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Abstract
Despite the performance drawbacks of Ethernet, it still possesses a siz-

able footprint in cluster computing because of its low cost and back-
ward compatibility to existing Ethernet infrastructure. In this paper,
we demonstrate that these performance drawbacks can be reduced (and
in some cases, arguably eliminated) by coupling TCP offload engines
(TOEs) with 10-Gigabit Ethernet (10GigE).

Although there exists significant research on individual network tech-
nologies such as 10GigE, InfiniBand (IBA), and Myrinet; to the best
of our knowledge, there has been no work that compares the capabil-
ities and limitations of these technologies with the recently introduced
10GigE TOEs in a homogeneous experimental testbed. Therefore, we
present performance evaluations across 10GigE, IBA, and Myrinet (with
identical cluster-compute nodes) in order to enable a coherent compar-
ison with respect to the sockets interface. Specifically, we evaluate the
network technologies at two levels: (i) a detailed micro-benchmark eval-
uation and (ii) an application-level evaluation with sample applications
from different domains, including a bio-medical image visualization tool
known as the Virtual Microscope, an iso-surface oil reservoir simulator,
a cluster file-system known as the Parallel Virtual File-System (PVFS),
and a popular cluster management tool known as Ganglia. In addition to
10GigE’s advantage with respect to compatibility to wide-area network
infrastructures, e.g., in support of grids, our results show that 10GigE
also delivers performance that is comparable to traditional high-speed
network technologies such as IBA and Myrinet in a system-area network
environment to support clusters and that 10GigE is particularly well-
suited for sockets-based applications.

1 Introduction
Three years ago, virtually none of the supercomputers in

the Top500 Supercomputer List [3] used Gigabit Ethernet
(GigE) [19]. Today, GigE- and Myrinet-based [12] clusters domi-
nate the Top500 with 42.4% and 28.2% shares, respectively. Fur-
thermore, GigE is even more pervasive in the Top500 list than the
list explicitly indicates as many of the Top500 supercomputers
also have Ethernet-based control or management networks.

What are the drivers of the above Ethernet trend? Ease of
deployment and cost over raw performance. Ethernet is al-
ready the ubiquitous interconnect technology for wide-area net-
works (WANs) in support of grids because it leverages the
legacy IP/Ethernet infrastructure, which has been around since
the mid-1970s. Its ubiquity will become even more prominent
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as long-haul network providers move away from the more ex-
pensive (but Ethernet-compatible) SONET technology towards
10-Gigabit Ethernet (10GigE) backbones, as recently demon-
strated by the longest continuous 10GigE connection between
Tokyo, Japan and Geneva, Switzerland via Canada and the United
States [17] in late 2004. Researchers from Japan, Canada, the
United States, and Europe completed an 18,500-km 10GigE con-
nection between the Japanese Data Reservoir project in Tokyo
and the CERN particle physical laboratory in Geneva; a connec-
tion that used 10GigE WAN PHY technology to set-up a local-
area network at the University of Tokyo that appeared to include
systems at CERN, which were 17 time zones away.

Although GigE is far behind the curve with respect to network
performance, 10GigE can bridge the performance gap to other ex-
otic network technologies while achieving the ease of deployment
and eventually the cost of GigE. The IEEE 802.3-ae 10-Gb/s stan-
dard already ensures interoperability with existing IP/Ethernet in-
frastructures, and the manufacturing volume of 10GigE is already
driving costs down exponentially, just as it did for Fast Ethernet
and Gigabit Ethernet.1 What remains to be demonstrated is if
10GigE can bridge the performance gap to technologies such as
InfiniBand (IBA) [5] and Myrinet.

Unfortunately, with several high-performance networks being
introduced into the HPC market, each exposing its own commu-
nication interface, characterizing the performance gap between
these networks is no longer a straightforward task. This issue is
not unique to only lower-level performance characterization; it is
also a major issue for application developers. Due to the increas-
ingly divergent communication interfaces exposed by the net-
works, application developers demand a common interface that
they can utilize in order to achieve portability across the various
networks. The Message Passing Interface (MPI) [26, 20, 13] and
the sockets interface have been two of the most popular choices
towards achieving such portability. MPI has been the de facto
standard for scientific applications, while sockets has been more
prominent in legacy scientific applications as well as grid-based
or heterogeneous-computing applications, file and storage sys-
tems, and other commercial applications. Because traditional
sockets over host-based TCP/IP has not been able to cope with
the exponentially increasing network speeds, IBA and other net-
work technologies recently proposed a high-performance sockets
interface, known as the Sockets Direct Protocol (SDP) [2]. SDP
is a mechanism to allow existing sockets-based applications to
transparently take advantage of the hardware-offloaded protocol

1Per-port costs for 10GigE have dropped nearly ten-fold in two years.
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stack provided by these exotic networks. As a result, Chelsio and
other 10GigE vendors have recently released adapters that deliver
hardware-offloaded TCP/IP protocol stacks (popularly known as
TCP Offload Engines or TOEs) to provide high-performance sup-
port for existing sockets-based applications. In this paper, we
concentrate on the sockets interface to characterize the perfor-
mance gap between 10GigE and other exotic networks such as
IBA and Myrinet.

Many researchers, including ourselves, have evaluated the bene-
fits of sockets over offloaded protocol stacks on various networks
including IBA and Myrinet. However, to our best knowledge,
there has been no work that compares and contrasts the capabili-
ties and limitations of these technologies with the recently intro-
duced 10GigE TOEs on a homogeneous experimental testbed. In
this paper, we perform several evaluations to enable a coherent
comparison between 10GigE, IBA and Myrinet with respect to
the sockets interface. In particular, we evaluate the networks at
two levels: (i) a detailed micro-benchmark evaluation and (ii) an
application-level evaluation with sample applications from mul-
tiple domains, including a bio-medical image visualization tool
known as the Virtual Microscope [4], an iso-surface oil reservoir
simulator called Iso-Surface [11], a cluster file-system known
as the Parallel Virtual File-System (PVFS) [14], and a popu-
lar cluster management tool named Ganglia [1]. In addition to
10GigE’s advantage with respect to compatibility to wide-area
network infrastructures, e.g., in support of grids, our results show
that 10GigE also delivers performance that is comparable to tradi-
tional high-speed network technologies such as IBA and Myrinet
in a system-area network environment to support clusters and that
10GigE is particularly well-suited for sockets-based applications.

2 Background
In this section, we first provide a brief overview on hardware-

offloaded protocol stacks, known as Protocol-Offload Engines
(POEs), provided by networks such as 10GigE, IBA, and
Myrinet. Next, we briefly describe the architectures and capa-
bilities of the aforementioned high-performance networks con-
sidered in this paper.

2.1 Overview of Protocol Offload Engines
Traditionally, the processing of protocols such as TCP/IP is ac-

complished via software running on the host CPU. As network
speeds scale beyond a gigabit per second (Gbps), the CPU be-
comes overburdened with the large amount of protocol process-
ing required. Resource-intensive memory copies, checksum com-
putation, interrupts, and reassembly of out-of-order packets im-
pose a heavy load on the host CPU. In high-speed networks, the
CPU has to dedicate more cycles to handle the network traffic
than to the application(s) it is running. Protocol-Offload Engines
(POEs) are emerging as a solution to limit the processing required
by CPUs for networking.

The basic idea of a POE is to offload the processing of proto-
cols from the host CPU to the network adapter. A POE can be
implemented with a network processor and firmware, specialized
ASICs, or a combination of both. High-performance networks
such as IBA and Myrinet provide their own protocol stacks that
are offloaded onto the network-adapter hardware. Many 10GigE
vendors, on the other hand, have chosen to offload the ubiquitous
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Figure 1. Chelsio T110 Adapter Architecture

TCP/IP protocol stack in order to maintain compatibility with
legacy IP/Ethernet infrastructure, particularly over the wide-area
network (WAN) [18]. Consequently, this offloading is more pop-
ularly known as a TCP Offload Engine (TOE).

2.2 Overview of High-Speed Networks

In this section, we provide an overview of the high-speed net-
works that are used in this work: 10GigE, IBA, and Myrinet.

2.2.1 10-Gigabit Ethernet
The Chelsio T110, as shown in Figure 1, is a PCI-X network
adapter capable of supporting full TCP/IP offloading from a host
system at line speeds of 10 Gbps. The adapter consists of mul-
tiple components: (i) the terminator which provides the basis for
offloading, (ii) separate memory systems each designed for hold-
ing particular types of data, and (iii) a MAC and XPAC optical
transceiver for the physical transfer of data over the line.

Terminator Core: The Terminator ASIC in the T110 forms the
core of the offload engine, capable of handling 64,000 connec-
tions at once and with a set-up and tear-down rate of about three
million connections per second. It sits between the host and its
Ethernet interface. When offloading a TCP/IP connection, it can
handle tasks such as connection management, checksums, route
lookup from the Ternary Content Addressable Memory (TCAM),
congestion control, and most other TCP/IP processing. When of-
floading is not desired, a connection can be tunneled directly to
the host’s TCP/IP stack. In most cases, the PCI-X interface is
used to send both data and control messages between the host,
but an SPI-4.2 interface can be used to pass data to and from a
network processor (NPU) for further processing.

Memory Layout: A 4.5MB TCAM (Ternary Content Address-
able Memory) is used to store a Layer 3 routing table and can
filter out invalid segments for non-offloaded connections. A 256-
MB EFF FCRAM Context Memory (CM) stores TCP state infor-
mation for each offloaded and protected non-offloaded connec-
tion as well as a Layer 3 routing table and its associated struc-
tures. Each connection uses 128 bytes of memory to store state
information in a TCP control block (TCB). Packet Memory (PM)
stores the payload of packets and uses standard ECC SDRAM
(PC2700), ranging in size from 128 MB to 4 GB.

In our 10GigE network, the above mentioned Chelsio T110 net-
work adapters are interconnected using a Foundry FastIron Su-
perX 10GigE switch. The SuperX switch is built with high-
performance ASICs to deliver high-density Gigabit Ethernet that
can include Power over Ethernet and 10-Gigabit Ethernet. The
SuperX switch comes with advanced layer 2 features and several
layer 3 features. The 4.5µs flow-through latency offered by this
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switch is extraordinarily impressive given that it is a store-and-
forward switch. On the other hand, our Fujitsu XG1200 switch
uses virtual cut-through to achieve a 0.5µs flow-through latency.

2.2.2 InfiniBand

The InfiniBand Architecture (IBA) [5] defines a switched net-
work fabric for interconnecting processing and I/O nodes. It
provides the communication and management infrastructure for
inter-processor communication and I/O. In an IBA network,
nodes are connected to the fabric via Host-Channel Adapters
(HCAs) that reside in the processing or I/O nodes.

Our IBA platform consists of InfiniHost HCAs and an InfiniS-
cale switch from Mellanox [25]. InfiniScale is a full wire-speed
switch with eight 10-Gbps ports. There is also support for link
packet buffering, inbound and outbound partition checking, and
auto-negotiation of link speed. The switch has an embedded
RISC processor for exception handling, out-of-band data man-
agement support, and counter support for performance monitor-
ing. The InfiniHost MT23108 HCA connects to the host through
the PCI-X bus. It allows for a bandwidth of up to 10 Gbps over its
ports. Memory protection along with address translation is imple-
mented in hardware. The HCA supports on-board DDR memory
up to 1GB.

2.2.3 Myrinet

Myrinet [12] is a high-speed interconnect technology using
wormhole-routed crossbar switches to connect all the NICs. MX
and GM [28] are the low-level messaging layers for Myrinet clus-
ters. They provide protected user-level access to the network in-
terface card and ensures reliable and in-order message delivery.
They also provide a connectionless communication model to the
upper layer, i.e., there is no connection setup phase between the
ports before communication, and each port can send messages to
or receive messages from any other port on a remote node.

Our Myrinet network consists of Myrinet-2000 ‘E’ cards con-
nected by a Myrinet-2000 switch. Each card has two ports with
the link bandwidth for each port being 2 Gbps. Thus the network
card can support an aggregate of 4 Gbps in each direction using
both the ports. The Myrinet-2000 switch is a 16-port crossbar
switch. The network interface card connects to a 133-MHz/64-
bit PCI-X interface on the host. It has a programmable Lanai-XP
processor running at 333 MHz with 2-MB on-board SRAM. The
Lanai processor on the NIC can access host memory via the PCI-
X bus through the DMA controller.

3 Interfacing with POEs
Since the Linux kernel does not currently support Protocol Of-

fload Engines (POEs), researchers have taken a number of ap-
proaches to enable applications to interface with POEs. The
two predominant approaches are high-performance sockets im-
plementations such as the Sockets Direct Protocol (SDP) and
TCP Stack Override.

3.1 High-Performance Sockets

High-performance sockets are pseudo-sockets implementations
that are built around two goals: (a) to provide a smooth tran-
sition to deploy existing sockets-based applications on clusters

connected with networks using offloaded protocol stacks and (b)
to sustain most of the network performance by utilizing the of-
floaded stack for protocol processing. These sockets layers over-
ride the existing kernel-based sockets and force the data to be
transferred directly to the offloaded stack (Figure 2a). The Sock-
ets Direct Protocol (SDP) is an industry-standard specification for
high-performance sockets implementations.

Application
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Figure 2. Interfacing with POEs: (a) High Perfor-
mance Sockets and (b) TCP Stack Override

In the High Performance Sockets based approach, the TCP/IP
stack in the kernel does not have to be touched at all since all
the data communication calls such as read(), write(), etc.,
are trapped and directly mapped to the offloaded protocol stack.
However, this requires several aspects that are handled by the
sockets layer (e.g., buffer management for data retransmission
and pinning of buffers) to be duplicated in the SDP implementa-
tion. IBA and Myrinet use this approach to allow sockets-based
applications to utilize their offloaded protocol stacks.

3.2 TCP Stack Override
This approach retains the kernel-based sockets layer. However,

the TCP/IP stack is overridden and the data is pushed directly to
the offloaded protocol stack in order to bypass the host TCP/IP
stack implementation (see Figure 2b). The Chelsio T110 adapter
studied in this paper follows this approach. The software archi-
tecture used by Chelsio essentially has two components: the TCP
offload module (TOM) and the offload driver.

TCP Offload Module: As mentioned earlier, the Linux oper-
ating system lacks support for TOE devices. Chelsio provides
a framework of a TCP offload module (TOM) and a thin layer
known as the toedev which decides whether a connection needs
to be handed over to the TOM or to the traditional host-based
TCP/IP stack. The TOM can be thought of as the upper layer
of the TOE stack. It is responsible for implementing portions of
TCP processing that cannot be done on the TOE. The state of all
offloaded connections is also maintained by the TOM. Not all of
the Linux network API calls (e.g., tcp sendmsg, tcp recvmsg) are
compatible with the TOE. Modifying these would result in exten-
sive changes in the TCP/IP stack. To avoid this, the TOM imple-
ments its own subset of the transport-layer API. TCP connections
that are offloaded have certain function pointers redirected to the
TOM’s functions. Thus, non-offloaded connections can continue
through the network stack normally.

Offload Driver: The offload driver is the lower layer of the
TOE stack. It is directly responsible for manipulating the ter-
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minator and its associated resources. TOEs have a many-to-one
relationship with a TOM. A TOM can support multiple TOEs as
long as it provides all the functionality required by each. Each
TOE can only be assigned one TOM. More than one driver may
be associated with a single TOE device. If a TOE wishes to act
as a normal Ethernet device (capable of handling only Layer 2
packets), a separate device driver may be required.

4 Experimental Testbed
For experimentally evaluating the performance of the three net-

works, we used the following testbed: a cluster of four nodes
built around SuperMicro SUPER X5DL8-GG motherboards with
ServerWorks GC LE chipsets, which include 64-bit, 133-MHz
PCI-X interfaces. Each node has two Intel Xeon 3.0 GHz pro-
cessors with a 512-kB L2 cache and a 533-MHz front-side bus
and 2 GB of 266-MHz DDR SDRAM. We used the RedHat 9.0
Linux distribution and the Linux-2.4.25smp kernel.org kernel.
Each node was equipped with the 10GigE, IBA and Myrinet net-
works. The 32-bit Xeon processors and the 2.4 kernel used in
the testbed represent a large installation base; thus, the results
described here would be most relevant for researchers using such
testbeds to weigh the pros and cons of each network before adopt-
ing them.

10GigE: The 10GigE network was based on Chelsio T110
10GigE adapters with TOEs connected to a 16-port SuperX
Foundry switch. The driver version used on the network adapters
is 1.2.0, and the firmware on the switch is version 2.2.0. For op-
timizing the performance of the 10GigE network, we have modi-
fied several settings on the hardware as well as the software sys-
tems, e.g., (i) increased PCI burst size to 2 KB, (ii) increased send
and receive socket buffer sizes to 512 KB each, (iii) increased
window size to 10 MB and (iv) enabled hardware flow control to
minimize packet drops on the switch. Detailed descriptions about
these optimizations and their impact can be found in our previous
work [21, 18, 7].

InfiniBand: The InfiniBand (IBA) network was based on
Mellanox InfiniHost MT23108 dual-port 4x HCA adapters
through an InfiniScale MT43132 twenty-four port completely
non-blocking switch. The adapter firmware version is fw-23108-
rel-3 2 0-rc4-build-001 and the software stack was based on the
Voltaire IBHost-3.0.0-16 stack.

Myrinet: The Myrinet network was based on Myrinet-2000
‘E’ (dual-port) adapters connected by a Myrinet-2000 worm-
hole router crossbar switch. Each adapter is capable of a 4Gbps
theoretical bandwidth in each direction. For SDP/Myrinet, we
performed evaluations with two different implementations. The
first implementation is using the GM/Myrinet drivers (SDP/GM
v1.7.9 over GM v2.1.9). The second implementation is over
the newly released MX/Myrinet drivers (SDP/MX v1.0.2 over
MX v1.0.0). The SDP/MX implementation is a very recent
release by Myricom (the vendor for Myrinet) and achieves a
significantly better performance than the older SDP/GM. How-
ever, as a part-and-parcel of being a bleeding-edge implemen-
tation, SDP/MX comes with its share of stability issues; due
to this, we had to restrict the evaluation of some of the experi-
ments to SDP/GM alone. Specifically, we present the ping-pong
latency, uni-directional and bi-directional bandwidth results (in

Section 5.1) for both SDP/MX as well as SDP/GM and the rest
of the results for SDP/GM alone. With the current active effort
from Myricom towards SDP/MX, we expect these stability issues
to be resolved very soon and the numbers for Myrinet presented
in this section to further improve.

5 Micro-Benchmark Evaluation
In this section, we perform micro-benchmark evaluations of the

three networks over the sockets interface. We perform evalua-
tions in two sub-categories. First, we perform evaluations based
on a single connection measuring the point-to-point latency, uni-
directional bandwidth, and the bi-directional bandwidth. Second,
we perform evaluations based on multiple connections using the
multi-stream bandwidth test, hot-spot test, and fan-in and fan-out
tests. In Section 6 we extend this evaluation to real-life applica-
tions from various domains.

5.1 Single Connection Micro-Benchmarks
Figures 3 and 4 show the basic single-connection performance

of the 10GigE TOE as compared to SDP/IBA and SDP/Myrinet
(both SDP/MX/Myrinet and SDP/GM/Myrinet).

Ping-Pong Latency Micro-Benchmark: Figures 3a and 3b
show the comparison of the ping-pong latency for the different
network stacks.

IBA and Myrinet provide two kinds of mechanisms to inform
the user about the completion of data transmission or recep-
tion, namely polling and event-based. In the polling approach,
the sockets implementation has to continuously poll on a pre-
defined location to check whether the data transmission or re-
ception has completed. This approach is good for performance
but requires the sockets implementation to continuously monitor
the data-transfer completions, thus requiring a huge amount of
CPU resources. In the event-based approach, the sockets imple-
mentation requests the network adapter to inform it on a com-
pletion and sleeps. On a completion event, the network adapter
wakes this process up through an interrupt. While this approach is
more efficient in terms of the CPU required since the application
does not have to continuously monitor the data transfer comple-
tions, it incurs an additional cost of the interrupt. In general, for
single-threaded applications the polling approach is the most effi-
cient while for most multi-threaded applications the event-based
approach turns out to perform better. Based on this, we show
two implementations of the SDP/IBA and SDP/Myrinet stacks,
viz., event-based (Figure 3a) and polling-based (Figure 3b); the
10GigE TOE supports only the event-based approach.

As shown in the figures, SDP/Myrinet achieves the lowest small-
message latency for both the polling as well as event-based
models. For the polling-based models, SDP/MX/Myrinet and
SDP/GM/Myrinet achieve latencies of 4.64µs and 6.68µs respec-
tively, compared to a 8.25µs achieved by SDP/IBA. For the event-
based models, SDP/MX/Myrinet and SDP/GM/Myrinet achieve
latencies of 14.47µs and 11.33µs, compared to the 17.7µs and
24.4µs achieved by 10GigE and SDP/IBA, respectively. How-
ever, as shown in the figure, for medium-sized messages (larger
than 2 kB for event-based and 4 kB for polling-based), the perfor-
mance of SDP/Myrinet deteriorates. For messages in this range,
SDP/IBA performs the best followed by the 10GigE TOE, and

4



���������	�
�		������������������	���

�

��

��

��

��

��

��

��

��

� � � � �� �� �� ��
�
��
�
��
�

� � � � ��
 


�		�������������	�

�
�
��
�
�
�
��
!
	
�

�"�#$%&�������

�"�#
'#
�(����������

�"�#)
#
�(����������

���������	�
�		�����������������	���

�

��

��

��

��

��

��

��

��

��

���

� � � � �� �� �� ��
�

��
�

��
� �� �� �� �� ��

�


�		�������������	�

�
�
��
�
�
�
��
 
	
�

��!���"#�

�$%&'()��������

�$%&
*&
�+�����������

�$%&!
&
�+�����������

����������	
���

����������	������
���

�

����

����

����

����

����

����

����

� � �� �� ��
�

�� �� ��
�

��
�

��
��

��

�������������
�

�
�
�
�
�
��
��
��
�
�
�


�

�� ���!"� �#$%&�'���	����

�#$%�(%��)�������	���� �#$% �%��)�������	����

Figure 3. Single Connection Micro-Benchmarks: (a) Latency (polling-based), (b) Latency (event-based) and
(c) Uni-directional Bandwidth (event-based)

the two SDP/Myrinet implementations, respectively. We should
note that the Foundry SuperX 10GigE switch that we used has ap-
proximately a 4.5-µs flow-through latency, which is amazing for
a store-and-forward switch. For the virtual cut-through based Fu-
jitsu XG1200 switch, however, the flow-through latency is only
0.5 µs, resulting in a 10GigE end-to-end latency of only 13.7 µs.

Unidirectional Bandwidth Micro-Benchmark: For the uni-
directional bandwidth test, the 10GigE TOE achieves the high-
est bandwidth at close to 6.4 Gbps compared to the 5.4 Gbps
achieved by SDP/IBA and the 3.9 Gbps achieved by the
SDP/Myrinet implementations2. The results for both event-
and polling-based approaches are similar; thus, we only present
the event-based numbers here. The drop in the bandwidth for
SDP/GM/Myrinet at 512-kB message size, is attributed to the
high dependency of the implementation of SDP/GM/Myrinet on
L2-cache activity. Even 10GigE TOE shows a slight drop in
performance for very large messages, but not as drastically as
SDP/GM/Myrinet. Our systems use a 512-KB L2-cache and a
relatively slow memory (266-MHz DDR SDRAM) which causes
the drop to be significant. For systems with larger L2-caches,
L3-caches, faster memory speeds or better memory architectures
(e.g., NUMA), this drop can be expected to be smaller. Further,
it is to be noted that the bandwidth for all networks is the same
irrespective of whether a switch is used or not; thus the switches
do not appear to be a bottleneck for single-stream data transfers.

Bidirectional Bandwidth Micro-Benchmark: Similar to the
unidirectional bandwidth test, the 10GigE TOE achieves the
highest bandwidth (close to 7 Gbps) followed by SDP/IBA
at 6.4 Gbps and both SDP/Myrinet implementations at about
3.5 Gbps. 10GigE TOE and SDP/IBA seem to perform quite
poorly with respect to the theoretical peak throughput achiev-
able (20Gbps bidirectional). This is attributed to the PCI-X buses
to which these network adapters are connected. The PCI-X bus
(133 MHz/64 bit) is a shared network I/O bus that allows only a
theoretical peak of 8.5 Gbps for traffic in both directions. Fur-
ther, as mentioned earlier, the memory used in our systems is rel-
atively slow (266-MHz DDR SDRAM). These, coupled with the

2On the Opteron platform, 10GigE achieves up to 7.6Gbps; we expect an im-
proved performance for the other networks as well. However, due to limitations in
our current test-bed, we could not perform this comparison on the Opteron plat-
form. Further, with 32-bit Xeons being the largest installation base today, we feel
that the presented numbers might be more relevant to the community.

header and other traffic overheads, causes these networks to be
saturated much below the theoretical bandwidth that the network
can provide. For SDP/Myrinet, we noticed that both the imple-
mentations are quite unstable and have not provided us with much
success in getting performance numbers for message sizes larger
than 64KB. Also, the peak bandwidth achievable is only 3.5 Gbps
which is actually less than the unidirectional bandwidth that these
implementations provide.
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Figure 4. Bi-directional Bandwidth

5.2 Multiple Connection Micro-Benchmarks

As mentioned earlier, due to stability reasons, we have not been
able to evaluate the performance of several benchmarks with
SDP/MX/Myrinet. Hence, for the benchmarks and applications
presented in this Section and Section 6, we present evaluations
only with SDP/GM for the Myrinet network.

Figures 5 and 6 show the multi-connection experiments per-
formed with the three networks. These experiments demonstrate
scenarios where either a single process or multiple processes on
the same physical node open a number of connections. These
tests are designed to understand the performance of the three net-
works in scenarios where the network has to handle several con-
nections simultaneously.

It is to be noted that for multi-threaded applications the polling-
based approach performs very badly due to its high CPU usage;
therefore these results are not shown in this paper, and we stick
to only the event-based approach for these applications.

Multi-Stream Bandwidth: Figure 5a illustrates the aggregate
throughput achieved by two nodes performing multiple instances
of uni-directional throughput tests. Because the performance of
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Figure 5. Multi-Connection Micro-Benchmarks: (a) Multi-Stream Bandwidth and (b) Hot-Spot Latency

SDP/GM/Myrinet seems to be a little inconsistent, it is difficult
to characterize the performance of Myrinet with respect to the
other networks, but we have observed that SDP/GM/Myrinet gen-
erally achieves a throughput of about 3.15 to 3.75 Gbps. 10GigE
TOE and SDP/IBA, on the other hand, quite consistently achieve
throughputs around 5.9 to 6.2 Gbps with 10GigE performing
slightly better most of the time.

Hot-Spot Latency: Figure 5b shows the impact of multiple
connections on small-message transactions. In this experiment, a
number of client nodes perform a point-to-point latency test with
the same server forming a hot-spot on the server. We performed
this experiment with one node acting as a server node and the
other three dual-processor nodes hosting a total of 12 client pro-
cesses. The clients are alloted in a cyclic manner, so three clients
refers to having one client process on each of the three nodes, six
clients refers to having two client processes on each of the three
nodes, and so on. As shown in the figure, SDP/GM/Myrinet per-
forms the best when there is just one client followed by 10GigE
TOE and SDP/IBA, respectively. However, as the number of
clients increase, 10GigE TOE and SDP/IBA scale quite well
while the performance of SDP/GM/Myrinet deteriorates signif-
icantly; for 12 clients, for example, SDP/GM/Myrinet provides
the worst performance of the three while the 10GigE TOE per-
forms significantly better than the other two. This shows that the
lookup time for connection-related data structures is performed
efficiently enough on the 10GigE TOE and SDP/IBA implemen-
tations and that they scale quite well with an increasing number
of connections.

Fan-Out and Fan-In tests: With the hot-spot test, we have
shown that the lookup time for connection-related data structures
is quite efficient on the 10GigE TOE and SDP/IBA implemen-
tations. However, the hot-spot test does not stress the other re-
sources on the network adapter such as management of memory
regions for buffering data during transmission and reception. In
order to stress such resources, we have designed two other tests,
namely fan-out and fan-in. In both these tests, one server process
carries out unidirectional throughput tests simultaneously with a
number of client threads. The difference being that in a fan-out
test, the server pushes data to the different clients (stressing the
transmission path in the implementation), and in a fan-in test, the
clients push data to the server process (stressing the receive path
in the implementation). Figure 6 shows the performance of the
three networks for both these tests. As shown in the figure, for

both the tests, SDP/IBA and SDP/GM/Myrinet scale quite well
with increasing number of clients. 10GigE TOE, on the other
hand, performs quite well for the fan-in test; however, we see a
slight drop in its performance for the fan-out test with increasing
clients.

6 Application-Level Evaluation
In this section, we evaluate the performance of different appli-

cations across the three network technologies. Specifically, we
evaluate a bio-medical image visualization tool known as the Vir-
tual Microscope, an iso-surface oil reservoir simulator called Iso-
Surface, a cluster file-system known as the Parallel Virtual File-
System (PVFS), and a popular cluster management tool named
Ganglia.

6.1 Data-Cutter Overview and Evaluation

Data-Cutter is a component-based framework [10, 16, 29, 30]
that has been developed by the University of Maryland in or-
der to provide a flexible and efficient run-time environment for
data-intensive applications on distributed platforms. The Data-
Cutter framework implements a filter-stream programming model
for developing data-intensive applications. In this model, the ap-
plication processing structure is implemented as a set of compo-
nents, referred to as filters, that exchange data through a stream
abstraction. Filters are connected via logical streams. A stream
denotes a unidirectional data flow from one filter (i.e., the pro-
ducer) to another (i.e., the consumer). A filter is required to read
data from its input streams and write data to its output streams
only. The implementation of the logical stream uses the sock-
ets interface for point-to-point stream communication. The over-
all processing structure of an application is realized by a filter
group, which is a set of filters connected through logical streams.
When a filter group is instantiated to process an application query,
the run-time system establishes socket connections between fil-
ters placed on different hosts before starting the execution of the
application query. Filters placed on the same host execute as sep-
arate threads. An application query is handled as a unit of work
(UOW) by the filter group. An example is a visualization of a
dataset from a viewing angle. The processing of a UOW can be
done in a pipelined fashion; different filters can work on different
data elements simultaneously, as shown in Figure 7.

Several data-intensive applications have been designed and de-
veloped using the data-cutter run-time framework. In this pa-
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Figure 6. Multi-Connection Micro-Benchmarks: (a) Fan-in and (b) Fan-out
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Figure 7. Data-Cutter stream abstraction and support for copies. (a) Data buffers and end-of-work markers
on a stream. (b) P,F,C filter group instantiated using transparent copies.

per, we use two such applications, namely the Virtual Microscope
(VM) and the Iso-Surface oil-reservoir simulation (ISO) applica-
tion, for evaluation purposes.

Virtual Microscope (VM): VM is a data-intensive digitized mi-
croscopy application. The software support required to store, re-
trieve, and process digitized slides to provide interactive response
times for the standard behavior of a physical microscope is a chal-
lenging issue [4, 15]. The main difficulty stems from the handling
of large volumes of image data, which can range from a few hun-
dreds of megabytes (MB) to several gigabytes (GB) per image.
At a basic level, the software system should emulate the use of
a physical microscope, including continuously moving the stage
and changing magnification. The processing of client queries re-
quires projecting high-resolution data onto a grid of suitable reso-
lution and appropriately composing pixels mapping onto a single
grid point.

Iso-Surface Oil-Reservoir Simulation (ISO): Computational
models for seismic analysis of oil reservoirs simulate the seis-
mic properties of a reservoir by using output from oil-reservoir
simulations. The main objective of oil-reservoir modeling is to
understand the reservoir properties and predict oil production to
optimize return on investment from a given reservoir, while min-
imizing environmental effects. This application demonstrates a
dynamic, data-driven approach to solve optimization problems in
oil-reservoir management. Output from seismic simulations are
analyzed to investigate the change in geological characteristics
of reservoirs. The output is also processed to guide future oil-
reservoir simulations. Seismic simulations produce output that
represents the traces of sound waves generated by sound sources
and recorded by receivers on a three-dimensional grid over many
time steps. One analysis of seismic datasets involves mapping

and aggregating traces onto a 3-dimensional volume through a
process called seismic imaging. The resulting three-dimensional
volume can be used for visualization or to generate input for
reservoir simulations.

Evaluating Data-Cutter: Figure 8a compares the performance
of the VM application over each of the three networks (10GigE,
IBA, Myrinet). As shown in the figure, SDP/IBA outperforms
the other two networks. This is primarily attributed to the
worse latency for medium-sized messages for 10GigE TOE and
SDP/GM/Myrinet (shown in Figure 3a). Though the VM appli-
cation deals with large datasets (each image was about 16MB),
the dataset is broken down into small Unit of Work (UOW) seg-
ments that are processed in a pipelined manner. This makes the
application sensitive to the latency of medium-sized messages re-
sulting in better performance for SDP/IBA compared to 10GigE
TOE and SDP/GM/Myrinet.

Figure 8b compares the performance of the ISO application for
the three networks. The dataset used was about 64 MB in size.
Again, the trend with respect to the performance of the networks
remains the same with SDP/IBA outperforming the other two net-
works.

6.2 PVFS Overview and Evaluation

Parallel Virtual File System (PVFS) [14], is one of the leading
parallel file systems for Linux cluster systems today, developed
jointly by Clemson University and Argonne National Lab. It was
designed to meet the increasing I/O demands of parallel appli-
cations in cluster systems. Typically, a number of nodes in the
cluster system are configured as I/O servers and one of them (ei-
ther an I/O server or a different node) as a metadata manager.
Figure 9 illustrates a typical PVFS environment.
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Figure 8. Data-Cutter Applications: (a) Virtual Microscope (VM) and (b) ISO-Surface (ISO)
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Figure 9. A Typical PVFS Setup

PVFS achieves high performance by striping files across a set
of I/O server nodes, allowing parallel accesses to the data. It
uses the native file system on the I/O servers to store individ-
ual file stripes. An I/O daemon runs on each I/O node and ser-
vices requests from the compute nodes, in particular the read and
write requests. Thus, data is transferred directly between the I/O
servers and the compute nodes. A manager daemon runs on a
metadata manager node. It handles metadata operations involv-
ing file permissions, truncation, file stripe characteristics, and so
on. Metadata is also stored on the local file system. The metadata
manager provides a cluster-wide consistent name space to appli-
cations. In PVFS, the metadata manager does not participate in
read/write operations. PVFS supports a set of feature-rich inter-
faces, including support for both contiguous and noncontiguous
accesses to both memory and files. PVFS can be used with mul-
tiple APIs: a native API, the UNIX/POSIX API, MPI-IO, and
an array I/O interface called Multi- Dimensional Block Interface
(MDBI). The presence of multiple popular interfaces contributes
to the wide success of PVFS in the industry.

Performance of Concurrent File I/O: In this test, we evaluate
the performance of PVFS concurrent read/write operations using
the pvfs-test program from the standard PVFS releases. For this
test, an MPI program is used to parallelize file write/read access
of contiguous 2-MB data buffers from each compute node. The
native PVFS library interface is used in this test, more details of
this program can be found in [14].

Figure 10 shows PVFS file read and write performance on the
different networks. We perform two kinds of tests for both read
and write. In the first test, we use just one server; three clients
simultaneously read or write a file from/to this server. In the

second test, we use three servers and stripe the file across all
three servers; a single client reads or writes the stripes from all
three servers simultaneously. These two tests are represented as
legends “1S/3C” (representing one server and three clients) and
“3S/1C” (representing three servers and one client), respectively.
As shown in the figure, the 10GigE TOE considerably outper-
forms the other two networks in both the tests for read as well as
write. This follows the same trend as shown by the basic band-
width and fan-in/fan-out micro-benchmark results in Figures 3b
and 6. SDP/IBA, however, seems to achieve considerably lower
performance as compared to even SDP/GM/Myrinet (which has
a much lower theoretical bandwidth: 4 Gbps compared to the
10 Gbps of IBA).

Performance of MPI-Tile-IO: MPI-Tile-IO [31] is a tile-
reading MPI-IO application. It tests the performance of tiled ac-
cess to a two-dimensional dense dataset, simulating the type of
workload that exists in some visualization applications and nu-
merical applications. In our experiments, two nodes are used as
server nodes and the other two as client nodes running MPI-tile-
IO processes. Each process renders a 1 × 2 array of displays,
each with 1024 × 768 pixels. The size of each element is 32
bytes, leading to a file size of 48 MB.
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Figure 11. MPI-Tile-IO over PVFS

We evaluate both the read and write performance of MPI-Tile-
IO over PVFS. As shown in Figure 11, the 10GigE TOE provides
considerably better performance than the other two networks in
terms of both read and write bandwidth. Another interesting point
to be noted is that the performance of all the networks is consid-
erably worse in this test versus the concurrent file I/O test; this is
due to the non-contiguous data access pattern of the MPI-tile-IO
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Figure 10. Concurrent PVFS Read/Write

benchmark which adds significant overhead.

6.3 Ganglia Overview and Evaluation

Ganglia [1] is an open-source project that grew out of the UC-
Berkeley Millennium Project. It is a scalable distributed moni-
toring system for high-performance computing systems such as
clusters and grids. It is based on a hierarchical design targeted
at federations of clusters. It leverages widely used technologies
such as XML for data representation, XDR for compact, portable
data transport, and RRDtool for data storage and visualization.
It uses carefully engineered data structures and algorithms to
achieve very low per-node overheads and high concurrency.

The Ganglia system comprises of two portions. The first por-
tion comprises of a server monitoring daemon which runs on each
node of the cluster and occasionally monitors the various system
parameters including CPU load, disk space, memory usage and
several others. The second portion of the Ganglia system is a
client tool which contacts the servers in the clusters and collects
the relevant information. Ganglia supports two forms of global
data collection for the cluster. In the first method, the servers can
communicate with each other to share their respective state infor-
mation, and the client can communicate with any one server to
collect the global information. In the second method, the servers
just collect their local information without communication with
other server nodes, while the client communicates with each of
the server nodes to obtain the global cluster information. In our
experiments, we used the second approach.
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Figure 12. Ganglia: Cluster Management Tool

Evaluating Ganglia: Figure 12 shows the performance of Gan-
glia for the different networks. As shown in the figure, the

10GigE TOE considerably outperforms the other two networks
by up to a factor of 11 in some cases. To understand this perfor-
mance difference, we first describe the pattern in which Ganglia
works. The client node is an end node which gathers all the in-
formation about all the servers in the cluster and displays it to the
end user. In order to collect this information, the client opens a
connection with each node in the cluster and obtains the relevant
information (ranging from 2 KB to 10 KB) from the nodes. Thus,
Ganglia is quite sensitive to the connection time and medium-
message latency.

As we had seen in Figures 3a and 3b, 10GigE TOE and
SDP/GM/Myrinet do not perform very well for medium-sized
messages. However, the connection time for 10GigE is only
about 60µs as compared to the millisecond range connection
times for SDP/GM/Myrinet and SDP/IBA. During connection
setup, SDP/GM/Myrinet and SDP/IBA pre-register a set of
buffers in order to carry out the required communication; this
operation is quite expensive for the Myrinet and IBA networks
since it involves informing the network adapters about each of
these buffers and the corresponding protection information. This
coupled with other overheads, e.g., state transitions (INIT to
RTR to RTS) that are required during connection setup for IBA,
increase the connection time tremendously for SDP/IBA and
SDP/GM/Myrinet. All in all, the connection setup time domi-
nates the performance of Ganglia in our experiments, resulting in
much better performance for the 10GigE TOE.

7 Related Work
Several researchers, including ourselves, have previously shown

the benefits of high-performance sockets over protocol-offload
engines. Shah et. al. from Intel were one of the first to
demonstrate such capabilities using Virtual Interface Architecture
(VIA) based GigaNet cLAN networks [32]. This was soon fol-
lowed by other implementations of high-performance sockets on
VIA [22, 23, 9], Gigabit Ethernet [8], Myrinet [27] and Infini-
Band [6]. While these implementations show the advantages of
using protocol offload engines compared to the host stack, there
is no comparative study between the different networks making
it quite difficult for end users to gauge the pros and cons of the
various networks. In our work, we fill this gap by having such a
comparative study on a common testbed.

We had previously done a similar study comparing MPI imple-
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mentations over IBA, Myrinet and Quadrics [24]. Our current
work differs from this in two aspects. First, this work is intended
to help place the position of 10GigE with respect to performance
and capabilities as a SAN network (its capabilities as a WAN net-
work are mostly undebated). Second, this work focuses on the
sockets interface which is quickly gaining popularity with the up-
coming high-performance sockets standards such as SDP.

8 Concluding Remarks
Traditional Ethernet-based network architectures such as Giga-

bit Ethernet (GigE) have delivered significantly worse perfor-
mance than other high-performance networks [e.g, InfiniBand
(IBA), Myrinet]. In spite of this performance difference, the low
cost of the network components and their backward compatibil-
ity with the existing Ethernet infrastructure have allowed GigE-
based clusters to corner 42% of the Top500 Supercomputer List.
With the advent of 10GigE and TCP Offload Engines (TOEs),
we demonstrated that the aforementioned performance gap can
largely be bridged between 10GigE, IBA, and Myrinet via the
sockets interface. Our evaluations show that in most experimental
scenarios, 10GigE provides comparable (or better) performance
than IBA and Myrinet. Further, for grid environments, where
legacy TCP/IP/Ethernet is dominant in the wide-area network,
IBA and Myrinet have been practically no shows because of lack
of compatibility of these networks with Ethernet. However, this
may soon change with the recent announcement of the Myri-10G
PCI-Express network adapter by Myricom.

While the sockets interface is the most widely used interface for
grids, file systems, storage, and other commercial applications,
the Message Passing Interface (MPI) is considered the de facto
standard for scientific applications. A feasibility study of 10GigE
as a system-area network is definitely incomplete without a com-
parison of MPI over the various networks. However, in order to
avoid diluting the paper and due to time and space restrictions,
we defer this discussion to upcoming future work.
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