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Y
ou are chief of protocol for the embassy
ball. The crown prince instructs you ei-
ther to invite Peru or to exclude Qatar.

The queen asks you to invite either Qatar or Ro-
mania or both. The king, in a spiteful mood,
wants to snub either Romania or Peru or both. Is
there a guest list that will satisfy the whims of
the entire royal family?

This contrived little puzzle is an instance of a
problem that lies near the root of theoretical com-
puter science. It is called the satisfiability problem,
or SAT, and it was the first member of the notorious
class known as NP-complete problems. These are
computational tasks that seem intrinsically hard,
but after 25 years of effort no one has yet proved
that they are necessarily difficult. It remains possi-
ble (though unlikely) that we are simply attacking
them by clumsy methods, and if we could dream
up a clever algorithm they would all turn out to be
easy. Settling this question is the most conspicuous
open challenge in the theory of computation.

SAT also has practical importance. In artificial
intelligence various methods of logical deduction
and theorem-proving are related to SAT. And
similar issues arise in computer software for
scheduling, such as assigning flight crews to air-
craft or planning the production run of an auto-
mobile factory.

In recent years SAT has attracted further atten-
tion for another reason. Although the hardest
SAT problems do seem very hard, many prob-
lem instances yield easily to elementary meth-
ods. If you make up thousands of SAT problems
at random, simple algorithms quickly solve all
but a few of them. Looking at these results more
closely, investigators discovered a curious pat-
tern. The hard and easy instances are not mixed
up haphazardly; as a certain parameter is varied,
the problems go from easy to hard and back to
easy again. A physicist looking at this pattern
would note a resemblance to the critical behavior
observed near phase transitions in fluids and
magnetic materials. And indeed there is a corre-
sponding phase transition in the SAT system: In

one phase almost all the propositions can be sat-
isfied, but in another phase almost none can. The
cases that are hardest to resolve lie near the tran-
sition between these regimes.

The connection between SAT and the physics
of phase transitions strikes me as a surprising
one—a classic who’d-have-thunk-it result. We
are accustomed to using mathematics as a tool
for interpreting the physical world, but not the
other way around. And yet the phase-transition
model of SAT works so well that it cannot be a
mere metaphor, much less a coincidence.

 

P and NP
The problem of the embassy ball is small enough
to be solved by even the most plodding of meth-
ods. The problem is represented by the formula:

(p OR ~q) AND (q OR r) AND (~r OR ~p)

Here p, q and r are Boolean variables, whose only
possible values are true or false. The ~ symbol indi-
cates negation, so that ~p is read “not p.” The logi-
cal OR operation is defined so that (p OR q) has the
value true if either p or q is true, whereas (p AND q)
evaluates to true only if both p and q are true.

With three variables, each of which can take on
either of two values, there are 23 = 8 possible label-
ings, or ways of assigning values to the variables.
Trying each of the labelings in turn reveals that
two of them satisfy the formula, namely p = true,
q = true, r = false and p = false, q = false, r = true. In
other words, you can either invite both Peru and
Qatar or you can invite Romania alone. Every oth-
er labeling violates at least one of the royal edicts.

The brute-force enumeration of labelings is not
a practical approach to larger SAT problems. For
a formula with n variables, the number of possi-
ble labelings is 2n, a function that grows so fast
the search becomes exhausting rather than ex-
haustive when n is no more than 40 or 50. The
presence of such exponential growth in a com-
putational task is a telltale sign of a hard problem
or an inefficient algorithm.

Algorithmic performance is measured as a
function of problem size n. To compare two algo-
rithms, you observe how their execution times
change as n becomes arbitrarily large. For exam-
ple, logarithmic, linear, quadratic and cubic algo-
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rithms have running times proportional to log n,
n, n2 and n3 respectively. All of these algorithms
are classified as polynomial-time methods; so are
those described by any higher power of n, such
as n5 or even n500.

Another group of algorithms have running
time characterized by an exponential function—
that is, a function where the variable n appears in
the exponent, as in nlog n, 2n or nnn. The boundary
between polynomial and exponential algorithms
is a kind of continental divide in computational
complexity theory. All exponential algorithms are
slower than all polynomial ones for large enough
values of n. For this reason polynomial algo-
rithms tend to be seen as fast and practical,
whereas exponential ones are dismissed as hope-
lessly inefficient.

The same scheme that rates the efficiency of
algorithms can also evaluate the difficulty of
problems. A problem is said to be in the class P if
there is a polynomial-time algorithm for solving
it. Unfortunately, the converse assertion is not so
simple to establish. Just because no one has
found a polynomial-time algorithm for a prob-
lem doesn’t mean the problem is not in P. Per-
haps some efficient algorithm exists, but we
haven’t been smart enough to figure it out. Hun-
dreds of problems remain suspended in such a
computational limbo. No polynomial-time algo-
rithm is known for them, but neither is a proof
that efficient algorithms do not exist. SAT is
among these unsettled and unsettling problems.

Specifically, SAT is included in the class of prob-
lems designated NP, which stands for “nondeter-
ministic polynomial.” These are problems that
cannot be solved in polynomial time (as far as
anyone knows), but if you could guess the answer,
you could efficiently check its correctness. For SAT
the checking procedure is easy. Given a proposed
labeling, merely substitute the specified true and
false values for all n variables and make sure the
resulting formula is true. The time needed for this
computation is a linear function of n.

SAT is a member not only of NP but also of the
more exclusive club called NP-complete. An NP-
complete problem is a master key to the entire
set of NP problems. If a polynomial-time algo-
rithm could be found for any one NP-complete
problem, then it could be adapted to all problems
in NP. SAT was the first problem shown to have
this property (by Stephen Cook in 1971). Among
other NP-complete problems are some celebrated
ones such as graph coloring and the traveling-
salesman problem. Significantly, evidence of
phase transitions and critical points has turned
up in some of these problems as well.

Backtracking
Although we have no polynomial-time algo-
rithm for SAT, we can do better than exhaustive
search. One popular method of solving SAT
problems is called backtracking. The basic strate-
gy is to explore a branch of the tree of possible
solutions until you come to a dead end, then
back up to some earlier choice point and try an-
other branch. If that path also fails, you back up
further still, to an even earlier decision point, un-
til eventually you either find a solution or run
out of branches.

SAT algorithms are usually designed to work
on Boolean expressions written in a format called
conjunctive normal form (CNF). In CNF literals are
grouped together to form clauses, which are as-
sembled into a formula. A literal is just a variable in
either affirmative or negative form; thus p and ~p
are both literals. A clause is a set of literals joined
by OR; (p OR ~q) is a clause of length 2. In a formula,
clauses are linked by AND, as in (p) AND (q OR r).
Note that the formula given above for the em-
bassy-ball problem is in conjunctive normal form.
Any Boolean expression can be converted into a
semantically equivalent CNF formula, so there is
no loss of generality in focusing on this one kind
of expression.

The orderly structure of a CNF formula stream-
lines the search for a labeling. Because all the con-
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Figure 1. Satisfiability problem, SAT, undergoes a phase transition. Each of the 5,000 dots represents a single instance
of the problem; blue dots are satisfiable instances and red dots unsatisfiable. Height on the graph indicates the cost of
finding a solution. The cost reaches a peak where the instances change from mostly satisfiable to most unsatisfiable.



nectives inside each clause are OR operators, any
true literal in a clause makes the entire clause true.
On the other hand, because the clauses are linked
by ANDs, any false clause makes the entire formu-
la false. To put it another way, a true formula is
any CNF expression that has no false clauses;
note that this definition includes the empty for-
mula, with no clauses at all. Conversely, a true
clause must have at least one true literal, so that
an empty clause is false.

The backtracking algorithm for CNF formulas
can be imagined as a contest between two play-
ers, the Optimist and the Pessimist. The Optimist
strives to find a satisfying labeling by looking into
each clause for at least one true literal. If she finds
one, she strikes out the entire clause. If she can
eliminate all the clauses in this way, then the orig-
inal formula is satisfiable. Meanwhile the Pes-
simist searches for false literals and removes them
from the clauses in which they appear. If she can
show that every labeling yields at least one empty
clause, then the formula is unsatisfiable.

The algorithm is stated as a recursive procedure
in Figure 2. Here is how it might be applied to the
embassy-ball formula (p OR ~q) AND (q OR r) AND

(~r OR ~p). First, choose the variable p and assign it
a provisional value of true. The assignment makes
the clause (p OR ~q) true, so you can erase it; also,
in the clause (~r OR ~p), remove the ~p. These ac-
tions leave the reduced formula (q OR r) AND (~r),
to which you can now recursively apply the same
procedure. Setting q to true eliminates the first
clause and leaves (~r) as the entire formula. Con-
tinuing in the same way, you set r to true, but now
you encounter a conflict: ~r is false, and striking it
leaves the empty clause (). You must therefore
backtrack to the most recent decision point—
namely the point where you set r to true—and try
the opposite choice. Now with the variable r false,
the literal ~r becomes true, and you erase the en-
tire clause (~r). The formula is empty. You have
found the labeling p = true, q = true, r = false.

The backtracking algorithm works no magic;
like all other known solutions to SAT, it has ex-
ponential running time in the worst case. If you
are unlucky, backtracking can take just as long
as exhaustive search, but in practice it often runs
much faster because it can prune whole limbs

from the search tree without exploring their
leaves. Performance is sometimes improved by
heuristic rules for choosing which variable to la-
bel next. A particularly strong heuristic was not-
ed by Martin Davis and Hilary Putnam as early
as 1960. It suggests attending first to any variable
that appears in a singleton clause—a clause with
just one literal. The Davis-Putnam version of the
backtracking algorithm has become a standard
against which other methods are judged.

Phase Transitions
The classification of problems as P or NP is based
entirely on worst-case analysis; a problem is ban-
ished from P if there is even one instance that re-
quires an exponential solution time. But clearly
the average case is also of interest. Recent statis-
tical studies of SAT have focused on describing
the distribution of hard and easy instances
throughout the problem space. The paradigm is
to generate a few thousand random CNF formu-
las, then set an algorithm churning away on
them. You collect records of how many formulas
can be satisfied, and how much effort is needed
to find the solutions.

Most such studies are done with formulas
made up of clauses that are all the same length.
SAT problems with just one literal in each clause
(known as 1-SAT problems) are not very inter-
esting; a trivial linear-time algorithm solves
them. 2-SAT problems also have a linear-time
method, although it is less obvious. But 3-SAT—
the set of formulas with three literals per clause—
is NP-complete, and so it is just as hard as the
more general SAT problem without restrictions
on clause length.

To generate a clause in random 3-SAT, choose
three distinct variables from the total set of n vari-
ables, then either negate each one or leave it affir-
mative with probability 1/2. To build a 3-SAT for-
mula with m clauses, repeat the process m times.

It turns out the ratio of clauses to variables,
m/n, is the crucial parameter for describing SAT
statistics. Suppose you have classified a bunch of
3-SAT formulas as either satisfiable or not, and
you graph the results as a function of m/n. One
pattern you are sure to observe is that the pro-
portion of satisfiable formulas decreases as m/n
increases. Formulas with only a few clauses and
many variables can almost always be satisfied,
since most of the variables appear only once or
twice, and a conflict between them is unlikely; in
this region the formulas are said to be undercon-
strained. At the other end of the spectrum, with
many clauses and few variables, each variable
can be expected to appear in many clauses, so
that conflicts are frequent; here the formulas are
overconstrained, and few of them are satisfiable.

This general trend from usually satisfiable to
rarely so is easy enough to understand. What is
harder to explain is the detailed shape of the curve
(see Figure 3). For small formulas (say n = 10 vari-
ables) the transition is fairly gradual, but it be-
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procedure Backtrack(formula, variables, labeling)
   If formula is empty, return labeling.
   Else if formula includes an empty clause, report failure.
   Else choose an unassigned variable, say x, and give it the value
           true. Throughout formula, if a clause includes the literal x,
           erase the entire clause; if a clause includes ~x, erase the
           ~x. Report the result of: 
           Backtrack(formula, (variables – x), (labeling + (x = true))).
   Else set x to false. Throughout formula, if a clause includes the
           literal x, erase the x; if a clause includes ~x, erase the
           entire clause. Report the result of: 
           Backtrack(formula, (variables – x), (labeling + (x = false))).

Figure 2. Backtracking algorithm for satisfiability has exponential
performance in the worst case but often does better in practice.



comes steeper as n increases. At n = 50, the prob-
ability of satisfiability stays close to 1 for m/n ra-
tios up to about 4; then the probability falls
steeply and remains close to 0 at all ratios greater
than about 5. In other words, almost any formula
with 50 variables and 200 clauses can be satis-
fied; but with 50 variables and 250 clauses, satis-
fiable formulas are rare. The abruptness of this
transition is intriguing. And it gets even sharper,
approaching the form of a step function as n be-
comes arbitrarily large.

The steepness of the crossover is one reason for
describing what happens in SAT as a phase tran-
sition. Changes of state in the physical world are
similarly abrupt: Water is a liquid at 1 degree Cel-
sius but a solid at –1 degree. The steepening of the
SAT transition as the system gets larger is also a
characteristic of phase changes, although a less-fa-
miliar one. When you measure size by counting
atoms, just about anything is enormous, and so
the “softer” phase transitions of small systems are
seldom apparent in everyday experience. Never-
theless, experiments and simulations that vary
the number of particles in a sample generate fam-
ilies of curves much like those in Figure 3.

Tabulating the effort needed to solve each prob-
lem instance brings further illumination (see Fig-
ure 4). At a low ratio of clauses to variables, the
problems are mostly easy. At very high ratios, the
effort per problem is only a little greater. In be-
tween is a hump in the curve where the average
difficulty is much higher; this peak in solution
cost corresponds to the crossover region in the
probability graph. For any given value of n, the
highest concentration of hard problems comes at
an  m/n ratio near the point where 50 percent of
the formulas are satisfiable. Also, as n increases
and the crossover becomes more abrupt, the peak
in the cost curve grows dramatically taller.

Here is a qualitative explanation of the cost
curve: In the underconstrained region (at a low
m/n ratio) a typical formula has many possible
solutions, and so it takes little effort to find one.
For example, the Davis-Putnam algorithm often
proceeds straight to a satisfying assignment, with
little or no backtracking. Overconstrained for-
mulas, on the other hand, are almost all unsatis-
fiable, with dozens of literals in conflict; an algo-
rithm will usually expose a fatal inconsistency
after checking only a small fraction of the possi-
ble labelings. The middle of the curve is where
problems are hard because this is the realm of
just-barely-satisfiable and almost-satisfiable for-
mulas. Here many partial labelings can be ex-
tended almost to completion before an inconsis-
tency appears. Thus few branches of the solution
tree are pruned away early.

Like the probability curve, the SAT cost curve
will look familiar to students of phase transitions
and critical phenomena. The canonical system for
the study of critical behavior is a ferromagnet near
its Curie point, which is the temperature where
the material loses all magnetization. Above the

Curie temperature, the electron spins that give rise
to ferromagnetism are randomly oriented, and so
they cancel out and leave no net magnetization.
As the material cools toward the Curie point, clus-
ters of spins line up in parallel, and at the Curie
point itself these clusters become effectively infi-
nite in extent: A magnet is born. The Curie point
also marks a sharp peak in the magnetic suscepti-
bility—the material’s sensitivity to a small external
field. At high temperature, an applied field has lit-
tle effect because thermal agitation disrupts any
incipient magnetized regions. At low temperature
the susceptibility is low again, but for a different
reason: A weak external field cannot overcome the
established magnetization. Near the Curie point
the material is exquisitely sensitive; the smallest
imposed field can reverse vast numbers of spins.
A graph of the susceptibility near the Curie tem-
perature looks just like the SAT cost curve, includ-
ing a tendency for the peak to become steeper and
to shift to slightly lower temperatures as the size
of the system increases.

Dissatisfactions
The idea of interpreting events in a purely math-
ematical system as phase transitions is not new.
The earliest instance I know of was in the context
of graph theory, and specifically in the study of
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Figure 3. Transition from satisfiable to unsatisfiable gets steeper as the
number of variables increases. Each dot is the average of 300 instances.

Figure 4. Peak in the cost of finding solutions also gets sharper as the
number of variables rises. Data are from the same instances as Figure 3.



graphs grown by randomly adding edges to con-
nect a set of vertices. This was a field pioneered
by the late Paul Erdős; in 1960 Erdős and Albert
Rényi identified “sharp thresholds” in the con-
nectivity of random graphs.

Later, in the 1980s, phase transitions in vari-
ous computational systems (including SAT) were
discussed by Richard Karp and Judea Pearl, by
Paul W. Purdom, Jr., by Scott Kirkpatrick and R.
H. Swendsen and by Bernardo A. Huberman and
Tad Hogg. In 1991 a particularly influential paper
was published by Peter Cheeseman, Bob Kanef-
sky and William M. Taylor. Titled “Where the
Really Hard Problems Are,” it reviewed evidence
of phase transitions and critical points in several
NP-complete problems. Cheeseman and his col-
leagues offered a conjecture: that phase transi-
tions are not merely a common feature of NP-
complete problems but in fact are a defining
characteristic of all such problems.

The past six years have seen further explo-
ration of these themes. Much of the recent work
is summed up in a special issue of  the journal
Artificial Intelligence, edited by Hogg, Huberman
and Colin Williams, titled Frontiers in Problem
Solving: Phase Transitions and Complexity.

By now it seems well established that phase
transitions in SAT are intrinsic to the problem it-
self; they are not an artifact of any particular al-
gorithm. Furthermore, phase transitions exist not
just in SAT but also in many other NP-complete
problems. And yet the connection between NP-
completeness and phase transitions is not a sim-
ple one. One might like to declare that if a prob-
lem has a phase transition, it must be in NP, but
that is not so. There are problems in P that un-
dergo phase changes and show the characteristic
easy-hard-easy pattern; 2-SAT is among them.
Conversely, there are problems in NP whose hard
instances are not clustered at a phase boundary;
the traveling salesman problem is an example.

In nature, phase transitions are classified as con-
tinuous or discontinuous; for example, the onset
of magnetization is continuous, whereas the freez-
ing and boiling of water are discontinuous. What
about transitions in SAT? Recent work by Rémi
Monasson and Riccardo Zecchina has shown that
the 2-SAT transition is continuous, but the 3-SAT
transition is discontinuous. Moreover, Monasson
and Zecchina, together with Scott Kirkpatrick,
Bart Selman and Lidror Troyansky, have devised a
way of interpolating smoothly between these two
regimes. Working with a model they call (2+p)-
SAT, they generate formulas as a random mixture
of clauses that have either two or three literals, in
proportions determined by the parameter p. They
find that their formulas retain the continuous tran-
sition characteristic of 2-SAT up to about p = 0.4,
and thereafter act more like 3-SAT, with a discon-
tinuous phase transition. This crossover point is
quite different from the boundary between 2-SAT
and 3-SAT in computational complexity theory.
Given the worst-case assumptions of that disci-

pline, (2+p)-SAT is necessarily in NP for any value
of p greater than zero. The average-case behavior
is evidently different: Average running time grows
polynomially for values of p less than about 0.4,
and exponentially for larger p.

But what is the average case of SAT, and how
difficult is it? These questions have not yielded
easy answers. They are really questions not about
how to solve SAT problems but about how to
generate representative sets of SAT instances.
And even given a well-defined distribution of in-
stances, measuring the average difficulty is not
straightforward. The obvious measure is the
mean difficulty, but mean values are so skewed
by a few extremely hard formulas that most
analysis has been done with medians.

Even if the measure is imperfect, knowing
where the really hard problems are turns out to be
useful, whether your aim is to find them (as in test-
ing algorithms) or to avoid them (as in formulating
real-world problems in need of solution).
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