	(2)	69	(fiammable solid)	108 02 0
cyclonexanol	05	08		108-93-0
cyclopentane	- 37	- 37		120 02 3
n-decane	51	50 9+0 8 °C	44 CC	120-92-3
ii-decane	51	50.9 ± 0.0 C	44 CC	124-10-5
1 decene	16	52.8±1.0 C	41 CC	872 05 9
di-n-butylamine	40	47	ICSCs	111-92-2
ul-il-butylamine		47	20 °C DASE MSDS	111-92-2
			59 C DASF MSDS	
dibutulathan	20	25	42.5 + CC	142.06.1
diethylether	_ 15	- 45		142-90-1 60 29 7
dimethyl sulfide	- 32	- 38	³⁸ CC	75-18-3
dipentylether	52	57	41	693-65-2
ethanal	-45	-39	ICSCs CC	75-07-0
ethanol	12	13	ICSCs CC	64-17-5
		11.3:12.4	Kong et al 45	
ethyl acetate	- 8	-4	ICSCs CC	141-78-6
, , , , , , , , , , , , , , , , , , ,		-69 to -68	Kong et al 45	
ethylbenzene	23	18	ICSCs CC	100-41-4
ethyl formate	-23	-20	ICSCs CC	109-94-4
n-heptane	-4	-4	ICSCs CC	142-82-5
2-heptanone	39	39	ICSCs	110-43-0
n-hexadecane	130	133.9 ± 2.8	44 CC	544-76-3
n-hexane	-25	-22	ICSCs CC	110-54-3
2-hexanol	46	41	ICSCs	626-93-7
2-hexanone	23	23	ICSCs CC	591-78-6
1-hexene	-29	-26	ICSCs	592-41-6
nitroethane	34	28		79-24-3 75-52-5
2 nitronronano	34	55 24		70 46 0
2-intropropane	33	24		111 84 2
mesityl oxide	25	25	ICSCs CC	141-79-7
methanol	9	12	ICSCs CC	67-56-1
methanor	-	7_7 7	Kong et al 45	0, 00 1
2-methylheptane	9	44	ICSCs	592-27-8
methyl isopropyl ketone	Ó	- 1	ICSCs	563-80-4
2-methylpentane	-31	- 32	ICSCs CC	107-83-5
n-octane	16	13	ICSCs CC	111-65-9
1-octanol	86	81	ICSCs CC	111-87-5
n-pentane	-48	-49	ICSCs CC	109-66-0
pentanoic acid	83	86	ICSCs CC	109-52-4
3-pentanol	31	34	ICSCs CC	584-02-1
2-pentanone	6	7	ICSCs CC	107-87-9
1-pentene	-47	-51		109-67-1
propanal	- 29	- 30		123-38-6
propanoic acid	28 22	54 15		19-09-4 71 22 0
1-propanol	22	15		/1-23-8
2-propanor propyl acetate	10 Q	11.7		109-60-4
tetradecane	107	109.3+2.7	⁴⁴ CC	629-59-4
toluene	5	4	ICSCs CC	108-88-3
undecane	66	67.1 ± 0.7	⁴⁴ CC	1120-21-4
	~ ~	68.7 ± 1.4		

TABLE 2. Comparison between calculated and experimental closed-cup (CC) flash points of the 59 compounds selected in the database test set. Mean absolute deviation is $2.9 \,^{\circ}$ C and maximum absolute error is $7 \,^{\circ}$ C (1-propanol) between experimental and estimated FP, with Eq. (4a)

^aICSCs: International Chemical Safety Cards,³³ CC: closed cup.

^bMSDS: material safety data sheets.

TABLE 3. Comparison between the estimations made by using Eq. (2) of Hshieh, and Eq. (4a) presented here for some compounds of Table 2. For the 59 compounds of Table 1, the mean absolute deviations are 9 and 2.9 °C for Eqs. (2) and (4a), respectively, and maximum absolute errors are 28 and 7 °C for Eqs. (2) and (4a), respectively

Species	FP (°C) estimated with Eq. (2)	FP (°C) estimated with Eq. (4)	Literature value (°C)
pentane	-33	-48	-49
mesityl oxide	26	25	25
2-propanol	-4	10	11.7
nitromethane	7	34	35
cyclohexanol	45	63	68
butyl acetate	23	24	22
toluene	13	5	4
butanoic acid	47	69	72
acetone	-21	-22	-18
methanol	-15	9	12
hexadecane	128	130	133.9

30 and 60 °C the mean absolute deviation is 3.5 °C, for FP comprised between 85 and 120 °C the mean absolute deviation is 2.7 °C, and for FP comprised between 120 and 150 °C the absolute deviation is 3.9 °C (but only one compound). The mean absolute deviations reported are equal to or better than the reproductibility data reported in Sec. I. A comparison between calculated flash point and experimental flash point is given in Table 2. When $\Delta_{vap}H^{\circ}$ cannot be estimated easily, the FP can be expressed by

$$FP(K) = 0.3544 \times T_{eb}^{+1.14711} \times n^{-0.07677}.$$
 (4b)

With this equation and compounds of Table 2, an average absolute deviation of $4.5 \,^{\circ}$ C and a maximum absolute deviation of $15 \,^{\circ}$ C have been obtained. The use of Eq. (4a) is recommended. Equation (4b) should only be considered for a rough estimation, even if Eq. (4b) performs better than the previously published equations.

8.2. Comparisons Between the Estimations Obtained with the Equation Proposed Here and Previous Equations

The estimations given by the equation of Hshieh [Eq. (2)] are compared with the estimations obtained with Eq. (4a) for some compounds of Table 2 (see Table 3). The estimations obtained by using Eq. (2) are much better than the ones obtained by using Eq. (1) but still not sufficiently accurate. For Eq. (2), the mean absolute deviation is 9 °C with a maximum absolute error of 28 °C for the 59 compounds of Table 2. The estimations obtained with the equation presented here (see Table 2: mean absolute deviation of 2.9 °C and maximum absolute error of 7 °C) are much better than the ones obtained with Eq. (2). This result was expected because Eq. (4a) was established with the compounds of Table 2 and therefore Eq. (4a) needs to be validated with many other organic compounds.

8.3. Validation of Eq. (4a)

The prediction of Eq. (4a) has been tested against some other compounds, some of them among the most common solvents, referenced in the ICSCs or/and in the CRC Handbook of Chemical Physics and Physical Chemistry. Data needed for calculations (normal boiling point, standard enthalpy of vaporization at 298.15 K) can be found in the NIST Chemistry Webbook⁴⁶ for both normal boiling point and standard enthalpy of vaporization at 298.15 K, or in other compilations.^{47,48} Generally the normal boiling point is well known, except for some compounds such as 1-nitropropane, tributylamine, tetradecane, pentadecane, hexadecane, pentyl formate, and hexyl acetate for which an uncertainty of 60, 20, 10, 20, 10, 20, and 20 °C, respectively, is reported. When these data are lacking, the normal boiling point can be calculated according to methods proposed by Marrero and Gani,⁴⁹ Coniglio and Nouviaire,⁵⁰ and Katritzky et al.⁵¹ The standard enthalpy of vaporization at 298.15 K is also generally quite well known, $^{46-48}$ when known, but in some cases data obtained before World War II are erroneous. When these data are lacking or known with high uncertainty, the standard enthalpy of vaporization at 298.15 K can be estimated accurately by using the group additivity method for C-H-N-S-O-X compounds^{52,53} according to $\Delta_{\rm vap}H^{\circ} = \Delta_{\rm f}H^{\circ}_{\rm (g)}$ $-\Delta_{\rm f} H^{\circ}_{\rm (liq)}$. Alternative enthalpy of vaporization estimation methods are the one proposed by Tu and Liu⁵⁴ and others presented in Chickos and Acree⁴⁸ and/or in Tu and Liu.⁵⁴ For some compounds, the enthalpy of vaporization at 298.15 K can be estimated according to the Clausius-Clapeyron equation with vapor pressure data found in the CRC Handbook of Chemical Physics and Physical Chemistry³⁴ or in the book of Boublik *et al.*⁵⁵ This tacitly assumes that $\Delta_{vap}H = \Delta_{vap}H^{\circ}$, which is not true, but the correction is small because the temperature of interest (298.15 K) is generally well below the normal boiling point and the error is small under such circumstances. The same statement holds for the vaporization enthalpy data at 298.15 K reported in the compilation of Chickos and Acree.⁴⁸ The compounds considered are generally liquid at standard pressure and 298.15 K. For a compound, which is a gas at standard pressure and 298.15 K, the enthalpy of vaporization value refers to the hypothetical liquid at standard pressure and 298.15 K. For a compound, which is a solid at standard pressure and 298.15 K, the enthalpy of vaporization value refers to the hypothetical liquid at standard pressure and 298.15 K. Compounds, which boil with decomposition, have generally not been considered.

All flash points in Table 2 and Tables 4–11 have been considered as closed-cup flash points, except where otherwise stated. For almost all the compounds, the source for normal boiling points and standard enthalpy of vaporization at 298.15 K is the *NIST Chemistry Webbook*.⁴⁶ When the standard enthalpy of vaporization data is lacking in the *NIST*

TABLE 4. Comparison between calculated, with Eq. (4a), and experimental flash points for compounds from the ICSCs or from various references from the literature. Maximum absolute error is 10 $^{\circ}$ C for adiponitrile (high FP)

Species	Calculated FP (°C)	Experimental FP (°C)	References ^{a,b,c,f}	CAS Registry Number
acetic acid, 1,1-dimethylethyl ester	12	15.5	ICSCs CC	540-88-5
acetic acid ethenyl ester	-9	- 8	NPG ⁴²	108-05-4
acetic anhydride	47	49	ICSCs CC	108-24-7
acetophenone	76	82	ICSCs OC	98-86-2
acrolein	-19^{d}	-26	ICSCs CC	107-02-8
acrylic acid	55	54	ICSCs CC	79-10-7
acrylonitrile	-6	-1	ICSCs CC	107-13-1
adiponitrile	149	159	ICSCs CC	111-69-3
allyl isothiocyanate	45	46	ICSCs CC	57-06-7
2 amino 2 mathyl 1 propagol	70	40 67		124 68 5
2-annio-2-metryi-1-propanor	72	70		62 52 2
hanzaldahuda	71	70 62		100 52 7
benzene	15	02		71 42 2
beinzelle	- 15	-11		71-45-2
benzoruran	52	56	ICSCs	2/1-89-6
benzonitrile	72	75	ICSCs CC	100-47-0
benzoyl chloride	75	12	ICSCs CC	98-88-4
benzyl alcohol	85	93	ICSCs CC	100-51-6
benzyl chloride	61	67	ICSCs CC	100-44-7
biphenyl	107	113	ICSCs CC	92-52-4
bromobenzene	43	51	ICSCs CC	108-86-1
bromoform	75	83	34	75-25-2
			not combustible ³³ (see Sec. 8.5.)	
1.3-butadiene	-76	-76	ICSCs CC	106-99-0
2.3-butanedione	2	6	ICSCs	431-03-8
2-butoxyethanol	62	61	ICSCs CC	111-76-2
2-butoxyethyl acetate	74	71	ICSCs CC	112-07-2
sec butyl acetate	13	17		105 46 4
tert butyl alcohol	15	17		75 65 0
herted and a set	24	11		75-05-0
butyi propionate	54	32		590-01-2
γ -butyrolactone	91	98	ICSCs CC	96-48-0
campnor	/4	66	Note: 'FP' < MP	/6-22-2
			(flammable solid)	
carbonochloridic acid, ethyl ester	9	16	ICSCs CC	541-41-3
chlorobenzene	24	27	ICSCs CC	108-90-7
2-chloro-1,3-butadiene	-27	-20	ICSCs OC	126-99-8
2-chloroethanol	55	60	ICSCs CC	107-07-3
3-chloro-2-methyl-1-propene	-14	-12	ICSCs CC	563-47-3
3-chloropropene	-31	- 32	ICSCs CC	107-05-1
2-chlorotoluene	42	43	ICSCs CC	95-49-8
4-chlorotoluene	46	49	ICSCs	106-43-4
o-cresol	79	81	ICSCs CC	95-48-7
m-cresol	85	86	ICSCs	108-39-4
p-cresol	88	86	ICSCs CC	106-44-5
cumene	33	31	ICSCs CC	98-82-8
cyclobexanethiol	33	43		1560 60 3
cyclohexanethiol	44	43		108 04 1
cyclonexanone	42	44	NDC	110 92 9
cyclonexene	- 14	-12	NPG	110-65-6
cyclohexyl acetate	55	58	ICSCs CC	622-45-7
cyclohexylamine	28	28		108-91-8
p-cymene	49	47	ICSCs CC	99-87-6
di-tert-butyl peroxide	4	12	ICSCs CC	110-05-4
1-decanethiol	106	98.3	NPG	143-10-2
o-dichlorobenzene	64	66	ICSCs CC	95-50-1
m-dichlorobenzene	63	63	ICSCs	541-73-1
p-dichlorobenzene	64	66	ICSCs CC	106-46-7
1,2-dichloroethane	6	13	ICSCs CC	107-06-2
1,2-dichloropropane	8	16	ICSCs CC	78-87-5
diethylamine	-27	<-26	ICSCs CC	109-89-7
o-diethvlbenzene	51	55	ICSCs CC	135-01-3
diethyl carbonate	27	25	ICSCs CC	105-58-8
areary i curoonate	<i>4 1</i>	40		105 50-0

=

_

L. CATOIRE AND V. NAUDET

TABLE 4.	. Comparison between calculated, with Eq. (4a), and experimental flash points for con	ompounds from the ICSCs or from various references from the
literature.	e. Maximum absolute error is 10 °C for adiponitrile (high FP)—Continued	

				CAS
	Calculated	Experimental		Registry
Species	FP (°C)	FP (°C)	References ^{a,b,c,f}	Number
diethylene glycol dimethyl ether	46	51	ICSCs CC	111-96-6
diethylenetriamine	100	97	ICSCs CC	111-40-0
diethyl sulfate	96	104	ICSCs CC	64-67-5
diisobutylamine	27	29	ICSCs CC	110-96-3
diisobutyl ketone	49	49	ICSCs CC	108-83-8
diisopropylamine	-12	-6	ICSCs OC	108-18-9
unsopropytamine	12	0	FP CC < FP OC	100-10-9
dijsopropyl ether	-24	-28	ICSCs	108-20-3
diketene	31	33	ICSCs	674-82-8
N N-dimethylacetamide	57	63	34	127-19-5
N N-dimethylaniline	67	62	ICSCs	121-69-7
1.2-dimethylbenzene	20	32		95-47-6
1.3-dimethylbenzene	25	25	34	108-38-3
1.4 dimethylbenzene	25	25	34	106 42 3
N N dimethyl formamide	57	58		68 12 2
dimethylnitrosomino	59	58		62 75 0
dimethylmuosainine	38 14C	01	ICSCs	02-75-9
N N dimethal 1.2 menuary diamina	140	146		131-11-3
N,N-dimethyl-1,3-propanediamine	29	35		109-55-7
dimethylsulfoxide	91	88		67-68-5
1,4-dioxane	10	12		123-91-1
1,3-dioxolane	-3	2	54	646-06-0
diphenylamine	152	153	ICSCs CC	122-39-4
diphenyl ether	112	115	ICSCs CC	101-84-8
1,2-ethanediamine	39	34	ICSCs CC	107-15-3
			38 °C BASF MSDS	
1,2-ethanediol	113	111	ICSCs CC	107-21-1
ethanoic acid	47	39	ICSCs CC	64-19-7
2-ethoxyethanol	41	44	ICSCs CC	110-80-5
2-ethoxyethylacetate	51	51	ICSCs CC	111-15-9
ethyl acrylate	6	9	ICSCs CC	140-88-5
ethyl chloroacetate	48	53	ICSCs CC	105-39-5
ethyl cyanide	9	6	ICSCs CC	107-12-0
ethyleneimine	-12	-11	ICSCs CC	151-56-4
2-ethylhexanal	51	46	ICSCs CC	123-05-7
2-ethylhexanol	78	73	ICSCs	104-76-7
5-ethylidene-2-norbornene	28	38	ICSCs OC	16219-75-3
•			FP CC <fp oc<="" td=""><td></td></fp>	
N-ethylmorpholine	29	32	ICSCs	100-74-3
furfural	56	60	ICSCs CC	98-01-1
furfuryl alcohol	67	65	ICSCs CC	98-00-0
2-heptanol	63	71	ICSCs CC	543-49-7
hexanoic acid	100	102		142-62-1
1-hexanol	60	63	ICSCs CC	111-27-3
hexulorine	28	29	ICSCs OC	111_27_3
3 hydroxypropapanitrila	122	129		100 78 /
isoamul alaahal	122	129		109-70-4
isohutana	42	45		125-51-5
isobutene	- /9	- 76		115-11-7
isobutyl acetate	10	18		110-19-0
isobutylamine	- 14	-9		/8-81-9
isopentyl acetate	31	25	ICSCs CC	123-92-2
isoprene	-49	-54	ICSCs CC	78-79-5
isopropyl acetate	-3	2	ICSCs CC	108-21-4
isopropyl glycidyl ether	27	33	ICSCs CC	4016-14-2
(d) limonene	50	48	ICSCs	5989-27-5
mesitylene	43	50	ICSCs CC	108-67-8
methacrylonitrile	0	1	ICSCs CC	126-98-7
2-methoxyethanol	37	39	ICSCs CC	109-86-4
2-methoxyethylacetate	44	45	ICSCs CC	110-49-6
1-methoxy-2-propanol	40	38	ICSCs	107-98-2
methyl acetate	-20	-13	ICSCs CC	79-20-9
N-methylaniline	82	79.5	ICSCs CC	100-61-8

TABLE 4. Comparison between calculated, with Eq. (4a), and experimental flash points for compounds from the ICSCs or from various references from the literature. Maximum absolute error is 10 $^{\circ}$ C for adiponitrile (high FP)—Continued

				CAS
Species	Calculated FP (°C)	Experimental FP (°C)	References ^{a,b,c,f}	Registry Number
				05.52.4
2-methylaniline	80	85		95-53-4
4 methylaniline	83 82	86		106-44-1
4-methylamme	80	83		03 58 3
methylcyclohevane	-4	- 1	34	108-87-2
2-methylcyclohexanol		58	ICSCs CC	583-59-5
3-methylcyclohexanol	65	62	ICSCs CC	591-23-1
4-methylcyclohexanol	71	70	ICSCs CC	589-91-3
2-methylcyclohexanone	51	48	ACGIH ^e CC	583-60-8
N-methylformamide	94	98	ICSCs CC	123-39-7
5-methyl-3-heptanone	44	43	ICSCs CC	541-85-5
2-methylhexane	-11	-18	ICSC ₈ CC	591-76-4
5-methyl-2-hexanone	34	36	ICSCs CC	110-12-3
methyl isobutyl ketone	14	14	ICSCs CC	108-10-1
methyl methacrylate	7	10	ICSCs OC	80-62-6
4-methyl-2-pentanol	41	41	ICSCs	108-11-2
2-methyl-1-propanal	-21	-25	ICSCs	78-84-2
2-methyl-propanoic acid	58	56	ICSCs CC	79-31-2
2-methyl-2-propanethiol	-23	-26	ICSCs CC	75-66-1
2-methyl-2-propenal	-23	-15	ICSCs	78-85-3
2-methylpyridine	24	26	ICSCs CC	109-06-8
3-methylpyridine	35	38	ICSCs CC	108-99-6
MTBE	-32	-28	ICSCs CC	1634-04-4
morpholine	34	35	ICSCs CC	110-91-8
naphthalene	78	79	ICSCs	91-20-3
nitrobenzene	88	88	ICSCs CC	98-95-3
1-nitropropane	30	36	ICSCs	108-03-2
o-nitrotoluene	95	95	ICSCs CC	88-72-2
p-nitrotoluene	104	103	ICSCs CC	99-99-0
1,7-octadiene	8	9	ICSCs	3710-30-3
2-octanol	76	76	ICSCs	123-96-6
1-octene	12	21	ICSCs OC	111-66-0
2 harten eine erid ethed enter	C 0	70	FP CC< FP OC	141.07.0
3-oxobutanoic acid ethyl ester	68	70		141-97-9
paraldenyde	19	24		123-03-7
2,4-pentanedione	33 7	34 12		125-54-0
2 pontrul accetato	20	15		90-22-0 626-28-0
2-pentyl acetate	30	32 70		108 05 2
phenol phenyl isogyapata	15	79 51		103-95-2
phenyi isocyanate	40	152		85 44 9
pinnane annydride	11	152		110 80 4
piperialie pivalie acid	63	64		75_98_9
1.2-propanediamine	33	33	ICSC: OC	78-90-0
1.2-propanedial	103	99	ICSCs CC	57-55-6
2-propene-1-ol	21	21	ICSCs CC	107-18-6
2-propencie acid butyl ester	36	37		1/1-32-2
propionic anhydride	60	63	ICSCs	123-62-6
propylene oxide	- 39	- 37	ICSCs CC	75-56-9
propylelycol	50	51	ICSCs OC	2807-30-9
2-propyn-1-ol	27	33	ICSCs CC	107-19-7
pvridine	16	20	ICSCs CC	110-86-1
pyrrolidine	1	3	ICSCs	123-75-1
auinoline	102	105	ICSCs	91-22-5
styrene	30	31	ICSCs CC	100-42-5
1,1,1,2-tetrachloroethane	45	47	34	630-20-6
, , ,		••	not combustible ³³	
			(see Sec. 8.5.)	
1,1,2,2-tetrachloroethane	59	62	34	79-34-5
			not combustible ³³	
			(see Sec. 8.5.)	

Species	Calculated FP (°C)	Experimental FP (°C)	References ^{a,b,c,f}	CAS Registry Number
tetrachloroethylene	37	45	34	127-18-4
			not combustible ³³ (see Sec. 8.5.)	
THF	-20	-14.5	ICSCs CC	109-99-9
		-20.7	Kong <i>et al.</i> ⁴⁵	
tetralin	79	77	34	119-64-2
4-thiapentanal	58	58	ICSCs	3268-49-3
thiophene	-5	-1	ICSCs	110-02-1
1,1,1-trichloroethane	-3	-1	34	71-55-6
1,1,2-trichloroethane	32	32	not combustible ³³ (see Sec. 8.5.) 34 not combustible ³³ (see Sec. 8.5.)	79-00-5
triethylamine	-18	-17	ICSCs CC	121-44-8
1,2,3-trimethylbenzene	43	44	ICSCs	526-73-8
1,2,4-trimethylbenzene	46	44	ICSCs CC	95-63-6
2,4,4-trimethyl-1-pentene	-5	-5	ICSCs	107-39-1
2,4,4-trimethyl-2-pentene	-1	1.7	ICSCs OC	107-40-4
4-vinyl-1-cyclohexene	17	16	ICSCs CC	100-40-3

TABLE 4. Comparison between calculated, with Eq. (4a), and experimental flash points for compounds from the ICSCs or from various references from the literature. Maximum absolute error is 10 °C for adiponitrile (high FP)—Continued

^aICSCs: International Chemical Saftey Cards³³

^bNPG: *NIOSH Pocket Guide*

^cHandbook of Chemical Physics and Physical Chemistry³⁴

^dHigh uncertainty on the normal boiling point for this compound.

^eAmerican Conference of Governmental Industrial Hygienists.

 $^{f}OC = open cup; CC = closed cup.$

Chemistry Webbook,⁴⁶ these data were taken in Chickos and Acree⁴⁸ or calculated according to Domalski and Hearing.⁵³ These tables report the compounds for which satisfactory agreement is obtained between estimated FP and experimental FP. Satisfactory agreement means that the absolute difference between estimated and experimental flash point is lower than the reproductibility or at least equal to the reproductibility. Occasionaly, compounds for which the absolute devia-

TABLE 5. Comparison between calculated, with Eq. (4a), and experimental flash points for compounds from Kuchta.^a Maximum absolute error is $8 \degree C$

Species	Calculated FP (°C)	Experimental FP (°C) ^b	CAS Registry Number
t-butanol	7	11	75-65-0
2-butenal	9	13	4170-30-3
s-butylbenzene	48	52	135-98-8
diethylaniline	85	85	91-66-7
p-diethylbenzene	54	57	105-05-5
2,2-dimethylbutane	-41	-48	75-83-2
ethyl nitrate	10	10	625-58-1
ethyl nitrite	-42	-35	109-95-5
ethyl propyl ether	- 25	-20	628-32-0
isobutylbenzene	48	55	538-93-2
isooctane	-7	-12	540-84-1
isopentanol	42	43	123-51-3
α -pinene	36	33	80-56-8
n-propyl nitrate	23	20	627-13-4

^aSee Kuchta.³⁸

^bFP are generally closed-cup values.

tion is only 2 to 3 °C above the reproductibility data given in Sec. I are also included in these tables. It is the case for some compounds in the 30-60 °C FP temperature range (see for instance ethanoic acid in Table 4). For about 600 compounds reported in Table 2 and Tables 4-11, the mean absolute deviation between estimated closed-cup flash point and experimental closed-cup flash point is found to be equal to 3.4 °C (standard deviation is 2.3 °C) and the maximum absolute deviation is generally 8 °C whatever the temperature range, except in the 150-175 °C temperature range for two compounds with high flash points (adiponitrile and octadecane). The absolute deviation for these two compounds is in agreement with the reproductibility data. Table 4 gives the compounds for which satisfactory agreement is obtained between experimental (from ICSCs) and calculated flash points. The flash points reported in Table 4 are generally CC flash points but when no other data are available open cup (OC) flash points are reported. OC flash points are generally up to 10 °C above CC flash points. Some other data are available in other compilations or publications (see Tables 5, 6, 7, and 8). $^{12-14,22,35-38,56-58}$ Some other data are not available in the ICSCs or in the Handbook of Chemistry but in the chemical manufacturer's MSDSs. The predictions of Eq. (4a) are compared in Table 9 with data found in the chemical manufacturers' MSDS. Only compounds with purity higher or equal to 98% have been considered. Table 9 also gives the compounds for which satisfactory agreement is obtained between experimental and calculated flash points.

Species	Calculated FP (°C)	Experimental FP (°C)	CAS Registry Number
1-butene	-78	-80	106-98-9
butylbenzene	56	49	104-51-8
cyclobutane	-64	-65	287-23-0
cyclopropane	-95	- 95	75-19-4
1,1-dimethylcyclohexane	8		590-66-9
trans-1,2-dimethylcyclohexane	11		6876-23-9
cis-1,2-dimethylcyclohexane	16		2207-01-4
trans-1,3-dimethylcyclohexane	11	11	2207-03-6
cis-1,3-dimethylcyclohexane	9	dimethylcyclohexane	638-04-0
cis-1,4-dimethylcyclohexane	12		624-29-3
1-heptanol	73	71	111-70-6

TABLE 6. Comparison between calculated, with Eq. (4a), and experimental flash points for compounds from the compilation of Kanury.^a All experimental flash points are CC flash points, except 1-heptanol, maximum absolute deviation is 8 $^{\circ}$ C

^aSee Kanury.⁵⁶

Equation (2) is also devoted to the predictions of the flash points of organic silicon compounds. This can explain why Eq. (4a) presented here performs better for hydrocarbons, organic oxygen compounds, organic nitrogen compounds, organic sulfur compounds. However, Hsieh established an equation specifically for organic silicon compounds:

$$FP(^{\circ}C) = -51.2385 + 0.4994T_{eb} + 0.00047T_{eb}^2.$$
 (5)

Therefore, for completeness, Eq. (4a) has to be tested against organic silicon compounds to assess the improved predictive ability of this equation. Comparisons between estimations of Eq. (4a), estimations of Eq. (5), and literature data are given in Table 10. It should be noted that the literature data reported in Table 10 are some of the data used for the establishment of Eq. (5). The mean absolute deviation for the compounds of Table 10 is 5.35 °C and the maximum absolute error is 19 °C with Eq. (5), whereas the mean absolute deviation is 4.65 °C and the maximum absolute error is 11 °C with Eq. (4a). Surprisingly, Eq. (4a), although established without any organic silicon compounds (see Table 2), performs better than Eq. (5), which is established only with organic silicon compounds. Moreover, if one considers the few data reported in the ICSCs for organic silicon compounds, the agreement between experimental and estimation with Eq. (4a) is even better: mean absolute deviation is 3.7 °C and maximum absolute error is 8 °C. These mean absolute deviation and maximum absolute deviation are about equal with the ones observed with the organic compounds reported in Tables 2 and 4-9. This leads to the conclusion that Eq. (4a) is able to estimate accurately the flash point of organic silicon compounds. The predictions of Eq. (4a) have been tested for other organic compounds not initially considered for the establishment of Eq. (4a), namely organic tin compounds, organic nickel compounds, organic phosphorus compounds, organic boron compounds, and organic deuterated compounds. Although the experimental data are rather scarce for these compounds, Table 11 shows that Eq. (4a) performs quite well also for these compounds. For all the compounds in Tables 2 and 4-11 (about 600 compounds), the mean absolute deviation for FP below 0 °C is 3.29 °C, the mean absolute deviation for FP comprised between 0 and 30 °C is 3.27 °C, the mean absolute deviation for FP comprised between 30 and 60 °C is 3.28 °C, the mean absolute deviation for FP comprised between 60 and 85 °C is 3.35 °C, the mean absolute deviation for FP comprised between 85 and 120 °C is 4 °C, the mean absolute deviation for FP comprised between 120 and 150 °C is 3.5 °C, the mean absolute deviation for FP comprised between 150 and 175 °C is 5.7 °C, and the absolute deviation for FP comprised between 175 and 203 °C is 2 °C (only one compound). All these mean absolute deviations are lower than the reproductibility data reported in Sec. I. Absolute deviations are examined as a function of the FP temperature (Fig. 2) and absolute deviations are examined as a function of the correlation parameters: normal T_{eb} (Fig. 3), standard enthalpy of vaporization at 298.15 K (Fig. 4), and n (Fig. 5). Figures 2–5 show that there is no bias in the predictions.

TABLE 7. Comparison between calculated, with Eq. (4a), and closed-cup experimental flash points for compounds from Patil.¹² Maximum absolute error is $8 \degree C$

Species	Calculated FP (°C)	Experimental FP (°C)	CAS Registry Number
benzenemethanethiol	75	70	100-53-8
benzyl methyl sulfide	71	73	766-92-7
dimethyl sulfite	38	30	616-42-2
diethyl sulfite	56	53	623-81-4
2-methyl-1-hexene	-9	-6	6094-02-6
2-hexyne	-13	-11	764-35-2

TABLE 8. Comparison between calculated,	, with Eq. (4a), and experiment	al closed-cup flash points for compo	unds from Tetteh et al.a	Maximum absolute error
is 8 °C				

Species	Calculated FP (°C)	Experimental FP (°C)	CAS Registry Number
1-amino-2-propanol	75	77.2	78-96-6
4-bromobiphenyl	150	143.9	92-66-0
1-bromooctane	75	78.3	111-83-1
3-butenenitrile	22	21	109-75-1
N-butylacetamide	118	115.8	1119-49-9
butyl isocyanate	24	28.7	111-36-4
2-chlorobutane	-19	-15	78-86-4
chlorocyclohexane	32	32	542-18-7
1-chloro-4-ethylbenzene	61	64	622-98-0
2-chloro-1-propanol	54	51.7	78-89-7
2,3-dichloro-1-propanol	97	93.3	616-23-9
2,3-dimethylaniline	96	97	87-59-2
trans-1,4-dimethylcyclohexane	8	11.1	2207-04-7
2,4-dimethylpyridine	44	37.2	108-47-4
2-(2-ethoxyethoxy)-ethanol	97	94	111-90-0
N-ethylacetamide	103	110	625-50-3
ethyl benzoate	87	88	93-89-0
4-ethylphenol	97	103.9	123-07-9
heptanoic acid	106	112	111-14-8
1,4-hexadiene	-27	-21.1	592-45-0
2,5-hexanedione	77	79	110-13-4
n-hexylbenzene	85	83	1077-16-3
hexyl ethanoate ^b	53	45	142-92-7
iodobenzene	66	74	591-50-4
1-iodo-3-methylbenzene	82	82.2	625-95-6
isobutyl vinyl ether	-13	-9	109-53-5
3-methoxypropylamine	26	32.2	5332-73-0
3-methyl-4-ethylhexane	25	24	3074-77-9
methyl isothiocyanate	31	32.2	556-61-6
2-methyl-2-propen-1-ol	33	33.3	513-42-8
3-methylstyrene	46	51	100-80-1
octanoyl chloride	75	82	111-64-8
pentanenitrile	36	40.6	110-59-8
1-pentanethiol	24	18.3	110-66-7
2-phenylethanol	98	102	60-12-8
1-propanethiol	-14	-20.8	107-03-9
propyl butyrate	31	37	105-66-8
succinonitrile	131	132.2	110-61-2
1-tetradecene	107	110	1120-36-1
triethoxymethane	35	30	108055-42-1

^aSee Tetteh.¹⁹

^bHigh uncertainty on the normal boiling point for this compound.

According to these figures, the bounds for the proposed correlation, Eq. (4a), are: $-100 \leq FP(^{\circ}C) \leq +200$; 250 $\leq T_{eb}(K) \leq 650$; $20 \leq \Delta_{vap}H(298.15 \text{ K})/\text{kJ} \text{ mol}^{-1} \leq 110$; and $1 \leq n \leq 21$. These bounds can be completed by Figs. 6–8, which allow the users to see if the equation is extrapolated or not for their needs. Extrapolation is not recommended. However, as Figs. 2–8 have been established without the compounds of Table 11, it can also be meaningful for the chemical families given in Table 11 to extrapolate Eq. (4a).

An uncertainty of ± 5 K for the normal boiling point $T_{\rm eb}$ leads to an uncertainty of ± 3 °C for the estimated FP with Eq. (4a) in the -100-200 °C FP temperature range. An uncertainty of ± 2 kJ mol⁻¹ for the standard enthalpy of vaporization at 298.15 K leads to an uncertainty of $\pm 2-3$ °C for the estimated FP with Eq. (4a) in the -100-200 °C FP temperature range. Therefore, it can be stated that an accurate

value of the normal boiling point is needed, whereas only a quite rough value of the standard enthalpy of vaporization at 298.15 K can be convenient for estimation purposes.

There are some compounds for which the agreement between the estimated flash point with Eq. (4a) and experimental flash point is poor. For these compounds, the absolute deviation is much greater than the reproductibility data presented in Sec. I. As the estimations depend on reliable values of the normal boiling point and of the standard enthalpy of vaporization at 298.15 K, it remains possible that the experimental flash point is the good one for some species. Some old standard enthalpies of vaporization at 298.15 K data reported in the *NIST Webbook* have been replaced by estimates obtained by using the group additivity method as presented by Domalski and Hearing.⁵³ This lead to the conclusion that

TABLE 9. Comparison between calculated, with Eq. (4a), and experimental flash points of compounds as reported in the chemical manufacturers' MSDS and other sources. Maximum absolute error is $9 \,^{\circ}C$

	Calculated	Experimental		CAS Registry
Species	FP (°C)	FP (°C)	References ^{a,b,c}	Number
	42	26	62	107.20.0
acetaldoxime	43	30	41	107-29-9
anethole	97	90	41	4180-23-8
benzenethiol	53	50	41	108-98-5
benzyl cyanide	99	101	61	140-29-4
bibenzyl	127	129	41	103-29-7
1-bromobutane	7	13	41	109-65-9
4-bromo-1-butene	5	9	Chemical Land ²¹	5162-44-7
			MSDS	
2-bromo-1.1-dimethoxyethane	45	53	CHEMADA	7252-83-7
2 oromo 1,1 dimensifyediane		22	MSDS	,202 00 ,
1 bromohantana	60	60	41	629 04 9
1 bromonontono	26	21	61	110.52.2
1-bromopentane	20	51	61	110-33-2
2-bromopentane	15	20	62	10/-81-3
1,2-butanediol	99	93	62	584-03-2
1,3-butanediol	112	121	62	107-88-0
1,4-butanediol	131	135	62	110-63-4
butanenitrile	21	17	41	109-74-0
2-butenenitrile	22	20	61	4786-20-3
cis 2-butene	-70	-73.3	BOC GASES	590-18-1
			MSDS, CC	
trans 2-butene	-72	-73	39	624-64-6
trans 2 butenoic acid	99	87	Oxford Chemical	107 93 7
trails 2-butenoic acid	88	87	Limited CC	107-95-7
	20	22		
3-buten-1-ol	30	33	62	627-27-0
3-buten-2-ol	18	20	02	598-32-3
3-butoxypropylamine	61	63	61	16499-88-0
butyl cyanide	36	40	NTP CHEMICAL	110-59-8
			MSDS	
t-butylcyclohexane	44	42	61	3178-22-1
t-butyl formate	-8	-9	61	762-75-4
2-t-butylfuran	8	7	61	7040-43-9
2-t-butyl-4-methylphenol	100	100	61	2409-55-4
t butyl methyl sulfide	2	-3	62	6163 64 0
S t butul thissastate	26	22	61	000.00.6
S-t-butyl thioacetate	20	33		999-90-0
butyi nitrate	37	30	PFALIZ &	928-45-0
			BAUER, Inc.	
			MSDS	
n-butyl nitrite	-6	-13	³⁹ CC	544-16-1
t-butyl nitrite	- 19	-23	61	540-80-7
t-butyl propionate	25	20	61	20487-40-5
s-butyl sulfide	47	39	61	626-26-6
butyl vinyl ether	-4	-9	61	111-34-2
butyric anhydride	84	87	61	106-31-0
	43	38	61	554 61 0
2-carene	45	106	61	400.75.2
carvacroi	104	106	61	499-75-2
chlorocyclopentane	14	15	62	930-28-9
1-chloroheptane	45	41	41	629-06-1
1-chlorohexane	28	26	41	544-10-5
2-chloro-2-methylpropane	-33	-27	Akzo Nobel MSDS	507-20-0
1-chlorononane	77	74	61	2473-01-0
1-chlorooctane	61	63	62	111-85-3
1-chloropentane	10	11	Riedel de Haen	543-59-9
			MSDS	
2-chloropentane	- 1	0	61	625-29-6
5-chloro-1-pentype	17	15	61	14267-92-6
2 chlorophonel	55	13	61	05 57 0
4 ablance the end	<i>33</i> 107	00	41	75-57-0
4-cmoropnenoi	107	115	61	100-48-9
1-chloropropane	- 32	-31	41	540-54-5
2-chloropropane	-42	- 35	41	75-29-6
3-chloro-1-propanethiol	49	43	61	17481-19-5
3-chloro-1-propanol	73	73	61	627-30-5
2-chloropropene	-94	FP < -34	61	557-98-2

109-09-1 108-41-8 470-82-6 2385-77-5 106-22-9 1191-95-3 2516-34-9 293-96-9 706-31-0 291-64-5 502-41-0
108-41-8 $470-82-6$ $2385-77-5$ $106-22-9$ $1191-95-3$ $2516-34-9$ $293-96-9$ $706-31-0$ $291-64-5$ $502-41-0$
$108-41-8 \\ 470-82-6 \\ 2385-77-5 \\ 106-22-9 \\ 1191-95-3 \\ 2516-34-9 \\ 293-96-9 \\ 706-31-0 \\ 291-64-5 \\ 502-41-0 \\ 502-41-0 \\ 100 \\ $
470-82-6 2385-77-5 106-22-9 1191-95-3 2516-34-9 293-96-9 706-31-0 291-64-5 502-41-0
2385-77-5 106-22-9 1191-95-3 2516-34-9 293-96-9 706-31-0 291-64-5 502-41-0
106-22-9 1191-95-3 2516-34-9 293-96-9 706-31-0 291-64-5 502-41-0
1191-95-3 2516-34-9 293-96-9 706-31-0 291-64-5 502-41-0
2516-34-9 293-96-9 706-31-0 291-64-5 502-41-0
293-96-9 706-31-0 291-64-5 502-41-0
706-31-0 291-64-5 502-41-0
291-64-5 502-41-0
502-41-0
502-41-0
503 43 1
502-42-1
628-41-1
766-05-2
765-87-7
3218-02-8
286-20-4
827-52-1
111-78-4
292-64-8
502-49-8
629-20-9
1670 07 8
10/9-0/-0
96-41-3
1003-03-8
5500-21-0
765-30-0
765-43-5
493-01-6
493-02-7
112-31-2
2016-57-1
7433 56 0
7455-50-9
10010 00 0
13019-22-2
764-93-2
544-40-1
110-06-5
616-21-7
1190-22-3
78 00 0
142 28 0
142-28-9
594-20-7
617-83-4
112-73-2
112-36-7
818-38-2
1191-99-7
1487-15-6
332-77-4
534-15-6
110 71 4
110-/1-4
100 01 0
108-01-0
108-01-0
108-01-0 79-29-8
108-01-0 79-29-8 76-09-5

TABLE 9. Comparison between calculated, with Eq. (4a), and experimental flash points of compounds as reported in the chemical manufacturers' MSDS and other sources. Maximum absolute error is 9 °C—Continued

TABLE 9. Comparison between calculated, with Eq. (4a), and experimental flash points of compounds as reported in the chemical manufacturers' MSDS and other sources. Maximum absolute error is 9 °C—Continued

Species	Calculated FP (°C)	Experimental FP (°C)	References ^{a,b,c}	CAS Registr Number
2,3-dimethyl-2-butene	-21	-20	41	563-79-1
3,3-dimethyl-1-butyne	-47	<-34	41	917-92-0
N.N-dimethylcyclohexanemethylamine	49	48	61	16607-80-0
N N-dimethylcyclohexylamine	33	39	62	98-94-2
dimethyl disulfide	35 26	24	³⁹ CC	624 92 0
2.5 dimethyl 2.4 heyediane	20	24	ACROS	764 12 6
2,5-dimethyl-2,4-nexadiene	23	29	ACROS	/04-13-0
			ORGANICS	
			MSDS	
2,3-dimethylpentane	-12	-6	61	565-59-3
2,4-dimethylpentane	-18	-12	³⁹ CC	108-08-7
3-methyl-1,3-pentadiene	-26	-28	61	4549-74-0
2.3-dimethylphenol	93	95	62	526-75-0
2 4-dimethylphenol	90	94	62	105-67-9
2.5 dimethylphenol	02	95	62	05 87 4
1.4. divestigation	22	21.5	DACE MODO	106 59 1
1,4-dimethylpiperazine	27	21.5	BASE MSDS	100-58-1
2,2-dimethylpropane	- 69	- 65	AGA GAS MSDS, CC	463-82-1
2.2-dimethylpropanenitrile	2	4	61	630-18-2
dipropylamine	10	7	BASE MSDS	142-84-7
apropytamine	10	7.5	58 CC	112 01 /
dadaaana	01	7.5	³⁹ CC	112 40 2
	01	/4		112-40-5
1-dodecanol	134	127	Mallinckrodt Baker, MSDS, CC	112-53-8
1-dodecene	79	77	CP Chem MSDS,	112-41-4
			CC	
eicosane	177	160	57	112-95-8
othomo	1//	105	³⁹ OC	74.84.0
etnane	- 140	-135		/4-84-0
			FP CC <fp oc<="" td=""><td></td></fp>	
1,2-ethanedithiol	57	50	CP Chem MSDS,	540-63-6
			CC	
ethenylcyclohexane	15	22	62	695-12-5
1-ethoxybutane	-5	-5	61	628-81-9
2-ethoxy-2-methyl-propane	-20	- 19	62	637-92-3
ethylal	-5	-5	Lambiotte MSDS	462-95-3
2 athyl 1 hutanol	54	53	CELANESE	402 95 5
2-emyi-i-butanoi	54	55	MSDS, CC	97-93-0
ethyl butyrate	19	19	61	105-54-4
ethylcyclohexane	18	18	39	1678-91-7
diethyl disulfide	48	40	62	110-81-6
N N diethylmethylemine	- 24	- 23	61	616 30 7
in, in-dieury inieury inimie	149	150	DACE MODO	010-39-7
ethylene carbonate	148	150	BASE MSDS	96-49-1
2-ethyl-1-butene	- 29	<-20	37 CC	/60-21-4
2-ethyl-1-hexanamine	57	50	Chemical Land ²¹ MSDS	104-75-6
3-ethylhexane	10	5.85	57	619-99-8
ethyl isobutyrate	10	13	61	97-62-1
1_ethyl_1_methylcyclopentane	10	6	22	16747-50 5
	10	20	62	10/4/-30-3
	29	29	62	10431-98-8
1-ethylpiperidine	20	18	61	/66-09-6
ethyl propionate	6	12	01	105-37-3
ethyl vinyl ether	-46	-45	62	109-92-2
fluorobenzene	-11	- 15	Chemical Land ²¹ MSDS	462-06-6
fluorocyclohevane	3	< 5	62	377 16 2
1 fluershantana	12	12	61	512-40-3
1-nuoroneptane	13	15	41	001-11-0
heptadecane	145	148	+1	629-78-7
1,6-heptadiene	-11	-10	61	3070-53-9
1,6-heptadiyne	13	9	61	2396-63-6
heptanal	42	41	Celanese Chemicals MSDS.	111-71-7
			CC	

TABLE 9. Comparison between calculated, with Eq. (4a), and experimental flash points of compounds as reported in the chemical manufacturers' MSDS and
other sources. Maximum absolute error is 9 °C—Continued

Species	Calculated FP (°C)	Experimental FP (°C)	References ^{a,b,c}	CAS Registry Number 3-heptanoi
1-heptene	- 8	- 8	ORGANIC TECHNOLOGIES MSDS	592-76-7
cis-2-heptene	-1	-6	61	6443-92-1
trans-2-heptene	-5	-1	61	14686-13-6
cis-3-heptene	-6	-7	61	7642-10-6
trans_3_hentene	-6	-6	61	14686-14-7
hontulhonzono	07	05	41	1079 71 2
1 hontune	97	95	22	1070-71-3
1-heptyne	1	-2		628-71-7
1-hexadecene	125	132	CP Chem MSDS	629-73-2
hexamethyldisilazane	22	23	41 CC	999-97-3
hexanal	22	25	KREMS CHEMIE MSDS	66-25-1
2-hexene (cis/trans)	-26	-27	22	592-43-8
5-hexen-1-ol	49	47	61	821-41-0
1-hexyne	-19	-20	Merck KGaA MSDS	693-02-7
N-(hydroxyethyl)piperazine	131	135	AGROWCHEM MSDS	103-76-4
1-iodobutane	30	33	Deepwater MSDS, CC	542-69-8
2-iodobutane	20	23	Deepwater MSDS,	513-48-4
1-iodohexane	62	67	Deepwater MSDS,	638-45-9
1-iodopentane	46	43	Merck KGaA MSDS	628-17-1
3-iodo-1-propene	17	18	New Jersey dept. Of Health MSDS	556-56-9
isobutene	-83	-88	³⁹ CC	75-28-5
isobutyl nitrate	27	21	³⁹ CC	5/13 20 3
isobutyl nitrite	-15	-23	NTP CHEMICAL MSDS	542-56-3
2-isopropovvethanol	13	13	41	109-59-1
2-isopropoxyetianor	45		22	606 20 7
Isopropyicycionexane	32	55	41 00	090-29-7
2-mercaptoethanol	75	73	30	60-24-2
3-methyl-1-butene	-61	-57	22	563-45-1
isopentane	- 55	-57	22	78-78-4
isopropylamine	-40	-37	BASF MSDS	75-31-0
2-methoxybutane	-29	- 30	61	6795-87-5
methylamine	- 57	< -30 - 62	BASF MSDS 58	74-89-5
2-methylaminoethanol	73	71	ATOFINA MSDS, CC	109-83-1
2-methyl-1-butanethiol	16	19	61	1878-18-8
3-methyl-2-butanethiol	11	19	OXFORD CHEMICAL LIMITED MSDS,	2084-18-6
3-methylbutanoic acid	71	74	CELANESE MSDS, CC	503-74-2
2-methyl-1-butanol	41	42.5	BASE MSDS	137-32-6
2-methyl_2-butanol	10	21	61	75_85_/
2 methyl 1 bytons	17 51	∠1 ∕_2/	61	562 16 0
2-methyl 2 beter	- 51	<u> </u>	39	512.25.0
2-memyi-2-butene	- 40	-45	61	513-35-9
N-methylbutylamine	-1	1	61	110-68-9
methyl butyrate	1	11	41	623-42-7
1-methylcyclohexene	4	-3	41	591-49-1
methylcyclopentane	-23	-29	39	96-37-7
1-methylcyclopentene	- 19	-17.2	Scott Specialty Gases MDSD	693-89-0
ethyl cyclopropanecarboxylate	17	17	EASTMAN MSDS	2868-37-3

TABLE 9. Comparison between calculated, with Eq. (4a), and experimental flash points of compounds as reported in the chemical manufacturers' MSDS and other sources. Maximum absolute error is 9 $^{\circ}C$ —Continued

Species	Calculated FP (°C)	Experimental FP (°C)	References ^{a,b,c}	CAS Registry Number 3-heptanone
methyldiethanolamine	141	137.7	ACCRON MSDS,	105-59-9
2-methyl-1 3-diovolane	3	-2	62	497-26-7
methylenecyclohexane	-1	-6	PTCL MSDS	1192-37-6
2 methylfuran	- 24	- 30	DENN SDECIALTY	534 22 5
2-meurynuran	- 24	- 30	CHEMICALS CC	554-22-5
3 mathylhantana	10	7	62 CHEWRICALS, CC	580 81 1
2 mathul 1 hantana	10	10	61	15870 10 7
2-methyl-1-neptene	9	10	61	15870-10-7
2-metnyl-2-neptene	12	8	62	627-97-4
methyl heptanoate	54	52	02	106-73-0
3-methylhexane	-9	-3	CCST, government	589-34-4
			of Quebec, Canada,	
			CC	
methyl isobutyrate	-1	3	61	547-63-7
N-methylmorpholine	16	14	BASF MSDS	109-02-4
2-methylnaphthalene	94	97	NTP CHEMICAL	91-57-6
			MSDS	
4-methylnonane	45	38	22	17301-94-9
methyl 2-octynoate	92	88	61	111-12-6
3-methylpentane	-29	-32	CP Chem MSDS,	96-14-0
2-methyl-1-pentanol	53	54	Canadian Center for Occupational Health and Safety (CCOHS), CC	105-30-6
3-methyl-1-pentanol	58	58	61	589-35-5
3-methyl-2-pentanol	43	40	61	565-60-6
4-methyl-1-pentanol	55	51	61	626-89-1
2-methyl-3-pentanol	38	16	61	565-67-3
2 methyl 2 pentanon	12	12	61	565 60 5
2-methyl-3-pentanone	12	13	61	565 (1 7
3-metnyi-2-pentanone	15	12	61	565-61-7
2-methyl-1-pentene	- 30	-26	61	/63-29-1
2-methyl-2-pentene	-26	-23	30 22	625-27-4
4-methyl-1-pentene	-37	-31	³⁹ CC	691-37-2
N-methyl-2-propanamine	- 30	-31	61	4747-21-1
2-methyl-1-propanol	27	27	01	78-83-1
4-methylpyridine	36	37	KOEI CHEMICAL MSDS, CC	108-89-4
1-methylpyrrole	20	15	61	96-54-8
1-methylpyrrolidine	-12	-18	KOEI CHEMICAL	120-94-5
			MSDS, CC	
1-methyl-2-pyrrolidinone	85	86	61	872-50-4
methyl salicylate	89	96	Mallinckrodt	119-36-8
			Baker, Inc MSDS	
4-methylstyrene	48	45	61	622-97-9
2-methyltetrahydrofuran	-13	-11	PENN SPECIALTY	96-47-9
2-methylthiophene	13	7	³⁹ CC	551 11 3
2 methylthiophene	15	/ 11	UU DECUSSA MSDS	554-14-5 616 44 4
5-meurynmopnene	15	11	DEGUSSA MSDS 61	010-44-4
metnyi valerate	24	22	61	024-24-8
nitrocyclohexane	85	/4	41	1122-60-7
2-nitrophenol	110	102	41	88-75-5
nonadecane	166	168	+1 61	629-92-5
1,8-nonadiene	21	26	61	4900-30-5
1,8-nonadiyne	49	41	01	2396-65-8
n-nonanal	68	71	CELANESE MSDS, CC	124-19-6
1-nonanol	99	97.78	The Good Scents Company MSDS, CC	143-08-8
2-nonanone	70	69	MOORE INGREDIENTS CC	821-55-6

TABLE 9. Comparison between calculated, with Eq. (4a), and experimental flash points of compounds as reported in the chemical manufacturers' MSDS and other sources. Maximum absolute error is 9 °C—Continued

Species	Calculated FP (°C)	Experimental FP (°C)	References ^{a,b,c}	CAS Registry Number 3-heptanone
5-nonanone	62	60	CCST, government	502-56-7
			of Quebec, Canada,	
			CC	
2.5-norbornadiene	-11	-11	61	121-46-0
2-norbornene	-9	- 15	TICONA GmbH	498-66-8
2 погоблене	<i>,</i>	15	MSDS	190 00 0
			Note: 'FP' < MP	
			(flammable solid)	
octadecane	157	166	EMEDCO MSDS	503 15 3
1.7 octadivne	30	23	61	971 94 1
1,7-Octadiyile	52	23 52	VDEMS CHEMIE	124 12 0
octanai	35	52	KREWIS CHEMIE	124-13-0
		72	MSDS	101 10 0
octanenitrile	75	73	01	124-12-9
octanoic acid	117	110	NTP CHEMICAL	124-07-2
			MSDS	
3-octanol	73	65	61	20296-29-1
2-octanone	57	62	SIGMA-	111-13-7
			ALDRICH MSDS	
3-octanone	50	53	Merck KGaA	106-68-3
			MSDS	
2-octene	15	14	ACROS	111-67-1
	15	11	ORGANICS	111 07 1
ootulamino	61	60	DASE MSDS	111 96 4
octyfannie	01	80	ASF MSDS	2100 60 9
n-octylbenzene	114	107		2189-60-8
1-octyne	17	16	Merck KGaA	629-05-0
			MSDS	
2-octyne	26	28	62	2809-67-8
4-octyne	21	18	Merck KGaA	1942-45-6
			MSDS	
pentanal	7	8	61	110-62-3
		12	ICSC OC	
1.5-pentanediol	137	136	BASE MSDS	111-29-5
1 5-pentanedithiol	99	95	62	928-98-3
2-pentanethiol	14	03	CP Chem MSDS	2084-19-7
2-pentaneunoi	14	2.5		2004-17-7
montonoio poid other often	24	29	62	520 82 2
pentanoic acid ethyl ester	34	58	41	339-82-2
2-pentanoi	33	40	39	6032-29-7
trans-2-pentene	-48	-45		646-04-8
(E) 2-pentenenitrile	29	26	DuPont MSDS, CC	26294-98-4
pentylbenzene	68	65	Acros Organics	538-68-1
			MSDS	
1-pentyne	-41	<-34	62	627-19-0
2-pentyne	-33	- 30	62	627-21-4
phthalan	68	63	61	496-14-0
pinacolone	5	5	62	75-97-8
propane	-104	- 104	George Propane	74-98-6
Propule	10 f	101	MSDS OC	, , , , 0 0
1.3 propagadiamina	50	19		100 76 2
1,3-propanediamine	32	40	ACKUS ODCANICS	109-70-2
	07	101.1	ORGANICS	162 10 0
1,2-propadiene	-97	-101.1	Scott Specialty	463-49-0
			Gases MDSD	
propene	-107	-108	39	115-07-1
2-propenyl-cyclopentane	15	12	CCST, government	3524-75-2
			of Quebec, Canada,	
			CC	
n-propylbenzene	38	30	CP Chem MSDS.	103-65-1
r rj	* ***	- *	CC	
nronvlevelohevane	35	35	61	1678 02 8
propyre yeronexane	24	21	41	10/0-72-0
pyrimiume	30	51	DACEMODO	207-73-2
pyrrole	35	55	BASE MSDS	109-97-7
tribenzylamine	205	203	ACROS ORGANICS	620-40-6
			MSDS	

Species	Calculated FP (°C)	Experimental FP (°C)	References ^{a,b,c}	CAS Registry Number 3-heptanone
tributylamine	73	72	KOEI Chemical	102-82-9
-			MSDS CC	
trichloroethylsilane	16	22.2	U.S. EPA, OC	115-21-9
tridecane	95	102	41	629-50-5
triethylsilane	5	-3	STOCHEM MSDS	617-86-7
trimethoxymethane	9	15	62	149-73-5
3,5,5-trimethyl-1-hexanol	84	79	KYOWA MSDS	3452-97-9
2,4,6-trimethylpyridine	52	57	61	108-75-8
tripropylamine	37	36	41	102-69-2
2-undecanol	112	107	Merck KGaA	1653-30-1
			MSDS	
2-undecanone	96	89	Moore Ingredients,	112-12-9
			CC	
6-undecanone	88	88	Acros Organics	927-49-1
			MSDS	
undecylbenzene	143	144	22	6742-54-7
1-undecyne	71	65	62	2243-98-3
δ -valerolactone	101	100	61	542-28-9
γ -valerolactone	88	81	61	108-29-2
vinyltrimethylsilane	-28	-24	62	754-05-2

TABLE 9. Comparison between calculated, with Eq. (4a), and experimental flash points of compounds as reported in the chemical manufacturers' MSDS and other sources. Maximum absolute error is 9 $^{\circ}$ C—Continued

the experimental flash points for 2-octanone, 2-chloroethanol, biphenyl, quinoline, methyl benzoate, o-cresol, p-cresol, N-methylaniline, isobutyl acetate, and isobutylbenzene, for instance, are correct. The consideration of the reported uncertainties on the normal boiling point leads to the conclusion that the experimental flash points reported for 2-heptanol and dimethylsulfoxide are reasonably correct as well.

TABLE 10. Comparison of the estimations of closed-cup flash points with Eq. (5) and Eq. (4a) for organic silicon compounds. Literature values are from Hshieh^a

Species	Estimated FP (°C) with Eq. (5)	Estimated FP (°C) with Eq. (4)	FP literature value (°C)	CAS Registry Number
allyltrichlorosilane	14	26	31	107-37-9
chlorotriethylsilane	32	34	30	994-30-9
decamethylcyclopentasiloxane	75	80	77	541-02-6
dichlorodimethylsilane	-14	- 8	-16	75-78-5
-			-9 ICSC CC	
diethoxydimethylsilane	12	14	11	78-62-6
1,3-diethoxytetramethyldisiloxane	41	45	38	
dimethylphenylsilane	38	39	38	766-77-8
hexamethyldisiloxane	4	3	-3	107-46-0
methyldichlorosilane	-29	-21	-32	20156-50-7
·			-22 ICSC CC	
methyltrichlorosilane	-16	1	3	75-79-6
methyltrimethoxysilane	5	5	11	1185-55-3
octamethylcyclotetrasiloxane	51	55	57	556-67-2
			56 ICSC	
tetraethoxysilane	46	49	50	78-10-4
tetraethylsilane	36	34	32	631-36-7
tetramethoxysilane	17	26	21	681-84-5
tetravinylsilane	22	20	18	1112-55-6
triethoxymethylsilane	30	32	24	2031-67-6
trifluorophenylsilane	4	1	-5	368-47-8
trimethylchlorosilane	-20	-23	-18	75-77-4
-			-27 ICSC	
tripropylsilane	49	37	43	998-29-8

trimethylphosphite

L. CATOIRE AND V. NAUDET

Species	Calculated FP (°C)	Experimental FP (°C)	References	Comments	CAS Registry Number
benzene-d6	- 19	-11	⁴¹ CC		1076-43-3
cyclohexane-d12	-17	-18	⁴¹ CC		1735-17-7
ickel tetracarbonyl	-37	< -20	³⁹ CC		13463-39-3
tetraethylgermane	42	35	61		597-63-7
tetraethyllead	65	72	61		78-00-2
tetraethyltin	58	53	OSHA MSDS		597-64-8
tetramethyltin	-13	-12	OSHA MSDS		594-27-4
trimethyl borate	-11	-8	39	FP<27 °C ICSCs	121-43-7
trimethylphosphite	26	27	12		121 45 0

27

TABLE 11. Comparison between estimated flash points, with Eq. (4a), and experimental flash points for organic tin, organic nickel, organic phosphorus, organic

26

FIG. 2. Absolute deviation as a function of the flash point value. The linear regression (full line) indicates that Eq. (4a) behaves almost identically in the -100 °C/200 °C FP temperature range. Absolute deviation=|FP_{exp} $-FP_{calc}|.$

121-45-9

FIG. 4. Absolute deviation as a function of the correlation parameter $\Delta_{vap}H^{\circ}(298.15 \text{ K})$. The linear regression (full line) indicates that Eq. (4a) behaves almost identically in the 20-110 kJ mol⁻¹ standard enthalpy of vaporization at the 298.15 K range. Absolute deviation = $|FP_{exp} - FP_{calc}|$.

FIG. 3. Absolute deviation as a function of the correlation parameter T_{eb} . The linear regression (full line) indicates that Eq. (4a) behaves almost identically in the 250-650 K $T_{\rm eb}$ temperature range. Absolute deviation $=|FP_{exp}-FP_{calc}|.$

FIG. 5. Absolute deviation as a function of the correlation parameter n. The linear regression (full line) indicates that Eq. (4a) behaves almost identically whatever the number of carbon atoms in the molecule. Absolute deviation $=|FP_{exp}-FP_{calc}|.$

FIG. 6. Standard enthalpy of vaporization at 298.15 K as a function of the number of carbon atoms in the molecule.

8.4. Erroneous and Probably Erroneous Flash Point Data

For the other compounds, the reported flash points do not agree with the calculated ones (see Table 12) even after reexamination of the accuracy of the parameters included in Eq. (4a). This table only reports the compounds with a welldefined flash point, i.e., those reported as highly flammable, flammable, or combustible liquids. The compounds reported as "not combustible" in some database and as combustible in some others (as for instance trichlorethylene and some halogenated compounds) are generally not considered in Table 12 because it is beyond the scope of the present Eq. (4a) to predict ignitability or not. A way to prevent the use of this equation for noncombustible or weakly combustible compounds is to consider the "net heat of oxidation" tech-

FIG. 7. Normal boiling points as a function of the number of carbon atoms in the molecule.

FIG. 8. Standard enthalpy of vaporization at 298.15 K as a function of the normal boiling point.

nique described by Britton⁵⁹ and Britton and Frurip.⁶⁰ This will be discussed further in Sec. 8.5. In Table 12, four compounds: dimethylether, dimethylamine, ethylamine, and formic acid, have been reported as probably erroneous by Jones by using the half-stoichiometric rule. The estimations of the "true" flash point following the half-stoichiometric rule or by using Eq. (4a) are almost the same (see Table 13). Explanations for the existence of erroneous flash point data in the literature are numerous: typographical errors, conversion errors from °F to °C, and flash point measured with aqueous solution instead of pure liquid. This holds for all the organic compounds of Table 12 but another explanation also holds for the organic halogenated compounds of Table 12. This will be discussed further in Sec. 8.5. Then, the compounds of Table 12 can be shared in several categories.

Some predictions, although not coherent either with IC-SCs or with handbook data, are consistent with chemical manufacturers' MSDS: tert-butylamine, ethanethiol, methyl formate, acetonitrile, 1-pentanol, diethylene glycol, diethyl phthalate, trimethylamine, dimethylamine, 1,6-hexanediol, propylamine, etc. Therefore the flash points for these compounds have to be corrected in the ICSCs and in the other compilations.

Some CC predictions are also consistent with OC experimental data because CC flash points are lower than OC flash point: dibutyl sulfide, methylal, 1-octene, and methoxybenzene. For these species the CC estimations are consistent with the OC data found because CC flash points are lower than OC flash points. Nevertheless, a difference of 10 °C or more between CC and OC flash points is doubtful.

For some other compounds, the flash point is known to be lower or higher than a given temperature. Very often, this temperature has been reported erroneously as the flash point in the various compilations. It is the case here for methanethiol, ethylamine, and bromoethane. Estimations with Eq.

TABLE 12. Erroneous flash points and probably erroneous flash points. In the comments column are given compounds belonging to the same chemical family for which Eq. (4a) performs reasonably well

	Calculated	Experimental or literature			CAS Registry
Species	FP (°C)	FP (°C)	References	Comments	Number
acetonitrile	2	12.8	ICSCs CC	6 °C ³⁹ OC	75-05-8
				2 °C Mallinckrodt	
	<i>(</i> 7	-	1000 00	Baker, Inc.; 5 °C° ¹	100.00.0
benzyl bromide	67	79	ICSCs CC	Bromobenzene	100-39-0
bicyclonexyl	92	/4		32 °C ⁶¹	92-51-3
1 bromopropane	-31 -12	-20	41	-25 C ⁴ Theoretical FP -7 °C	106 94 5
1-oromopropane	- 12	21		according to the LFL and vapor pressure of 1-bromopronane	100-94-3
t-butyl acetoacetate	71	60	61	I I I	1694-31-1
sec-butylamine	-21	-9	ICSCs CC	-19^{61}	13952-84-6
butylcyclohexane	52	41	12	isopropylcyclohexane	1678-93-9
2-butanethiol	-5	-23	CP Chem ⁶¹	1-butanethiol.	513-53-1
		21		CP Chem data is estimated	
t-butylamine	-35	-9	34	-38 °C BASF MSDS	75-64-9
t-butylbenzene	44	60	38	34 °C ⁴¹	98-06-6
2-t-butyl-6-methylphenol	94	107	61	2-tert-butyl-4-methylphenol	2219-82-1
bis(2-chloroethyl)ether	70	55	ICSCs CC		111-44-4
1-chloro-2-methylpropane	-18	21	61	-10 °C ICSCs	513-36-0
1-chloro-2-methyl-1-propene	-17	-1	61	3-chloro-2-methyl-1-propene	513-37-1
cinnamaldehyde	107	71	01	111 °C ³⁹	14371-10-9
1,3-cyclohexadiene	-16	26	ICSCs CC	- 18 °C ⁶¹	592-57-4
2-cyclohexen-1-one	55	34		56 °C°	930-68-7
disectore alashal	-43	25	1CSCS 0C	1,4-cyclonexadiene	542-92-7
diacetone alconol	57	47		MSDS, CC	125-42-2
dibutyl disulfide	102	113	CP CHEM MSDS, OC	FP CC <fp oc<="" td=""><td>629-45-8</td></fp>	629-45-8
di-t-butyl sulfide	32	48	19		107-47-1
1-decanol	112	82	61	2-undecanol	112-30-1
1,1-dichloroethane	-16	-6	ICSCs CC	see Sec. 8.5.	75-34-3
1,1-dichloroethylene	-40	-25	ICSCs CC	see Sec. 8.5.	75-35-4
cis-1,2-dichloroethylene	-15	6	ICSCs CC	see Sec. 8.5.	156-59-2
trans-1,2-dichloroethylene	-17	2-4	ICSCs CC	see Sec. 8.5 .	156-60-5
diethanolamine	167	137	NPG 62		111-42-2
1,1-diethoxyethane	- 3	-21		1,1-dimethoxyethane	105-57-7
dietilyiene grycor	140	124		MSDS, CC 143 °C DELTREX	111-40-0
distant furnerate	109	01	61	104 °C ACROS	622 01 6
ulculyi iulliarate	108	91		ORGANICS MSDS	023-91-0
diethyl phthalate	156	117	ICSCs CC	161 °C Mallinckrodt Baker MSDS CC	84-66-2
dimethylamine	- 54	- 18	34	Erroneous data according to the half- stoichiometric rule - 55 °C BASF MSDS - 57 °C CC ⁵⁸	124-40-3
2,3-dimethyl-1-butene	- 35	-18	ACROS ORGANICS MSDS		563-78-0
dimethyl carbonate	7	18	61	Diethyl carbonate	616-38-6
dimethyl ether	- 84	-41	⁵⁶ CC	Erroneous data according to the half-	115-10-6
2.2 dimethylhesters	24	00	61	stoichiometric rule	2074 71 2
2,5-dimethylheptane dipropyl ether	24 -7	90 21	ICSCs CC	2,3-dimethylpentane Diethyl ether Dibutyl ether Dipentyl ether diisopropyl ether	3074-71-3 111-43-3

	Calculated	Experimental or literature			CAS Registry
Species	FP (°C)	FP (°C)	References	Comments	Number
ethanethiol	- 34	-48	ICSCs	– 38.9 °C OXYCHEM MSDS, CC	75-08-1
ethylamine	-46	- 17	ICSCs CC	Erroneous data according to the half- stoichiometric rule $FP < -17 \circ C^{33}$ $FP = -46 \circ C^{34}$	75-04-7
2-ethylbutanal	11	21	⁵⁶ CC	8 °C Celanese Chemical MSDS, CC	97-96-1
ethylcyclopentane	-1	15	61	methylcyclopentane	1640-89-7
N-ethylisopropylamine	- 19	16	61		19961-27-
formic acid	47	69	ICSCs ⁵⁶ CC	Also erroneous data according to the half- stoichiometric rule $48 \ ^{\circ}C \ BASF \ MSDS$ $43 \pm 5 \ ^{\circ}C^{31}$	64-18-6
furan	-46	- 35	ICSCs CC	1,4-dioxane 1,3-dioxolane tetrahydrofuran	110-00-9
1-heptanethiol	59	41	19	1-pentanethiol	1639-09-4
4-heptanone	35	49	19	3-heptanone	123-19-3
1,6-hexanediol	143	101	ICSCs	147 °C Merck KGaA MSDS	629-11-8
2,5-hexanediol	120	101	ICSCs		2935-44-6
3-hexanone	20	35	41	2-hexanone	589-38-8
hexanoic acid, methyl ester	40	72	41		106-70-7
methanethiol	- 49	- 18	ICSCs	FP < -18 °C in ATOFINA MSDS and in Matheson ³⁹ OC. -53 °C ⁵⁷	74-93-1
methoxybenzene	41	52	ICSCs OC	FP CC <fp oc<="" td=""><td>100-66-3</td></fp>	100-66-3
1-methoxybutane	-20	-10	61	2-methoxybutane	628-28-4
methylal	-32	-18	ICSCs OC	FP CC <fp oc<="" td=""><td>109-87-5</td></fp>	109-87-5
methylenecyclopentane	-29	-19	61	methylenecyclohexane	1528-30-9
methyl formate	- 32	- 19	ICSCs	- 32 °C NTP Chemical MSDS - 26 °C mitsubishi gas chemical company MSDS	107-31-3
1-methylnaphthalene	94	82	ICSCs	2-methylnaphthalene	90-12-0
-methyl-1,3-pentadiene	- 19	- 34	19	3-methyl-1,3-pentadiene	926-56-7
3-methyl-2-pentene	-25	-6	01	2-methyl-2-pentene	922-61-2
1-octanethiol	77	69	CP CHEM MSDS, OC	1-pentanethiol cyclohexanethiol	111-88-6
trans-1,3-pentadiene	-43	-28	01	20 62	2004-70-8
1,4-pentadiene	-56	4		-20 °C ⁰²	591-93-5
I-pentanol	47	33	ICSCs CC	49 °C BASF MSDS	71-41-0
n-pentyl acetate	38 70	25	ICSCS CC	2-pentyl acetate	628-63-7
r-pnenyi-i-butanone	/0	88 12	19	octanovi ablemida	495-40-9
propylamine	- 27	-12	34	$FP < -37 \degree C (ICSCs)$ -30 RASE MSDS	107-10-8
tetrahydropyran	-7	-20	19	50 BABI 10005	142-68-7
tetramethylsilane	- 51	- 27	³⁹ CC		75-76-3
thiacyclopentane	21	12	ICSCs		110-01-0
1-tridecene	93	80	22	1-tetradecene	2437-56-1
triethylenetetramine	149	135	ICSCs CC		112-24-3
trimethylamine	-72	-7	34	-65 °C BASF MSDS -71 °C CC ⁵⁸	75-50-3

TABLE 12. Erroneous flash points and probably erroneous flash points. In the comments column are given compounds belonging to the same chemical family for which Eq. (4a) performs reasonably well—Continued

TABLE 13. Agreement between the "half-stoichiometric rule" and Eq. (4a) for the search of erroneous flash points in the literature

th the FP estimated ic rule with Eq. (4) (°C)
- 84
-53
-46
47
186

(4a) appear to be consistent with the recommendations that the flash point is below or above a certain temperature. For ethylamine, the initial recommendation that FP is below $-17 \,^{\circ}$ C is reported in the ICSCs such as FP is equal to $-17 \,^{\circ}$ C. Equation (4a) predicts a CC flash point of $-46 \,^{\circ}$ C, which is equal to the flash point for ethylamine reported in the *Handbook of Chemical Physics and Physical Chemistry*.³⁴

For all the remaining compounds of Table 12 it cannot be assessed that the experimental flash point is erroneous but that it is probably erroneous due to the lack of contradictory experimental values. The statement that these literature flash points are probably erroneous can be assessed by considering the database given here (Table 2 and Tables 4-11) and Figs. 2–8. For all these species there is a need for experimental reexamination. Caution has to be taken when the reported experimental flash point is well above the estimated one.

8.5. Limitations of this Estimation Technique

The simple technique provided in this paper does have its limitations. The estimation equation indicates that all the compounds have a flash point, including compounds which are not combustible or weakly combustible, in particular polyhalogenated compounds: chloroform, carbon tetrachloride, tetrachloroethylene, dichloromethane, trichloroethylene, bromoform, trichlorofluoromethane, and 1,1,2,2-tetrachloroethane for instance. All these compounds do not exhibit flash point with ASTM D56, ASTM D93, and ASTM D 3278 methods, even if some of them are combustible in other experimental conditions. There are, however, "flash point" values for bromoform, trichloroethylene, tetrachloroethylene, and 1,1,2,2-tetrachloroethane in the CRC Handbook of Chemical Physics and Physical Chemistry³⁴ and Eq. (4a) gives correct values of the flash points. A limiting case is 1,1,1-trichloroethane for which vapor/air mixtures are difficult to ignite but may be developed under certain conditions, i.e., the substance burns only in excess oxygen or if a strong source of ignition is present.³³ Flash points values are given for 1,1,1-trichloroethane (FP=-1 °C) and 1,1,2trichloroethane (FP=32 °C) in the CRC Handbook of Chemical Physics and Physical Chemistry³⁴ and Eq. (4a)also estimates correctly the flash points of these two compounds, although they are very different. A recent study of Kong et al.⁴⁵ shows that the flash point value of halogenated compounds is very dependent on the ignition energy. This is probably the reason why in some databases some compounds exhibit flash point and in some other databases the same compounds are declared as not combustible. Strictly speaking, the flash points reported in the CRC Handbook of Chemical Physics and Physical Chemistry³⁴ are not flash points as defined in ASTM D56, ASTM D93, and ASTM D3278 but LTL of flammability, i.e., flash points obtained with more energetic ignition sources than the hydrocarbon gas flames used in ASTM D56, ASTM D93, and ASTM D3278. From a chemical kinetics point of view, it is well known that some halogenated compounds/air mixtures are difficult to ignite with hydrocarbon gas flames because halogenated compounds act as sinks for radicals and thus inhibite ignition. Therefore some halogenated compounds are used as fire suppressants (in particular CF_3Br). Equation (4a) seems to estimate correctly the LTL of the some halogenated compounds. On the contrary, when a flash point exists for a halogenated compound (with the ASTM D56, ASTM D93, and ASTM D3278 methods), it can be possible that Eq. (4a) estimates the LTL and not the flash point. This is probably the case for 1,1-dichloroethane, cis and trans 1,2-

TABLE 14. Limitations of Eq. (4a)

Species	$\begin{array}{c} \left \Delta_{\rm comb} H^{\circ}(298.15 \ {\rm K}) \right \\ ({\rm kJ/mol \ fuel}) \qquad \qquad S \end{array} \right.$		$ \Delta_{\text{comb}}H^{\circ}/S $ (kJ/mol O ₂)	CAS Registry Number	
trichlorofluoromethane	104.8	1	104.8	75-69-4	
carbon tetrachloride	297.5	1	297.5	56-23-5	
tetrachloroethylene	368.6	2	184.3	127-18-4	
chloroform	411.2	1.25	329	67-66-3	
carbon tetrabromide	443.7	1	443.7	558-13-4	
dichloromethane	539.8	1.5	359.9	75-09-2	
bromoform	569.8	1.25	455.8	75-25-2	
1,1,2,2-tetrachloroethane	873.2	2.5	349.3	79-34-5	
trichloroethylene	888.8	2.25	395	79-01-6	
1,1,1-trichloroethane	1005.3	2.75	365.6	71-55-6	
1,1-dichloroethylene	1031	2.5	412.4	75-35-4	
1,1-dichloroethane	1143	3	381	75-34-3	
1,2-dichloroethane	1145.2	3	381.7	107-06-2	
chloroethane	1279.3	3.25	393.6	75-00-3	

TABLE 15. Estimated FP, by using Eq. (4a), for compounds for which no data are available in the literature or in MSDS

Species	T _{eb} (K)	$\frac{\Delta_{\rm vap}H^{\circ}(298.15 \text{ K})}{(\text{kJ mol}^{-1})}$	Calculated FP (°C)	CAS Registry Number
allyl cyclohexane	400.23	44	17	2114-42-3
bicyclo[4,1,0]heptane	383	38.1	5	286-08-8
cis-bicyclo[3,3,0]octane	410.28	43.1	24	1755-05-1
cyclobutanecarbonitrile	422.7	44.37	42	4426-11-3
cyclononanone	493.6	53.15	81	3350-30-9
decanenitrile	516.9	66.84	107	1975-78-6
decylcyclohexane	560	78.7	132	1795-16-0
1,1-dimethylcyclopropane	295	25	- 59	1630-94-0
3,3-dimethylhexane	385.1	37.6	3	563-16-6
2,5-dimethyl-3-hexene	374.9	38	-2	15910-22-2
2,2-dimethylpentane	352.3	32.56	-20	590-35-2
trans-1,2-divinylcyclobutane	385.7	42.26	9	6553-48-6
2-ethylacrolein	366	36.81	- 1	922-63-4
ethylcyclobutane	343.8	31.42	-24	4806-61-5
1-ethylcyclohexene	409	43.22	24	1453-24-3
1-ethylcyclopentene	379	38.5	3	2146-38-5
ethylidene cyclohexane	410	42	23	1003-64-1
1-methoxypropane	312	27.9	-41	557-17-5
2-methoxypropane	303.9	26.78	-48	598-53-8
4-methylbiphenyl	541	69.58	117	644-08-6
2-methyl-1-buten-3-yne	305	27	-50	78-80-8
3-methylcyclopentene	339	31	-27	1120-62-3
4-methylcyclopentene	348.7	32	-20	1759-81-5
2-methyldecane	462.4	54.29	61	6975-98-0
2-methyloctane	416.1	44.99	28	3221-61-2
3-methyloctane	417	45.07	28	2216-33-3
1-nonene	419	45.52	30	124-11-8
nonylbenzene	552	77.25	127	1081-77-2
1-nonyne	423	50.26	37	3452-09-3
1-octen-3-yne	407	43.25	23	17679-92-4
2-oxo-propanal	345	38	-4	78-98-8
pentacosane	675.1	128	223	629-99-2
spiropentane	312.1	27.7	-45	157-40-4
tetracosane	664.5	122.9	215	646-31-1
1-tetradecanol	562.2	101.62	154	112-72-1
2,2,3,3-tetramethylbutane	379.6	42.94	6	594-82-1
3,5,7,9-tetraoxaundecane	413.7	53.65	40	4431-82-7
2,2,3-trimethylbutane	354.1	32.19	- 19	464-06-2
2,2,3-trimethylpentane	383.1	36.98	1	564-02-3

dichloroethylene, and 1,1-dichloroethylene for which Eq. (4a) predicts flash points (in fact probably LTL) up to 20 °C lower than the experimental flash point (see Table 12). The fact that the equation estimates the LTL instead of the flash point only concerns the halogenated compounds with two or more halogen atoms in the molecule because the flash points of monohalogenated compounds are generally correctly estimated. A way to prevent the "false" use of this equation is to consider the "net heat of oxidation" technique described by Britton⁵⁹ and Britton and Frurip.⁶⁰ Briefly the net heat (enthalpy) of oxidation (expressed in kJ per mole of oxygen and noted $\Delta_{\text{comb}} H^{\circ}/S$ is defined as the net enthalpy of combustion (in kJ per mole of fuel and noted $\Delta_{comb}H^{\circ}$) divided by the stoichiometric ratio of oxygen to fuel (noted S) as written in the stoichiometric equation. Table 14 gives the net enthalpy of combustion at 298.15 K for some compounds. In this table, only four compounds (1,1-dichloroethylene, 1,1dichloroethane, 1,2-dichloroethane, and chloroethane) exhibit flash points with ASTM D56, ASTM D93, and ASTM D3278 methods and 1,1,1-trichloroethane can be considered as a limit case. From this table it appears that the resulting limitation on the permissible net enthalpy of combustion is $-1000 \text{ kJ} \text{ (mol fuel)}^{-1}$ and the resulting limitation on the permissible net enthalpy of oxidation is $-380 \text{ kJ mol}^{-1} \text{ oxy}$ gen for the use of Eq. (4a) for halogenated compounds. For compounds with two or more halogen atoms, the estimate given by Eq. (4a) can be up to $20 \,^{\circ}$ C lower than the flash point measured in ASTM D56, ASTM D93, and ASTM D3278 flash point testers (see the discussion just above). Another alternative is to consider that generally if the sum of the number of C-C bonds and C-H bonds in the molecule exceeds the number of C-X bonds, one can expect the compound to be flammable. Marginal flammability is expected if the number of C-X bonds equals the sum of the number of C-C and C-H bonds. The agreement between estimates and values reported in the literature is observed when the ratio of

the sum of the number of C-C and C-H bonds to the number of C-X bonds is at least equal to 4. This holds for the monohalogenated compounds: chloroethane. 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloropentane, 2-chloropentane, 1-chlorohexane, 1-chloroheptane, 1-chlorooctane, 1-chlorononane. 1-bromobutane, 1-bromopentane, 1-bromoheptane, 1-fluoroheptane, and for the dihalogenated compounds: 1,1-, 1,2-, 1,3-, and 2,2-dichloropropane, 1,1and 1,2-dichlorobutane, o-, m-, and p-dichlorobenzene.

8.6. FP Estimation for Compounds for Which No Experimental FP Data are Available

Table 15 gives estimated FP for compounds for which no experimental FP data are available, as far as we know. About 30 compounds are reported in Table 15 but hundreds of other compounds could have been reported in this table.

9. Conclusions

A unique empirical equation has been established to estimate the closed cup flash point. This equation is shown to be valid for numerous organic compounds (hydrocarbons, organic oxygen compounds, and organic nitrogen compounds), including the most common solvents and multifunctional compounds. This equation is also valid for organic sulfur compounds, organic halogen compounds (see text), organic silicon compounds, and seems to be valid for organic tin compounds, organic nickel compounds, organic phosphorous compounds, organic boron compounds, organic germanium compounds, and organic deuterated compounds.

This equation can be used to check the reliability of a single experimental value, to decide the more reliable flash point among several contradictory values, and to estimate a flash point when no data are available. Caution has to be taken in that this equation does not predict whether the compound under consideration is combustible or not. This limitation of the equation is discussed for halogenated compounds and recommendations are given for the correct use of the equation for these compounds.

Comparisons between estimated flash point values with this equation and experimental flash point values show that less than 5% of flash points examined are erroneous or probably erroneous and err on the dangerous side. Future works should address:

- (1) additional validation of the equation presented here,
- (2) extensive search for possible erroneous data, and
- (3) experimental validation.

The chemistry is not considered in this study, other than the inclusion of the number of carbon in it. Flash point data can also be analyzed through the use of validated detailed kinetic models. However, detailed kinetic models have been established and validated for less than 1/20th of the species presented here in the tables.

10. References

- ¹R. M. Butler, G. M. Cooke, G. C. Lukk, and B. G. Jameson, Ind. Eng. Chem. **48**, 808 (1956).
- ²W. A. Affens, J. Chem. Eng. Data **11**, 197 (1966).
- ³W. A. Affens and G. W. McLaren, J. Chem. Eng. Data 17, 482 (1972).
- ⁴J. M. Lenoir, Hydrocarbon Processing 54, 95 (1975).
- ⁵Y. Ishiuchi, Anzen Kogaku **15**, 382 (1976).
- ⁶C. C. Li and J. B. Moore, J. Fire Flammability 8, 38 (1977).
- ⁷J. G. Walsham, Adv. Chem. Ser. **124**, 56 (1973).
 ⁸P. Arpentinier, F. Cavani, and F. Trifiro, *The Technology of Catalytic Oxidations*, Volume 2 Safety Aspects (Technip, Paris, 2001), pp. 618–619.
- ⁹W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt, *Handbook of Chemical Property Estimation Methods* (McGraw-Hill, New York, 1982), Chap. 12.
- ¹⁰ K. Satyanarayana and P. G. Rao, J. Haz. Mat. **32**, 81 (1992).
- ¹¹E. R. Hermann and A. Fujii, J. Safety Research 13, 163 (1982).
- ¹²G. S. Patil, Fire Materials **12**, 127 (1988).
- ¹³F.-Y. Hshieh, Fire Materials **21**, 277 (1997).
- ¹⁴E. Metcalfe and A. E. M. Metcalfe, Fire Materials 16, 153 (1992).
- 15 K. Satyanarayana and M. C. Kakati, Fire Materials 15, 97 (1991).
- ¹⁶M. R. Riazi and T. E. Daubert, Hydrocarbon Processing 56, 81 (1987).
- ¹⁷J. H. Hagopian, Flash Points of Pure Substances, in the Handbook of Chemical Property Estimation Methods (McGraw Hill, New York, 1984).
- ¹⁸R. W. Prugh, J. Chem. Educ. **50**, A85 (1973).
- ¹⁹J. Tetteh, T. Suzuki, E. Metcalfe, and S. Howells, J. Chem. Inf. Comput. Sci. **39**, 491 (1999).
- ²⁰J. Taskinen and J. Yliruusi, Adv. Drug Delivery Rev. 55, 1163 (2003).
- ²¹T. Suzuki, K. Ohtaguchi, and K. Koide, J. Chem. Eng. Jpn 24, 258 (1991).
- ²² T. A. Albahri, Chem. Eng. Sci. 58, 3629 (2003).
- ²³ A. R. Katritzky, R. Petrukhin, R. Jain, and M. Karelson, J. Chem. Inf. Comput. Sci. 41, 1521 (2001).
- ²⁴ M. Vidal, W. J. Rogers, J. C. Holste, and M. S. Mannan, Process Safety Progress 23, 47 (2004).
- ²⁵ R. C. Lance, A. J. Barnard, and J. E. Hooyman, J. Haz. Mat. 3, 107 (1979).
- ²⁶ R. G. Montemayor, M. A. Collier, and G. G. Lazarczyk, J. Testing Evaluation **30**, 74 (2002).
- ²⁷A. A. Kline, C. R. Whitten, M. S. Heward, M. R. Trumbell, P. M. Wells, T. N. Rogers, D. A. Zei, and M. E. Mullins, Fluid Phase Equilibria **185**, 21 (2001).
- ²⁸J. C. Jones, J. Loss Prevention Process Industries **14**, 429 (2001).
- ²⁹J. C. Jones, J. Fire Sciences **19**, 177 (2001).
- ³⁰ J. C. Jones and J. Godefroy, J. Loss Prevention Process Industries **15**, 245 (2002).
- ³¹J. Godefroy, and J. C. Jones, J. Loss Prevention Process Industries **15**, 241 (2002).
- ³² J. F. Griffiths, J. A. Barnard, and J. N. Bradley, *Flame and Combustion*, 3rd ed. (Blackie, London, 1995).
- 33 http://www.inchem.org/pages/icsc.html
- ³⁴ CRC Handbook of Chemical Physics and Physical Chemistry, "Properties of Common Solvents," (CRC Press, Boca Raton, 1993), pp. 15-24–15-49.
- ³⁵Lange's *Handbook of Chemistry*, 13th ed., edited by J. A. Dean (McGraw-Hill, New York, 1985).
- ³⁶J. A. Dean, *Handbook of Organic Chemistry* (McGraw-Hill, New York, 1987).
- ³⁷M. G. Zabetakis, U.S. Bureau of Mines Bulletin **627**, 114 (1965).
- ³⁸J. M. Kuchta, U.S. Bureau of Mines Bulletin **680**, 71 (1985).
- ³⁹Matheson TRI-GAS MSDS available at (http://www.matheson-trigas.com/ mathportal/msds/)
- 40 Where to find MSDS On the Internet? at $\langle http://www.ilpi.com/msds/\rangle$
- ⁴¹The Physical and Theoretical Chemistry Laboratory Oxford University Chemical and Other Safety Information available at (http:// physchem.ox.ac.uk/MSDS)
- ⁴²NIOSH Pocket Guide (NPG) to Chemical Hazards available at (www.cdc.gov/niosh/npg/npg.html)
- ⁴³NFPA Fire Protection Guide to Hazardous Materials, 13th ed., edited by A. Bessley Spencer and G. R. Colonna (NFPA Publication, Quincy, 2002).
- ⁴⁴R. G. Montemayor, J. E. Rogerson, J. C. Colbert, and S. B. Schiller, J. Testing Evaluation 27, 423 (1999).
- ⁴⁵D. Kong, D. J. Ende, S. J. Brenek, and N. P. Weston, J. Haz. Mat. A102, 155 (2003).

⁴⁶NIST Chemistry Webbook available at (http://webbook.nist.gov/)

- ⁴⁷ V. Majer and V. Svoboda, Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation (Blackwell Scientific, Oxford, 1985).
- ⁴⁸ J. S. Chickos and W. E. Acree, J. Phys. Chem. Ref. Data **32**, 519 (2003).
- ⁴⁹J. Marrero and R. Gani, Fluid Phase Equilibria **183–184**, 183 (2001).
- ⁵⁰L. Coniglio and A. Nouviaire, Ind. Eng. Chem. Res. 40, 1781 (2001).
- ⁵¹ A. R. Katritzky, V. S. Lobanov, and M. Karelson, J. Chem. Inf. Comput. Science 38, 28 (1998).
- ⁵²S. W. Benson, *Thermochemical Kinetics*, 2nd ed. (Wiley, New York, 1976).
- ⁵³ E. S. Domalski and E. D. Hearing, J. Phys. Chem. Ref. Data 22, 805 (1993).
- ⁵⁴C.-H. Tu and C.-P. Liu, Fluid Phase Equilibria **121**, 45 (1996).

- ⁵⁵T. Boublik, V. Fried, and E. Hala, *The Vapor Pressures of Pure Substances* (Elsevier, Amsterdam, 1973).
- ⁵⁶A. M. Kanury, Ignition of Liquid Fuels, in SFPE Handbook of Fire Protection Engineering, 2nd ed., edited by J. Philip (National Fire Protection Association, Quincy, 1995), Sec. 2, Chap. 10, pp. 2-160–2-170.
- ⁵⁷B. Hanley, Process Safety Progress 17, 86 (1998).
- ⁵⁸J. W. Mitchell, M. S. Vratsanos, B. F. Hanley, and V. S. Parekh, J. Chem. Eng. Data 44, 209 (1999).
- ⁵⁹L. G. Britton, Process Safety Progress **21**, 31 (2002).
- ⁶⁰L. G. Britton and D. J. Frurip, Process Safety Progress 22, 1 (2003).
- ⁶¹Aldrich Handbook, Fine Chemicals and Laboratory Equipment (2000–2001).
- ⁶²Lancaster Handbook, "Produits Chimiques pour la Recherche" (2004–2005) (French ed.).