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Abstract

We describe a new vector discrete ordinate radiative transfer model with a full linearization facility. The VLIDORT

model is designed to generate simultaneous output of Stokes vector light fields and their derivatives with respect to any

atmospheric or surface property. We develop new implementations for the linearization of the vector radiative transfer

solutions, and go on to show that the complete vector discrete ordinate solution is analytically differentiable for a stratified

multilayer multiply scattering atmospheric medium. VLIDORT will generate all output at arbitrary viewing geometry and

optical depth. The model has the ability to deal with attenuation of solar and line-of-sight paths in a curved atmosphere,

and includes an exact treatment of the single scatter computation. VLIDORT also contains a linearized treatment for non-

Lambertian surfaces. A number of performance enhancements have been implemented, including a facility for multiple

solar zenith angle output. The model has been benchmarked against established results in the literature.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The modern treatment of the equations of radiative transfer (RT) for polarized light dates back to the
pioneering work by Chandrasekhar in the 1940s [1]. Using a formulation in terms of the Stokes vector for
polarized light, Chandrasekhar was able to solve completely the polarization problem for an atmosphere with
Rayleigh scattering, and benchmark calculations from the 1950s are still appropriate today [2]. In the early
1970s, general formulations of the scattering matrices for polarized light were developed independently by
several authors [3–5]. In the early 1980s, Siewert reformulated the Legendre function development of the
scattering matrix for polarized light in a convenient analytic manner [6–8], and most vector RT models now
follow this formulation. Garcia and Siewert developed complete vector RT solutions for the slab problem
using the spherical harmonics method [9] and the FN method [10], and generated two sets of benchmark results
for this problem. Also in the 1980s, a group in the Netherlands carried out some parallel developments.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Following detailed mathematical studies of polarized RT [11,12], a doubling-adding (interaction principle)
model was developed for atmospheric RT modeling [13,14]. This group also provided benchmark results for
the slab problem [15].

The well-known DISORT discrete ordinate model developed by Stamnes and co-workers was released
in 1988 for general use in plane-parallel multilayer multiple scattering media [16]. A vector discrete
ordinate model VDISORT was developed in the 1990s [17]. In two papers appearing in 2000, Siewert
revisited the slab problem from a discrete ordinate viewpoint, and derived new solutions for the scalar [18]
and vector [19] radiative transfer equations (RTEs). These solutions used Green’s functions for the
generation of particular solutions for the solar scattering term [20]. For the vector RTE, this analysis showed
that complex eigensolutions for the homogeneous equations are important [19]. Siewert also provided a new
set of benchmark results; this set and the results from [10] provide standards for validation in the present
work.

In the last decade, there has been increasing recognition of the need for RT models to generate fields of
analytic radiance derivatives (Jacobians) with respect to atmospheric and surface variables, in addition to
simulated radiances. Such ‘‘linearized’’ models are extremely useful in classic inverse problem retrievals
involving iterative least-squares minimization (with and without regularization) [21]. At each iteration step,
the simulated radiation field is expanded in a Taylor series about the given state of the atmosphere-surface
system. Only the linear term in this expansion is retained, and this requires partial derivatives of the simulated
radiance with respect to atmospheric and surface parameters that make up the state vector of retrieval
elements and the vector of assumed model parameters that are not retrieved but are sources of error in the
retrieval. A number of ‘‘linearized’’ RT models have been developed in recent years [22–28].

In this paper, we describe a new linearized vector code VLIDORT that is an addition to the family of
LIDORT (linearized discrete ordinate radiative transfer) RT codes [28–32]. The original LIDORT code [28]
generated Jacobians and radiances for the top of atmosphere (TOA) reflectance scenario for a plane-parallel
multilayer atmosphere. This was generalized to include a pseudo-spherical treatment of solar beam
attenuation, output at arbitrary optical thickness and viewing geometry, the use of Green’s function solution
methods, and the development of an exact single scatter correction [29,30]. There is also a sphericity correction
for wide-angle off-nadir viewing in a curved atmosphere [31], and a detailed treatment of Jacobians with
respect to properties characterizing non-Lambertian surface reflectance functions [32].

It is well known that the use of scalar radiative transfer (neglecting polarization) can lead to considerable
errors for modeling backscatter spectra in the UV [33–35]. Studies with atmospheric chemistry instruments
such as GOME, SCIAMACHY and OMI have shown that the treatment of polarization is critical for the
successful retrieval of ozone profiles from UV backscatter [36,37]. The role of polarization has been
investigated for retrieval scenarios involving important backscatter regions such as the oxygen A-band [38–40].
It has also been demonstrated that the use of passive sensing instruments with polarization capabilities can
greatly enhance retrievals of aerosol information in the atmosphere [41,42]; this is becoming a very important
issue as the scientific community tries to understand the effects of aerosol forcing [43,44]. Satellite instruments
such as GOME-2 (due for launch in June 2006) [45] and OCO (Orbital Carbon Observatory, launch
September 2008) [46] are polarizing spectrometers; vector radiative transfer is an essential ingredient of the
forward modeling component of their retrieval algorithms. Vector RT modeling is slower than its scalar
counterpart, and the treatment of polarization in forward modeling has often involved the creation of look-up
tables of ‘‘polarization corrections’’ to total intensity. However, with the advent of new and planned
instruments measuring polarization, there is a need for linearized vector models to deal directly with retrieval
issues.

For VLIDORT, we have extended Siewert’s rigorous solution for the plane-parallel slab problem [19] to
multilayer stratified media, and we have developed pseudo-spherical formulations to deal with beam
attenuations in a curved atmosphere. As with the scalar code, VLIDORT has an exact single scatter correction
and a treatment of non-Lambertian (BRDF) surfaces. The major new aspect of the present work is the
development of the linearization facility for VLIDORT for the generation of analytic weighting functions. This
involves the complete differentiation of the polarized RT scattering theory in a multilayer atmosphere. In
general, VLIDORT linearization follows the methodology developed for the scalar LIDORT code, though
there are some notable differences in the treatment of the homogeneous solutions of the vector RTE.
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The paper is organized as follows. Section 2 summarizes the theoretical framework of the vector RTE,
including separation of the azimuthal dependence. Section 3 contains a description of the discrete ordinate
solutions of the vector RTE for the homogeneous field and the particular integral in the presence of solar
source terms; this section contains a detailed treatment of the analytic derivatives of these solutions. Section 4
deals with post-processing of the vector RT: the boundary value problem in a multilayer atmosphere and
output at arbitrary viewing directions. Section 5 considers other aspects of the model, including the BRDF
treatment, and exact single scatter calculations to improve accuracy. In Section 6, we discuss aspects the
VLIDORT software package, including benchmarking the code and preparation of optical property inputs.

2. Theoretical framework

2.1. The vector RTE

A first-principles derivation of the vector RTE has been given in the analysis of Mishchenko [47]. The basic
vector RTE is

m
q
qx

Iðx; m;fÞ ¼ Iðx;m;fÞ � Jðx;m;fÞ. (1)

Here, x is the optical thickness measured from the top of the layer, m is the polar angle cosine measured from
the upward vertical, and f is the azimuth angle relative to some fixed direction. The 4-vector I is the diffuse
field of Stokes components {I, Q, U, V} [1], with I the total intensity, Q and U describing linearly polarized
radiation, and V characterizing circularly polarized radiation. Vector I is defined with respect to a reference
plane (usually, the local meridian plane). The degree of polarization P of the radiation is

P ¼ I�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þU2 þ V2

q
. (2)

The vector source term J(x,m,f) has the form:

Jðx;m;fÞ ¼
oðxÞ
4p

Z 1

�1

Z 2p

0

Pðx;m;m0;f� f0ÞIðx;m0;f0Þdf0 dm0 þQðx;m;fÞ. (3)

Here, o is the single scattering albedo and P the phase matrix for scattering. The first term in Eq. (3)
represents multiple scattering contributions. For scattering of the attenuated solar beam, the inhomogeneous
source term Q(x,m,f) is written:

Qðx; m;jÞ ¼
oðxÞ
4p

Pðx;m;�m0;j� j0ÞI0Ta exp½�lx�. (4)

Here, �m0 is the cosine of the solar zenith angle (with respect to the upward vertical); f0 is the solar azimuth
angle and I0 the Stokes vector of the incoming solar beam before attenuation.

The pseudo-spherical (P-S) beam attenuation in Eq. (4) is written Ta exp[�lx], where Ta is the transmittance
to the top of the layer, and l is a geometrical factor (the ‘‘average secant’’). In the P-S formulation, all
scattering takes place in a plane-parallel medium, but the solar beam attenuation is treated for a curved
atmosphere. For plane-parallel attenuation, we have l ¼ �1/m0. It has been shown that the P-S approximation
is accurate for solar zenith angles up to 901 [48]. Details on the pseudo-spherical formulation are found in
Appendix A.

In this paper, we consider an atmosphere illuminated by natural (unpolarized) sunlight, so that the solar
irradiance at TOA is given by Stokes vector I0 ¼ {I0,0,0,0}. We assume that the medium comprises a
stratification of optically uniform layers; for each layer, the single scattering albedo o and the phase matrix P
in Eq. (3) do not depend on the optical thickness x, and we henceforth drop this dependence.

Matrix P relates scattering and incident Stokes vectors defined with respect to the meridian plane. The
equivalent matrix for Stokes vectors with respect to the scattering plane is the scattering matrix F. In this
work, we restrict ourselves to scattering for a medium that is ‘‘macroscopically isotropic and symmetric’’ [49],
with scattering for ensembles of randomly oriented particles having at least one plane of symmetry. In this
case, F depends only on the scattering angle Y between scattered and incident beams. Matrix P is related to
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F(Y) through application of two rotation matrices L(p�s2) and L(�s1) (for definitions of these matrices and
the angles of rotation s1 and s2, see [48]):

Pðm;f; m0;f0Þ ¼ Lðp� s2ÞFðYÞLð�s1Þ, (5)

cosY ¼ mm0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m02

q
cosðf� f0Þ. (6)

In our case, F(Y) has the well-known form:

FðYÞ ¼

a1ðYÞ b1ðYÞ 0 0

b1ðYÞ a2ðYÞ 0 0

0 0 a3ðYÞ b2ðYÞ

0 0 �b2ðYÞ a4ðYÞ

0
BBBB@

1
CCCCA. (7)

The upper left entry in this matrix is the phase function and satisfies the normalization condition:

1

2

Z p

0

a1ðYÞ sin Y dY ¼ 1. (8)

2.2. Azimuthal separation

For the special form of F in Eq. (7), the dependence on scattering angle allows us to develop
expansions of the six independent scattering functions in terms of a set of generalized spherical functions
Pl

mnðcos YÞ [49]:

a1ðYÞ ¼
XLM

l¼0

blP
l
00ðcos YÞ, (9)

a2ðY Þ þ a3ðYÞ ¼
XLM

l¼0

ðal þ zlÞP
l
2;2ðcosYÞ, (10)

a2ðYÞ � a3ðYÞ ¼
XLM

l¼0

ðal � zlÞP
l
2;�2ðcosYÞ, (11)

a4ðYÞ ¼
XLM

l¼0

dlP
l
00ðcosYÞ, (12)

b1ðYÞ ¼
XLM

l¼0

glP
l
02ðcosYÞ, (13)

b2ðYÞ ¼ �
XLM

l¼0

�lP
l
02ðcosYÞ. (14)

The six sets of ‘‘Greek constants’’ {a1, b1, g1, d1, e1, z1} must be specified for each moment l in these
spherical-function expansions. The number of terms LM depends on the level of numerical accuracy. Values
{b1} are the phase function Legendre expansion coefficients as used in the scalar RTE. These ‘‘Greek
constants’’ are commonly used to specify the polarized-light single-scattering law, and there are a number of
efficient analytical techniques for their computation, not only for spherical particles (see for example [12]) but
also for randomly oriented homogeneous and inhomogeneous non-spherical particles and aggregated
scatterers [50–52].
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With this representation in Eqs. (9)–(14), one can then develop a Fourier decomposition of P to separate
the azimuthal dependence (cosine and sine series in the relative azimuth f�f0). The same separation is applied
to the Stokes vector itself. A convenient formalism for this separation was developed by Siewert and co-
workers [6–8], and we summarize the results here for illumination by natural light. The Stokes vector Fourier
decomposition is

Iðx; m;fÞ ¼
1

2

XLM

l¼m

ð2� dm;0ÞU
mðf� f0ÞI

mðx;mÞ, (15)

UmðfÞ ¼ diagfcos mf; cos mf; sin mf; sin mfg. (16)

The phase matrix decomposition is:

Pðm;f;m0;f0Þ ¼
1

2

XLM

l¼m

ð2� dm;0Þ C
m
ðm; m0Þ cosmðf� f0Þ þ Smðm;m0Þ sinmðf� f0Þ

� �
, (17)

Cm
ðm;m0Þ ¼ Am

ðm;m0Þ þDAm
ðm;m0ÞD, (18)

Smðm;m0Þ ¼ Am
ðm; m0ÞD�DAm

ðm;m0Þ, (19)

Amðm;m0Þ ¼
XLM

l¼m

Pm
l ðmÞBlP

m
l ðm
0Þ, (20)

D ¼ diagf1; 1;�1;�1g. (21)

This yields the following RTE for the Fourier component:

m
dImðx;mÞ

dx
þ Imðx; mÞ ¼

o
2

XLM

l¼m

Pm
l ðmÞBl

Z 1

�1

Pm
l ðm
0ÞImðx;m0Þdm0 þQmðx;mÞ. (22)

Here, the source term is written:

Qmðx;mÞ ¼
o
2

XLM

l¼m

Pm
l ðmÞBlP

m
l ð�m0ÞI0Tae

�lx. (23)

The phase matrix expansion is expressed through the two matrices:

Bl ¼

bl gl 0 0

gl al 0 0

0 0 Bl ��l

0 0 �l dl

0
BBB@

1
CCCA, (24)

Pm
l ðmÞ ¼

Pm
l ðmÞ 0 0 0

0 Rm
l ðmÞ �Tm

l ðmÞ 0

0 �Tm
l ðmÞ Rm

l ðmÞ 0

0 0 0 Pm
l ðmÞ

0
BBBB@

1
CCCCA. (25)

The ‘‘Greek matrices’’ Bl for 0plp LM contain the sets of expansion coefficients that define the scattering
law. The Pm

l ðmÞ matrices contain entries of normalized Legendre functions Pm
l ðmÞ and functions Rm

l ðmÞ and
Tm

l ðmÞ which are related to Pl
mnðmÞ (for details, see for example [19]).
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2.3. Boundary conditions

Discrete ordinate RT is pure scattering theory: in a multilayer medium, it is only necessary to specify the
layer total optical thickness values Dn, the layer total single scatter albedo on, and the layer 4� 4 matrices Bnl

of expansion coefficients (l being the moment number) for the total scattering. To complete the calculation of
the radiation field in a stratified multilayer medium, we have the following boundary conditions:
(I)
 No diffuse downwelling radiation at TOA. Thus for the first layer we have:

Iþn ð0;m;fÞ ¼ 0 ðn ¼ 1Þ. (26)
(II)
 Continuity of the upwelling and downwelling radiation fields at intermediate boundaries. If NTOTAL is
the number of layers in the medium, then:

I�n�1ðDn�1Þ ¼ I�n ð0Þ ðn ¼ 2; . . .NTOTALÞ. (27)
(III)
 A surface reflection condition relating the upwelling and downwelling radiation fields at the bottom of
the atmosphere [53]:

I�n ðDn; m;fÞ ¼ Rðm;f; m0;f0ÞIþn ðDn;m0;f
0
Þ ðn ¼ NTOTALÞ. (28)
Here, reflection matrix R relates incident and reflected directions.
The convention adopted here is to use a ‘‘+’’ suffix for downwelling solutions, and a ‘‘�’’ suffix for

upwelling radiation. Conditions (I) and (II) are obeyed by all Fourier components in the azimuthal series. For
condition (III), it is necessary to construct a Fourier decomposition of the BRDF operator R to separate the
azimuth dependence; we return to this issue in Section 5.3. The Lambertian case (isotropic reflectance) only
applies for Fourier component m ¼ 0 and Eq. (28) then becomes [19]:

I�n ðDn;mÞ ¼ 2dm;0R0E1 m0I0Tn�1 exp �lnDnð Þ þ

Z 1

0

Iþn ðDn;m0Þm0 dm0
� �

. (29)

Here, R0 is the Lambertian albedo, E1 ¼ diag{1,0,0,0}, and Tn�1 exp �lnDnð Þ is the whole-atmosphere slant
path optical depth for the solar beam.

2.4. Jacobian definitions

Atmospheric Jacobians (also known as weighting functions) are normalized analytic derivatives of the Stokes
vector field with respect to any atmospheric property xn defined in layer n:

Kxðx;m;fÞ ¼ x
qIðx;m;fÞ

qx
. (30)

The Fourier series azimuth dependence (Eq. (15)) is also valid:

Kxðx;m;fÞ ¼
1

2

XLM

l¼m

ð2� dm;0ÞC
m
ðf� f0ÞK

m
x ðx;mÞ. (31)

We use the linearization notation:

LpðynÞ ¼ xp

qyn

qxp

(32)

to indicate the normalized derivative of yn in layer n with respect to variable xp in layer p.
As noted in section 2.3, for the radiation field, input optical properties are {Dn, on, Bnl} for each layer n

in a multilayer medium. For Jacobians, we require an additional set of linearized optical property

inputs Vn;Un;Znlf g defined with respect to variable xn in layer n for which we require weighting functions.
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These are:

Vn �LnðDnÞ; Un �LnðonÞ; nlZ �LnðBnlÞ. (33)

In Section 4.3 we give an example of input sets {Dn,on,Bnl} and their linearizations Vn;Un;Znlf g for a
typical atmospheric scenario with molecular and aerosol scattering. One can also define weighting functions
with respect to the basic optical properties: for example, if xn ¼ Dn, then Vn �LnðDnÞ ¼ Dn. It turns out that
all weighting functions can be derived from a basic set of Jacobians defined with respect to {Dn, on, Bnl}; we
return to this point in Section 6.2.

For surface weighting functions, we need to know how the BRDF matrix operator R in Eq. (28) is
parameterized. In VLIDORT, we have adopted a 3-kernel BRDF formulation of surface reflectance similar to
the scheme developed in [31] for LIDORT. In Section 4, we confine our attention to the Lambertian case, and
discuss the BRDF implementation later in Section 5.3.
2.5. Solution strategy

The solution strategy has two stages. First, for each layer, we establish discrete ordinate solutions to the
homogeneous RTE (in the absence of sources) and to the RTE with solar source term (Section 3). Second, we
complete the solution by application of boundary conditions and by source function integration of the RTE in
order to establish solutions away from discrete ordinate directions (Section 4). In Section 5, we finish the
VLIDORT description with a summary of the delta-M approximation, an exact single-scatter treatment, and
the use of a 3-kernel BRDF model.

The complete vector RT solution for a plane-parallel slab was developed by Siewert [19], and we follow
some elements in this formulation. Our description also adheres closely to the LIDORT treatment, especially
concerning this particular integral solution, formulation of the boundary-value problem and linearization
methodology.

In the following sections, we suppress the Fourier index m unless noted explicitly, and wavelength
dependence is implicit throughout. We sometimes suppress the layer index n in the interests of clarity. For
matrix notation, ordinary 4� 1 vectors and 4� 4 matrices are written in bold typeface, while 4N� 1 vectors
and 4N� 4N matrices are written in bold typeface with a tilde symbol (N is the number of discrete ordinate
directions in the half-space).
3. Discrete ordinate solutions and linearizations

3.1. Homogeneous RTE, eigenproblem reduction

We solve Eq. (22) without the solar source term. For each Fourier term m, the multiple scatter integral over
the upper and lower polar direction half-spaces is approximated by a double Gaussian quadrature scheme [54],
with stream directions {7mi} and Gauss–Legendre weights {wi} for i ¼ 1,yN. The resulting vector RTE for
Fourier component m is then:

�mi

dI�i ðxÞ

dx
� I�i ðxÞ ¼

on

2

XLM

l¼m

Pm
l ð�miÞBl

XN

j¼1

wj Iþj ðxÞP
m
l ðmjÞ þ I�j ðxÞP

m
l ð�mjÞ

n o
. (34)

Eq. (34) is a set of 8N coupled first-order linear differential equations for I�i ðxÞ. As with the scalar case, these
are solved by eigenvalue methods. We follow [19] for the most part. Solutions for these homogeneous
equations are found with the ansatz:

I�a ðx;�miÞ ¼Wað�miÞ exp½�kax�. (35)

We define the (4N� 1) vector (superscript ‘‘T’’ denotes matrix transpose):

~W
�

a ¼ WT
a ð�m1Þ;W

T
a ð�m2Þ; . . . ;W

T
a ð�mNÞ

� �T
. (36)
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Eqs. (34) are decoupled using ~Xa ¼ ~W
þ

a þ
~W
�

a and ~Ya ¼ ~W
þ

a �
~W
�

a (sum and difference vectors),
and the order of the system can then be reduced from 8N to 4N. This gives an eigenproblem for the
collection of separation constants {ka} and associated solution 4N-vectors ~Xa

� �
, where a ¼ 1,y4N.

The eigenmatrix ~C is constructed from optical property inputs o and Bl and products of the matrices Pm
l ðmjÞ.

The eigenproblem is [19]:

~X
?

a
~C ¼ k2

a
~X
?

a ;
~C ~Xa ¼ k2

a
~Xa, (37)

~C ¼ ~S
þ ~S
�
, (38)

~S
�
¼ ~E�

o
2

XLM

l¼m

~Pðl;mÞBlA
� ~P

T
ðl;mÞ ~X

" #
~M
�1
, (39)

~Pðl;mÞ ¼ diag Pm
l ðm1Þ;P

m
l ðm2Þ; ::::;P

m
l ðmNÞ

� �T
, (40)

~M ¼ diag m1E; m2E; :::; mNE
� �

, (41)

~X ¼ diag w1E;w2E; :::;wNE½ �, (42)

A� ¼ E� ð�1Þl�mD. (43)

Here, E is the 4� 4 identity matrix, and ~E the 4N� 4N identity matrix. The (?) superscript indicates the
conjugate transpose. The link between the eigenvector ~Xa and the solution vectors in Eq. (35) is through the
auxiliary equations:

~W
�

a ¼
1

2
~M
�1 ~E�

1

ka

~S
þ

� �
~Xa. (44)

Eigenvalues occur in pairs �kaf g. As noted by Siewert [19], both complex variable and real-variable
eigensolutions may be present. Left and right eigenvectors share the same spectrum of eigenvalues. Solutions
may be determined with the complex-variable eigensolver DGEEV from the LAPACK suite [55]. DGEEV
returns eigenvalues plus left- and right-eigenvectors with unit modulus.

In the scalar case, the formulation of the eigenproblem is simpler (see [29] for example). The eigenmatrix can
be made symmetric and all eigensolutions are real-valued. In this case, the eigensolver module ASYMTX [16]
is used. ASYMTX is a modification of the LAPACK routine for real roots; it delivers only the right
eigenvectors. For the vector case, there are circumstances (pure Rayleigh scattering for example) where
complex eigensolutions are absent, and one may then use the faster ASYMTX routine. We return to this point
in Section 6.4.

The complete homogeneous solution in one layer is a linear combination of all positive and negative
eigensolutions:

~IþðxÞ ¼ ~D
þ
X4N

a¼1

La ~W
þ

a exp½�kax� þMa ~W
�

a exp½�kaðD� xÞ�
n o

, (45)

~I�ðxÞ ¼ ~D
�
X4N

a¼1

La ~W
�

a exp½�kax� þMa ~W
þ

a exp½�kaðD� xÞ�
n o

. (46)

Here, ~D
�
¼ diagfD;D; :::;Dg and ~D

þ
¼ ~E. The use of optical thickness D�x in the second exponential ensures

that solutions remain bounded [56]. The quantities La;Maf g are the constants of integration, and must be
determined by the boundary conditions.

In Eqs. (45) and (46), some eigensolutions will be complex, some real. It is understood that when we use
these expressions in the boundary value problem (Section 4.1), we compute the real parts of any contributions
to the Stokes vectors resulting from complex eigensolutions. Thus if fka; ~W

þ

a g is a complex solution with
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(complex) integration constant La, we require:

Re½La ~W
�

a e
�kax� ¼ Re½La�Re½ ~W

�

a e
�kax� � Im½La�Im½ ~W

�

a e
�kax�. (47)

From a bookkeeping standpoint, one must keep count of the number of real and complex solutions, and
treat them separately in the numerical implementation. In the interests of clarity, we have not made an explicit
separation of complex variables, and it will be clear from the context whether real or complex variables are
under consideration.

3.2. Linearization of the eigenproblem

We require derivatives of the above eigenvectors and separation constants with respect to some atmospheric

variable x in layer n. From (38) and (39), the eigenmatrix ~Cis a linear function of the single scatter albedo o
and the matrix of expansion coefficients Bl, and its (real-variable) linearization Lð ~CÞ is easy to establish from
chain-rule differentiation:

Lð ~CÞ ¼Lð ~S
þ
Þ ~S
�
þ ~S

þ
Lð ~S

�
Þ, (48)

L ~S
�

� 	
¼

XLM

l¼m

L oð Þ
2

~P l;mð ÞBl þ
o
2
~P l;mð ÞL Blð Þ


 �
A� ~P

T
l;mð Þ ~X

" #
~M
�1
. (49)

In Eq. (49), LðoÞ ¼ U and LðBlÞ ¼Zl are the linearized optical property inputs (Eq. (33)). Next, we
differentiate both the left and right eigensystems (37) to find:

L ~X
?

a

� 	
~Cþ ~X

?

a L
~C
� 

¼ 2kaL kað Þ ~X

?

a þ k2
aL

~X
?

a

� 	
, (50)

~CLð ~XaÞ þLð ~CÞ ~Xa ¼ 2kaLðkaÞ ~Xa þ k2
aLð

~XaÞ. (51)

We form a dot product by pre-multiplying (51) with the transpose vector ~X
?

a , rearranging to get:

2kaLðkaÞh ~X
?

a ;
~Xai � h ~X

?

a ;Lð
~CÞ ~Xai ¼ k2

ah
~X
?

a ;Lð
~XaÞi � h ~X

?

a ;
~CLð ~XaÞi. (52)

From the definitions in Eq. (37), we have:

h ~X
?

a ;
~CLð ~XaÞi ¼ h ~X

?

a
~C;Lð ~XaÞi ¼ k2

ah
~X
?

a ;Lð
~XaÞi (53)

and hence the right-hand side of (52) is identically zero. We thus have:

LðkaÞ ¼
h ~X
?

a ;Lð
~CÞ ~Xai

2kah ~X
?

a ;
~Xai

. (54)

Next, we substitute Eq. (54) in (52) to obtain the following 4N� 4N linear algebra problem for each
eigensolution linearization:

~HaL ~Xa
� 


¼ ~Ca, (55)

~Ha ¼ ~C� k2
a
~E, (56)

~Ca ¼ 2kaLðkaÞ ~Xa �Lð ~CÞ ~Xa. (57)

Implementation of Eq. (55) ‘‘as is’’ is not possible due to the degeneracy of the eigenproblem, and we need
additional constraints to find the unique solution for Lð ~XaÞ. The treatment for real and complex solutions is
different.

Real solutions: The unit-modulus eigenvector normalization can be expressed as h ~Xa; ~Xai ¼ 1 in dot-product
notation. Linearizing, this yields one equation:

Lð ~XaÞ ~Xa þ ~XaLð ~XaÞ ¼ 0. (58)
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The solution procedure uses 4N�1 equations from (55), along with Eq. (58) to form a slightly modified
linear system of rank 4N. This system is then solved by standard means using the DGETRF and DGETRS
LU-decomposition routines from the LAPACK suite.

This procedure was not used in the scalar LIDORT code [28–29]. This is because ASYMTX has no adjoint
solution, so there is no determination of LðkaÞ as in Eq. (54). Instead, LIDORT uses the complete set (55) in

addition to constraint (58) to form a system of rank N+1 for the unknowns LðkaÞ and Lð ~XaÞ.
Complex solutions: In this case, Eq. (55) is a complex-variable system for both the real and imaginary parts

of the linearized eigenvectors. There are 8N equations in all, but now we require two constraint conditions to
remove the eigenproblem arbitrariness. The first is Eq. (58). The second condition is imposed by the following
DGEEV normalization: for that element of an eigenvector with the largest real value, the corresponding
imaginary part is always set to zero. Thus for an eigenvector ~X, if element Re[XJ] ¼ max{Re[Xj]} for
j ¼ 1,y4N, then Im[XJ] ¼ 0. In this case, it is also true that L(Im[XJ]) ¼ 0. This is the second condition.

The solution procedure is then (1) in Eq. (55) to strike out the row and column J in matrix ~Ha for which the
quantity Im[XJ] is zero, and strike out the corresponding row in the right-hand vector ~Ca; and (2) in the
resulting 8N1 system, replace one of the rows with the normalization constraint Eq. (58). Lð ~XaÞ is then the
solution of the resulting linear system.

We have gone into detail here, as the above procedure for eigensolution differentiation is the most crucial
step in the linearization process, and there are several points of departure from the equivalent procedure in the
scalar case. Having derived the linearizations LðkaÞ andLð ~XaÞ, we complete this section by differentiating the
auxiliary result in Eq. (44) to establish Lð ~W

�

a Þ:

Lð ~W
�

a Þ ¼
1

2
~M
�1
�
LðkaÞ

k2
a

~S
þ
�

1

ka
Lð ~S

þ
Þ

" #
~Xa þ

1

2
~M
�1 ~E�

1

ka

~S
þ

� �
Lð ~XaÞ. (59)

Finally, we have linearizations of the transmittance derivatives in Eqs. (45) and (46):

Lðexp½�kax�Þ ¼ �x LðkaÞ þ kaLðxÞ
� �

exp½�kax�. (60)

Here, x and Dn are proportional for an optically uniform layer, so that

LxðxÞ ¼
x

Dn

LxðDnÞ ¼
x

Dn

Vx. (61)

3.3. Particular integrals of the vector RTE

3.3.1. Solving the RTE by substitution

In the treatment of the particular integral solutions of the vector RTE, we use a more traditional
substitution method rather than the Green’s function formalism of Siewert [19]. This is mainly for reasons of
clarity and ease of exposition. Referring to Eq. (23), inhomogeneous source terms in the discrete ordinate
directions are:

Qm
n ðx;�miÞ ¼

o
2

XL

l¼m

Pm
l ð�miÞBnlP

m
l ð�m0ÞI0Tn�1 expð�lnxÞ. (62)

Here Tn�1 is the solar beam transmittance to the top of layer n, and in the pseudo-spherical approximation,
ln is the average secant (Appendix A). Particular solutions may be found by substitution:

I�ðx;�miÞ ¼ Znð�miÞTn�1 exp½�lnx� (63)

and by analogy with the homogeneous case, we define the 4N� 1 vectors:

~Z
�

n ¼ ZT
n ð�m1Þ;Z

T
n ð�m2Þ; ::::;Z

T
n ð�mN Þ

� �T
. (64)

We decouple the resulting equations by using sum and difference vectors ~G
�

n ¼
~Z
þ

n �
~Z
�

n , and reduce the
order from 8N to 4N (see [30] for the scalar case). We obtain the following 4N� 4N linear-algebra problem:

~A
ð2Þ

n
~G
þ

n ¼
~C
ð2Þ

n , (65)
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~A
ð2Þ

n ¼ l2n ~E� ~Cn, (66)

~C
ð2Þ

n ¼
~S
�

n
~Q
þ

n þ ln
~Q
�

n

h i
~M
�1
, (67)

~Q
�

n ¼ o
XLM

l¼m

~P0ðl;mÞBlA
� ~P

T
ðl;mÞ ~M

�1
, (68)

~P0ðl;mÞ ¼ Pm
l ð�m0Þ;P

m
l ð�m0Þ; . . . ;P

m
l ð�m0Þ

� �T
. (69)

This system has some similarities to the eigensolution linearization in Eqs. (55)–(58). It is also solved using the
LU-decomposition modules DGETRF and DGETRS from LAPACK; the formal solution is
~G
þ

n ¼
~A
ð2Þ

n

h i�1
~C
ð2Þ

n . The particular integral is completed through the auxiliary equations:

~Z
�

n ¼
1

2
~M
�1 ~E�

1

ln

~S
þ

n

� �
~G
þ

n . (70)

We note that the particular solution consists only of real variables.
3.3.2. Linearizing the particular solution

For the linearization, the most important point is the presence of cross-derivatives: the particular solution is
differentiable with respect to atmospheric variables xp in all layers pXn. The solar beam has passed through
layer pXn before scattering, so transmittance factor Tn�1 depends on variables in layers p4n and the average
secant ln (in the pseudo-spherical approximation) on variables xp for pXn In addition, the solution vectors ~Z

�

n

depend on ln, so their linearizations contain cross-derivatives.
Linearization of the pseudo-spherical approximation is treated in Appendix A, and this fixes the quantities

LpðTn�1Þ and LpðlnÞ 8pXn. For the plane-parallel case, LpðlnÞ � 0 since ln ¼ �1=m0 (constant). In addition,
the eigenmatrix ~Cn is constructed from optical properties only defined in layer n, so that Lpð ~CnÞ ¼ 0 8 p 6¼n.
Differentiation of Eqs. (65)–(69) yields a related linear problem:

~A
ð2Þ

n Lpð ~G
þ

n Þ �
~C
ð3Þ

np ¼Lpð ~C
ð2Þ

n Þ �Lpð ~A
ð2Þ

n Þ
~G
þ

n , (71)

Lpð ~A
ð2Þ

n Þ ¼ �dpnLpð ~CnÞ þ 2lnLpðlnÞ ~E, (72)

Lpð ~C
ð2Þ

n Þ ¼ dnp Lpð ~S
�

n Þ
~Q
þ

n þ
~S
�

n Lnð ~Q
þ

n Þ þ
1

ln

Lnð ~Q
�

n Þ

� �
�

LpðlnÞ

l2n
~Q
�

n , (73)

Lnð ~Q
�

n Þ ¼
XLM

l¼m

Un
~P0ðl;mÞBl þ on

~P0ðl;mÞZnl

� �
A� ~P

T
ðl;mÞ ~M

�1
. (74)

In Eq. (73), the quantity Lnð ~S
�

n Þ comes from (49). Eq. (71) has the same matrix ~A
ð2Þ

n as in Eq. (65), but with a
different source vector on the right-hand side. The solution is then found by back-substitution, given that the
inverse of the matrix ~A

ð2Þ

n has already been established for the original solution ~G
þ

n . Thus
Lpð ~G

þ

n Þ ¼
~A
ð2Þ

n

h i�1
~C
ð3Þ

np . Linearization of the particular integral is then completed through differentiation of
the auxiliary equations (70):

Lpð ~Z
�

n Þ ¼
1

2
~M
�1 ~E�

1

ln

~S
þ

n

� �
Lpð ~G

þ

n Þ �
1

2l2n
~M
�1

lndpnLpð ~S
þ

n Þ �LpðlnÞ ~S
þ

n Þ

h i
~G
þ

n . (75)

This completes the RTE solution determination and the corresponding linearizations with respect to
atmospheric variables.
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4. The post-processed solution

4.1. Boundary value problem (BVP) and linearization

From Section 3, the complete Stokes vector discrete ordinate solutions in layer n may be written:

~I
�

n ðxÞ ¼
~D
�
X4N

a¼1

Lna ~W
�

nae
�knax þMna ~W

�

nae
�knaðDn�xÞ

h i
þ ~Z

�

n Tn�1e
�lnx. (76)

Quantities Lna and Mna are constants of integration for the homogeneous solutions, and they are determined
by the imposition of three boundary conditions as noted in Section 2.3. For boundary condition (I), we have
~I
þ

n ð0Þ ¼ 0 for n ¼ 1, which yields (T0 ¼ 1):

~D
þ
X4N

a¼1

Lna ~W
þ

na þMna ~W
�

naKna

h i
¼ � ~Z

þ

n . (77)

For boundary condition (II), the continuity at layer boundaries, we have:

~D
�
X4N

a¼1

Lna ~W
�

naKna þMna ~W
�

na

n o
� Lpa ~W

�

pa þMpa ~W
�

paKpa

n oh i

¼ � ~Z
�

n Tn�1Ln þ ~Z
�

p Tp�1. ð78Þ

In Eq. (78), p ¼ n+1. For surface condition (III), staying for convenience with the Lambertian condition in
Eq. (29), we find (for layer n ¼ NTOTAL):

~D
�
X4N

a¼1

Lna ~V
�

a Kna þMna ~V
þ

a

h i
¼ Tn�1Ln � ~U

�
þ 2R0m0 ~E1I0

� �
. (79)

Here we have defined the following auxiliary quantities:

~V
�

a ¼
~W
�

na � 2R0
~E
T

1
~M ~X ~W

�

na
~E1; ðn ¼ NTOTALÞ, (80)

~U
�
¼ ~Z

�

n � 2R0
~E
T

1
~M ~X ~Z

�

n
~E1; ðn ¼ NTOTALÞ, (81)

~E1 ¼ diagfE1;E1; :::E1g. (82)

Kna ¼ e�knaDn ; Ln ¼ e�lnDn ; ðn ¼ 1; . . . ;NTOTALÞ. (83)

Application of Eqs. (77)–(79) yields a large, sparse banded linear system with rank 8N�NTOTAL. This
system consists only of real variables, and may be written in the symbolic form:

U n N ¼ W. (84)

Here W is constructed from the right hand-side variables in Eqs. (77)–(79) and U is constructed from
suitable combinations of ~V

�

a ;
~W
�

na and Kna. For a visualization of the BVP in the scalar case, see [28]. The
vector N of integration constants is made up of the unknowns Lna;Mnaf g and will be partitioned into
contributions from real and complex parts. A schematic of this partitioning is shown in Fig. 1.

The solution proceeds first by the application of a compression algorithm to reduce the order and eliminate
redundant zero entries. LU-decomposition is then applied using the banded-matrix LAPACK routine
DGBTRF to find the inverse U�1, and the final answer N ¼ U�1 nW is then obtained by back-substitution
(using DGBTRS). For the slab problem, boundary condition (II) is absent; the associated linear problem is
then solved using the DGETRF/DGETRS combination.

Linearizing Eq. (84) with respect to a variable xp in layer p, we obtain:

UnLpðNÞ ¼ W0p �LpðWÞ �LpðUÞ n N. (85)
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multilayer atmosphere.
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We notice that this is the same linear-algebra problem, but now with a different source vector W0p on the
right-hand side. Since we already have the inverse U�1 from the solution to the original BVP, back-
substitution gives the linearization LpðNÞ ¼ U�1 n W0p of the boundary value constants. Although this
linearization is straightforward in concept, there are many algebraic details arising with chain rule
differentiation required to establish LpðWÞ and LpðUÞ in Eq. (85).

4.2. Source function integration

The source function integration technique is used to determine solutions at off-quadrature polar directions
m and at arbitrary optical thickness values in the multilayer medium. The technique dates back to the work of
Chandrasekhar [1], and has been demonstrated to be superior to numerical interpolation. We substitute layer
discrete ordinate solutions (76) into the multiple scattering integral in Eq. (22), then integrate over optical
thickness. The methodology follows closely that used for the scalar LIDORT code [28–30], so long as we
remember with the Stokes-vector formulation to use the real part of any quantity derived from combinations
of complex-variable entities. Here, we note down the principal results for the upwelling field.

The solution in layer n at direction m for optical thickness x (as measured from the top of the layer) is given
by:

I�n ðx; mÞ ¼ I�n ðD;mÞe
�ðD�xÞ=m þH�n ðx;mÞ þ Z�n ðmÞ þQ�n ðmÞ

� 

E�n ðx; mÞ. (86)

The first term is the upward transmission of the lower-boundary Stokes vector field through a partial layer
of optical thickness D�x. The other three contributions together constitute the partial layer source term due to
scattered light contributions. The first of these three is due to the homogeneous solutions and has the form:

H�n ðx; mÞ ¼
X4N

a¼1

LnaX
þ
naðmÞH

�þ
na ðx;mÞ þMnaX

�
naðmÞH

��
na ðx;mÞ

� �
, (87)

where we have defined the following auxiliary quantities:

X�naðmÞ ¼
o
2

XLM

l¼m

Pm
l ðmÞBnl

XN

j¼1

wj Pm
l ðmjÞX

�
naðmiÞ þ Pm

l ð�mjÞX
�
nað�miÞ

� �
, (88)
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H�þ
na ðx;mÞ ¼

e�xkna � e�Dnknae�ðDn�xÞ=m

1þ mkna
. (89)

H��
na ðx;mÞ ¼

e�ðDn�xÞkna � e�ðDn�xÞ=m

1� mkna
. (90)

Here, X�naðmÞ are homogeneous solutions defined at stream cosine m, and H��
na ðx;mÞ are the homogeneous

solution multipliers for the upwelling field. These multipliers arise from the layer optical thickness integration.
In (87), we consider only the real value of the resulting expressions.

The other two layer source term contributions in Eq. (86) come from the diffuse and direct solar source
scattering, respectively. In this case, all variables are real numbers, and the relevant quantities are:

Z�n ðmÞ ¼
o
2

XLM

l¼m

Pm
l ðmÞBnl

XN

j¼1

wj Pm
l ðmjÞZ

�
n ðmjÞ þ Pm

l ð�mjÞZ
�
n ð�mjÞ

� �
, (91)

Q�n ðmÞ ¼
oð2� dm0Þ

2

XLM

l¼m

Pm
l ðmiÞBnlP

m
l ð�m0ÞI0, (92)

E�n ðx;mÞ ¼ Tn�1
e�xln � e�Dnlne�ðDn�xÞ=m

1þ mln

. (93)

These expressions have counterparts in the scalar code (see for example [29]). Similar expressions can be
written for post-processing of downwelling solutions. All source term quantities can be expressed in terms of
the basic optical property inputs to VLIDORT {Dn, on, Bnl}, the pseudo-spherical beam transmittance
quantities {Tn; ln}, the homogeneous solutions fkna; ~X

�

nag, the particular solutions
~Z
�

n , and the BVP integration
constants fLna;Mnag.

Linearizations: Derivatives of all these expressions may be determined by differentiation with respect to
variable xn in layer n. The end-points of the chain rule differentiation are the linearized optical property inputs
Vn;Un;Znlf g from Eq. (33). For linearization of the homogeneous post-processing source term in layer n, there
is no dependency on any quantities outside of layer n; in other words, Lp½H

�
n ðx;mÞ� � 0 for p 6¼n. The

particular solution post-processing source terms in layer n depend on optical thickness values in all layers
above and equal to n through the presence of the average secant and the solar beam transmittances, so there
will be cross-layer derivatives. However, the chain-rule differentiation method is the same, and requires a
careful exercise in algebraic manipulation.

Multiplier expressions (89), (90) and (93) have appeared a number of times in the literature. The
linearizations were discussed in [29,30], and we need only make two remarks here. Firstly, the real and
complex homogeneous solution multipliers are treated separately, with the real part of the complex variable
result to be used in the final reckoning. Second, the solar source term multipliers (for example in Eq. (93)) are
the same as those in the scalar model.
5. Additional VLIDORT implementations

5.1. The delta-M approximation

In the scalar model, sharply peaked phase functions are approximated as a combination of a delta-function
and a smoother residual phase function. This is the delta-M approximation [57], which is widely used in
discrete ordinate and other RT models. The delta-M scaled optical property inputs (optical thickness, single
scatter albedo, phase function Legendre expansion coefficients) are:

t̄ ¼ tð1� of Þ; ō ¼ o
ð1� f Þ

ð1� of Þ
; b̄l ¼

bl � f ð2l þ 1Þ

ð1� f Þ
. (94)
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The delta-M truncation factor is

f ¼
b2N

ð2N þ 1Þ
. (95)

In VLIDORT, Legendre coefficients bl appear as the (1,1) entry in matrix Bl. In line with the
scalar definition in terms of the phase function, we take in VLIDORT the truncation factor f as defined
Eq. (95), and adopt the following scaling for the six entries in Bl. Four coefficients (a1, bl, zl and dl) will scale as
bl in Eq. (94), while the other two coefficients gl and el scale as ~gl ¼ gl=ð1� f Þ. This specification can also be
found in [58] where a more detailed justification is presented. Scaling for the optical thickness and single
scatter albedo in Eq. (94) is not changed in the vector model. Linearizations of Eqs. (94) and (95) are
straightforward, and these are discussed in [29] for the scalar model.

5.2. Exact single scatter solutions

In VLIDORT, we include an exact single-scatter computation based on the Nakajima–Tanaka (N–T)
procedure [59]. The internal single scatter computation in VLIDORT will use a truncated subset of the
complete scatter-matrix information, the number of usable Legendre coefficient matrices Bl being limited to
2N�1 for N discrete ordinate streams. A more accurate computation can be made if the post-processing
calculation of the single scatter contribution (the term Q�n ðmÞE

�
n ðx;mÞ in Eq. (86) for example) is suppressed in

favor of an accurate single scatter computation, which uses the complete phase matrix. The N-T correction
procedure appears in the DISORT [60] and scalar LIDORT codes [29–32], and a related computation has
been implemented for the doubling-adding method [14].

The (upwelling) post-processed solution in stream direction m is now written (c.f. Eq. (86)):

I�n ðx; mÞ ¼ I�n ðD;mÞe
�ðD�xÞ=m þH�n ðx;mÞ þ Z�n ðmÞ þQ�n;exactðmÞ

� 	
E�n ðx;mÞ (96)

Q�n;exactðmÞ ¼
on

4pð1� onf nÞ
Pnðm; m0;f� f0ÞI0. (97)

Note the presence of denominator (1�on fn) when the delta-M approximation is in force [59]. From section
2.1, Pn is obtained from the scattering matrix Fn(Y) through application of rotation matrices. There is no
truncation: Pn can be constructed to any degree of accuracy using all available unscaled Greek matrices Bnl.

Linearization: Chain-rule differentiation of Eq. (97) yields the linearization of the exact single scatter
correction term. Linearization of the multiplier E�n ðx; mÞ has already been established. Since the elements of Pn

consist of linear combinations of Bnl, the linearization LnðPnÞis straightforward to write down in terms of the
inputs LnðBnlÞ.

Curved line-of-sight paths: For nadir-geometry satellite instruments with wide-angle off-nadir viewing, one
must consider the Earth’s curvature along the line of sight from the ground to the satellite. This applies to
instruments such as OMI on the Aura platform (swath 2600 km, scan angle 1141 at the satellite) [61] and
GOME-2 (swath 1920 km) [44]. Failure to account for this effect can lead to errors of 5–10% in the satellite
radiance for TOA viewing zenith angles in the range 55–701 [31,57,58]. For LIDORT, a simple correction for
this effect was introduced for satellite geometries in [31] and this applies equally to VLIDORT. Correction
involves an exact single scatter calculation along the line of sight from ground to TOA: in this case, Eq. (97) is
still valid, but now the geometry is changing from layer to layer. We give a brief summary of this
implementation in Section A.2; for more details, see [31].

5.3. BRDF treatment

A scalar 3-kernel bidirectional reflectance distribution function (BRDF) scheme was implemented
in LIDORT [32]. The scalar BRDF rtotalðm;m

0;f� f0Þ is specified as a linear combination of (up to) three
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semi-empirical kernel functions:

rtotalðm;m
0;f� f0Þ ¼

X3
k¼1

Rkrkðm;m
0;f� f0; bkÞ. (98)

Here, Rk are the kernel amplitudes. For each kernel BRDF rk, the geometrical dependence is known,
but the function depends on vector bk of pre-specified parameters. A well-known example is the
Cox–Munk BRDF for glitter reflectance from the ocean [64]; this is a combination of a wave-facet
probability distribution function (depending on wind-speed W), and a Fresnel reflection function (depending
on the air–water relative refractive index mrel). In this case, vector bk has two elements: bk ¼ {W, mrel}. For a
Lambertian surface, there is only one kernel: r1�1 for all incident and reflected angles, and coefficient R1 is
just the Lambertian albedo.

In order to develop solutions in terms of a Fourier azimuth series, Fourier components are calculated
through:

rm
k ðm;m

0; bkÞ ¼
1

2p

Z 2p

0

rkðm;m
0;f; bkÞ cos mfdf. (99)

This integration over the azimuth angle from zero to 2p is done by numerical quadrature; the number of
BRDF azimuth quadrature abscissa NBRDF is set to 50 to obtain a numerical accuracy of 10�4 for all kernels
considered in [32]. Linearization of this BRDF scheme was reported in [32], and a mechanism developed for
the generation of surface property weighting functions with respect to the kernel amplitudes Rk and also to
elements of the non-linear kernel parameters bk.

In VLIDORT, the BRDF is actually a 4� 4 matrix linking incident and reflected Stokes 4-vectors (cf.
boundary condition (III) in Section 2.3). The scalar BRDF scheme outlined above has been fully implemented
in VLIDORT by setting the {1,1} element of a 4� 4 vector kernel rk equal to the corresponding scalar kernel
function rk; all other elements are zero. However, a non-trivial vector kernel function for sea-surface glitter
reflectance has been implemented in VLIDORT. This is based on the specification in [41]; further vector
BRDF implementations are currently being researched. We make one remark here concerning post-processing
of the radiation field in the presence of BRDF surfaces.

For non-Lambertian surfaces, the reflected radiation field is the sum of diffuse and direct components for
each Fourier term. One can compute the direct reflected beam with a precise set of BRDF kernels rather than
use their truncated forms based on a (finite) Fourier series expansion (M. Christi, private communication).
This exact ‘‘direct beam (DB) correction’’ is done before the diffuse field calculation (Fourier convergence of
the whole field is discussed in Section 6.3). The only additional requirement is for an exact computation of the
derivatives of this DB correction with respect to the kernel amplitudes and parameters. For atmospheric
weighting functions, the solar beam transmittance that forms part of the DB correction also needs to be
differentiated with respect to variables xp varying in layer p.
6. The numerical VLIDORT model

6.1. Summary of model capability

VLIDORT Version 2.0 has the following attributes:
�
 Pseudo-spherical solar beam attenuation, including refractive geometry;

�
 output at Arbitrary viewing geometry and optical depth output;

�
 downwelling and/or upwelling output;

�
 flux and mean-intensity output options;

�
 multi-solar beam output;–-Tanaka) correction, direct-beam correction;

�
 complete kernel-model BRDF implementation for scalar reflection;

�
 enhanced performance elements (solution-saving modes).
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Linearization capabilities installed in Version 2.0 are:
�

Ta

Gr

l ¼

l ¼

l ¼
Complete output of atmospheric property weighting functions for upwelling and downwelling directions, at
arbitrary viewing geometry and optical depths.

�
 Surface property weighting functions for all BRDF scalar-kernel parameters.

�
 Linearization of Delta-M treatment, single scatter and direct-beam corrections.

�
 Weighting functions for flux and mean intensity.

�
 Linearization of enhanced performance elements.

In this chapter we discuss aspects of the numerical model, including the preparation of optical property
inputs (Section 6.2), benchmarking (6.3) and performance enhancements (Section 6.4).

6.2. Preparation of inputs

6.2.1. Optical property inputs

As an example, we consider a medium with Rayleigh scattering by air molecules, some trace gas absorption,
and scattering and extinction by aerosols. If the Rayleigh scattering optical thickness is dRay, the trace gas
absorption optical thickness is dgas, and the aerosol extinction and scattering optical depths are taer and daer,
respectively, then the total optical property inputs are given by

D ¼ agas þ dRay þ taer; o ¼
daer þ dRay

D
Bl ¼

dRayBl;Ray þ daerBl;aer

dRay þ daer
. (100)

The set of ‘‘Greek constants’’ for Rayleigh scattering are shown in Table 1 in terms of the depolarization
ratio r [48]. Aerosol quantities must be derived from a model of electromagnetic scattering by particles (Mie
calculations, T-matrix methods, etc.). See the remarks after Eq. (14) in Section 2.1.

Consider now the linearized optical property inputs (Eq. (33)) for this example. We suppose there is a single
absorbing gas, with C the layer partial column, and sgas the column absorption coefficient, so that agas ¼ Csgas
in Eq. (100). For trace gas profile Jacobians, we require the derivatives in Eq. (33) as inputs, taken with respect
to C. These are:

VC � C
qD
qC
¼ Csgas; UC � C

qo
qC
¼ �

oCsgas
D

; Zl;C � C
qBl

qC
¼ 0. (101)

6.2.2. Additional inputs

For the pseudo-spherical calculation, we require atmospheric slant path distances for attenuation in a
curved atmosphere. To compute this geometrical information, we need the Earth’s radius Rearth and a height
grid {zn} running from n ¼ 0 to n ¼ NTOTAL (the total number of layers); heights are specified at layer
boundaries with z0 at TOA. This information is sufficient for straight-line paths. If the atmosphere is
refracting, one must specify pressure and temperature fields {pn} and {tn}, also defined at layer boundaries.
The refractive geometry calculation inside VLIDORT is based on the Born–Wolf approximation for refractive
index r(z) as a function of height: rðzÞ ¼ 1þ a0pðzÞ=tðzÞ. Factor a0 depends slightly on wavelength, but to a
very good approximation, it is 0.000288 multiplied by the air density at standard temperature and pressure.
ble 1

eek matrix coefficients for Rayleigh scattering

aL bL gL dL eL zL

0 0 1 0 0 0 0

1 0 0 0 3ð1�2rÞ
2þr

0 0

2 6ð1�rÞ
2þr

ð1�rÞ
2þr �

ffiffi
6
p
ð1�rÞ
2þr

0 0 0
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From Section 5.3, for BRDF input, one must specify up to three kernel amplitudes coefficients {Rk} and the
corresponding vectors {bk}. Lambertian surfaces are a special case: the BRDF formalism is bypassed and the
only input is a Lambertian albedo. For surface-property Jacobians, no additional inputs are needed other than
control flags.
6.2.3. Reducing the number of jacobians

In the above example, we could define five weighting functions with respect to dRay, taer, daer, C and sgas and
set VLIDORT to calculate all these quantities in separate computations. However, we can reduce this number
by calculating Jacobians only with respect to the basic optical inputs, and then combining results with the
chain rule. Any desired weighting functions can be expressed in terms of a more basic set based on the input
optical properties (E. Ustinov, private communication). For example, we could write for the trace gas
quantities:

qI

qC
¼

qI

qD
qD
qC
þ

qI

qo
qo
qC
¼

qI

qD
�

qI

qo
o
D

� �
sgas, (102)

qI

qsgas
¼

qI

qD
qD
qsgas

þ
qI

qo
qo
qsgas

¼
qI

qD
�

qI

qo
o
D

� �
C. (103)

From these two results, we see that Jacobians for the partial column amount and absorber cross-section are
proportional; only one of two needs to be calculated. The question of proportionality between weighting
functions was investigated in detail in the context of ozone profile retrieval from space using LIDORT as the
forward model [30]. Although it is possible to work only with the basic optical property Jacobians, we have
maintained flexibility for VLIDORT: it is up to the user to define linearized optical property inputs.

We make one final remark concerning bulk property Jacobians. An atmospheric profile may depend on a
single quantity—for example, a climatology of ozone profiles {Un} based on a classification by total ozone
column C [65]. In this case, each profile entry Un(C) is parameterized in terms of C, and the total column
Jacobian is the chain-rule sum:

qI

qC
¼
XNTOTAL

n¼1

qI

qUn

qUn

qC
. (104)

On the face of it, Eq. (104) requires NTOTAL profile weighting function computations and an external
summation. It is actually possible to adjust the linearized optical property inputs and perform the summation
in Eq. (104) inside the scattering code, thus reducing the number of Jacobian calculations from NTOTAL to 1.
This ‘‘bulk property’’ linearization has been implemented in the scalar LIDORT code form some applications,
and is under construction for VLIDORT.
6.3. Validation and benchmarking

6.3.1. Checking against the scalar code

VLIDORT is designed to work equally with Stokes 4-vectors I ¼ {I, Q, U, V} and in scalar mode (I only). A
first validation is to run VLIDORT in scalar mode and reproduce results generated independently with
LIDORT. One can test the major functions of the model (the real RT solutions, the boundary value problem
and post-processing) for a representative range of scenarios (single layer, multilayer, arbitrary optical
thickness and viewing angle output, plane-parallel versus pseudo-spherical, etc.). This battery of scalar-only
tests is very useful, but of course, it does not validate the 4-vector solutions. Verification of the boundary value
problem and multilayer capability is tested using the invariance principle: for a slab comprising two identical
layers of optical thickness values t1 and t2, the slab reflectance (at least for plane-parallel geometry) is identical
to that produced by a single layer with the same scattering properties but with optical thickness t1+t2. This
applies equally to the scalar and vector models.
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6.3.2. The rayleigh slab problem

A validation was carried out against results published in the tables of Coulson, Dave and Sekera (CDS) [2].
This is a single-layer Rayleigh medium in plane-parallel geometry; the single scattering albedo is 1.0 and there
is no depolarization in the scattering matrix. CDS tables for Stokes parameters I, Q and U are given for three
surface albedos (0.0, 0.25, 0.80), a range of optical thickness values from 0.01 to 1.0, for 7 azimuths from 01 to
1801 at 301 intervals, some 16 view zenith angles with cosines from 0.1 to 1.0, and for 10 solar zenith angles
with cosines from 0.1 to 1.0. With the single scattering albedo set to 0.999999, VLIDORT was able to
reproduce all these results to within the levels of accuracy specified in the tables.

6.3.3. Benchmarking for aerosol slab problems

We first consider benchmark results noted in [19]. The slab problem used a solar angle 53.1301 (m0 ¼ 0.6),
with single scatter albedo o ¼ 0.973527, surface albedo 0.0, total layer optical thickness of 1.0, and a set of
Greek constants as noted in Table 1 of [19]. 24 discrete ordinate streams were used in the half space. With one
exception discussed below, all results in [19] were reproduced by VLIDORT, with numerical differences of 1 or
2 in the sixth decimal place. In Table 2, we present VLIDORT results for intensity I at relative azimuth 1801;
the format is deliberately chosen to mimic that in [19]. It is clear that the agreement with Table 8 in [19] is
almost perfect. The only departure is the downwelling output at m ¼ 0.6: this is a limiting case because
m0 ¼ 0.6 as well. To avoid singularities in the limit as m-m0, a small-numbers analysis has been implemented
in VLIDORT (as also in LIDORT); this issue was not discussed in [19].

An additional benchmarking for VLIDORT has been done against the results of Garcia and Siewert [10] for
a similar slab problem, this time with surface albedo 0.1. With VLIDORT set to calculate with 20 discrete
ordinate streams, Tables 3–10 in [10] were reproduced to within one digit of six significant figures. This result
is noteworthy because the radiative transfer computations in [10] were done using a completely different
methodology (the ‘‘FN’’ method).

6.3.4. Weighting function verification

It is usually sufficient to validate Jacobians with finite difference estimates. If Stokes vector result I is
obtained with parameter x, and (all other inputs being equal) another Stokes vector I0 obtained with perturbed
Table 2

Replica of Table 8 from Siewert [19]

0.000 0.125 0.250 0.500 0.750 0.875 1.000

�1.0 5.06872E-02 4.26588E-02 3.45652E-02 1.97273E-02 7.87441E-03 3.36768E-03

�0.9 4.49363E-02 3.83950E-02 3.16314E-02 1.87386E-02 7.81148E-03 3.42290E-03

�0.8 4.95588E-02 4.29605E-02 3.59226E-02 2.19649E-02 9.46817E-03 4.21487E-03

�0.7 5.54913E-02 4.89255E-02 4.16034E-02 2.63509E-02 1.18019E-02 5.35783E-03

�0.6 6.19201E-02 5.57090E-02 4.83057E-02 3.18640E-02 1.49296E-02 6.94694E-03

�0.5 6.84108E-02 6.30656E-02 5.59610E-02 3.87231E-02 1.91563E-02 9.19468E-03

�0.4 7.44303E-02 7.06903E-02 6.44950E-02 4.72940E-02 2.50375E-02 1.25100E-02

�0.3 7.89823E-02 7.78698E-02 7.35194E-02 5.79874E-02 3.35858E-02 1.77429E-02

�0.2 8.01523E-02 8.29108E-02 8.16526E-02 7.07286E-02 4.66688E-02 2.69450E-02

�0.1 7.51772E-02 8.29356E-02 8.56729E-02 8.26216E-02 6.65726E-02 4.61143E-02

�0.0 5.93785E-02 7.61085E-02 8.33482E-02 8.76235E-02 8.22105E-02 7.53201E-02

0.0 7.61085E-02 8.33482E-02 8.76235E-02 8.22105E-02 7.53201E-02 6.04997E-02

0.1 4.81348E-02 7.00090E-02 8.63151E-02 8.80624E-02 8.49382E-02 7.76333E-02

0.2 2.95259E-02 5.13544E-02 7.72739E-02 8.77078E-02 8.84673E-02 8.55909E-02

0.3 2.07107E-02 3.91681E-02 6.67896E-02 8.29733E-02 8.70779E-02 8.79922E-02

0.4 1.58301E-02 3.14343E-02 5.81591E-02 7.72710E-02 8.36674E-02 8.74252E-02

0.5 1.28841E-02 2.64107E-02 5.17403E-02 7.22957E-02 8.01999E-02 8.60001E-02

0.6 1.10823E-02 2.32170E-02 4.74175E-02 6.88401E-02 7.78121E-02 8.51316E-02

0.7 1.01614E-02 2.15832E-02 4.53651E-02 6.77032E-02 7.75916E-02 8.61682E-02

0.8 1.03325E-02 2.19948E-02 4.67328E-02 7.07013E-02 8.16497E-02 9.14855E-02

0.9 1.31130E-02 2.72721E-02 5.64095E-02 8.41722E-02 9.68476E-02 1.08352E-01

1.0 4.54878E-02 8.60058E-02 1.53099E-01 2.03657E-01 2.23428E-01 2.39758E-01
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input x0 ¼ xð1þ �Þ for some small number e, then the normalized Jacobian is approximated by:

Kx � x
qI
qx
� x

dI
dx
¼

dI
�
¼
ðI0 � IÞ

�
. (105)

Verification of each stage of the linearization process may also be done in this way. For RT models without
linearization, it is of course always possible to attempt weighting function estimations using finite-difference
methods. However, there are pitfalls associated with this procedure (quite apart from the arbitrariness and
time-consuming nature of the exercise). In certain situations, a small perturbation of one or more of the Greek
constants can give rise to a set of eigensolutions which cannot be compared (in a finite-difference sense) with
those generated with the original unperturbed inputs.

6.4. Performance considerations

6.4.1. Multiple solar zenith angle facility

VLIDORT has the capability to handle multiple solar zenith angles (SZAs). In the numerical model, the
most time-consuming tasks are the determination of the homogeneous equation eigensolutions and the
generation of the inverse (by LU decomposition) of the BVP matrix. Both these tasks are independent of solar
source terms, and they can be performed for each Fourier component before solar terms are computed. Once
done, the internal SZA loop in VLIDORT performs repeated determinations of particular integrals, followed
by corresponding BVP back-substitutions and post-processing. This represents a substantial performance
improvement over a model that must be called repeatedly for each new SZA input. This is especially relevant
for VLIDORT in view of the time taken over the eigenproblem (finding complex roots is more time-
consuming) and the much larger BVP matrix inversion compared with that for the scalar code. The multiple
SZA facility is particularly useful for look-up table generation: a single call to VLIDORT will generate output
for a complete range of solar and satellite viewing geometries.

6.4.2. Convergence of the fourier cosine/sine azimuth series

In VLIDORT, the exact single scatter term is computed before the discrete ordinate calculation of the
diffuse field. (In earlier LIDORT versions, this term was calculated after the diffuse field computation). The
single scatter Stokes intensity and Jacobian fields are computed at all output optical depths and then added to
the respective Fourier m ¼ 0 components of the diffuse field. VLIDORT will converge quickly, since higher-
order Fourier components of the diffuse intensity are comparatively smaller when compared with the total
field (M. Christi, private communication, see also [66]).

6.4.3. Eigensolver usage

In Sections 3.1 and 3.2, we noted some differences between the LAPACK solver DGEEV and the
ASYMTX package as used in the LIDORT and DISORT models. Aside from additional elements along the
diagonal, the eigenmatrix ~Cn in layer n consists of blocks of 4� 4 matrices of the form PlmðmiÞBnlP

T
lmðmjÞ

(Eq. (40)). Since P and PT are symmetric, then each such 4� 4 matrix will be symmetric if Bnl has this
property. This is the case if the ‘‘Greek constant’’ enl in Bnl is zero for all values of l. When this condition holds,
the eigenmatrix can be transformed into a symmetric matrix. Eigensolutions are then real-valued and may be
obtained using the ASYMTX solver. This special case is satisfied by the Rayleigh scattering law, but does not
hold for scattering with aerosols and clouds. In the latter case, the lack of symmetry will lead to complex roots
and the need for the DGEEV eigensolver. Conversely, for Rayleigh scattering we can use the faster ‘‘real-
only’’ ASYMTX package. The policy in VLIDORT is to retain both eigensolvers and use them as required—if
enl is non-zero in layer n, then we choose DGEEV, if zero, then ASYMTX.

6.4.4. Solution saving and BVP telescoping

Four-vector codes are computationally slower, nominally by a factor of 	16 compared with scalar codes,
and the use of complex eigensolvers further slows the models. Codes can be made faster by implementing
timesaving devices, and here, VLIDORT has two performance enhancements.
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The first is ‘‘solution saving’’. For Fourier component m, if there is no scattering in layer n, then the RTE
solution is trivial: Beer-Lambert extinction with solutions I(x,m) ¼ I(0,m) exp[�x/m] for any stream direction m.
Thus, for N discrete ordinates mj in the half-space, the homogeneous solution eigenvector ~Xa (size 4N) has zero
entries apart from four diagonal elements corresponding to the 4� 4 matrix D ¼ diag{1,1,�1,�1} for discrete
ordinate j ¼ a. There is no need to invoke the eigensolver. There is no solar source term and hence no
particular solution computation. For post-processing, source function integration is a simple transmittance
recursion. In general, when all six Greek coefficients are zero for mplp2N�1, then there is no scattering for
Fourier components m and higher, and solution saving applies. Rayleigh scattering has a cos2Y phase matrix
dependency on scattering angle Y, with no molecular scattering for Fourier components m42. Thus, in a
‘‘mostly Rayleigh’’ atmosphere with a small number of aerosol layers, solution saving can lead to considerable
savings in CPU time.

The second enhancement is ‘‘BVP Telescoping’’. We consider an atmosphere with Rayleigh scattering
everywhere, except for a block of contiguous layers containing both Rayleigh and particulate scatterers. For
Fourier m42, the solution saving enhancement will apply. Homogeneous and particular solutions are only
present in the block of contiguous layers, so that the boundary value problem can then be ‘‘telescoped’’ to
compute only those constants of integration for this block of mixed-scatterer layers. Constants of integration
in the non-active layers (where there is no scattering) are then found by propagating the block results using
transmittance factors. An exposition of the telescoped BVP is in Appendix B.

7. Concluding remarks

In this paper, we have described the multilayer multiple scattering vector discrete ordinate radiative transfer
model VLIDORT. The vector RTE has both complex variable and real-value solutions. The model has a fully
linearized pseudo-spherical capability to deal with solar beam attenuation in a curved atmosphere. We have
focused in particular on the linearization capacity of the model: the ability to generate analytic weighting
functions of the Stokes field with respect to any atmospheric or surface parameter. We have also discussed the
implementation of exact single scatter calculations (including linearizations). The model has been validated
against a number of benchmarks in the literature. We have discussed a number of performance aspects,
including the multiple SZA facility, and the use of timesaving devices such as solution saving.

VLIDORT Version 2.0 has all the capabilities of its scalar counterpart LIDORT Version 3.0. Both codes
have been streamlined and reorganized so that inputs and outputs are consistent. VLIDORT Version 2.0 is
available on the RT Solutions web site at www.rtslidort.com. A User’s Guide and a GNU-type public license
accompany this release of the code. LIDORT Version 3.0 is also available from this source.
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Appendix A. Spherical corrections

A.1. Pseudo-spherical approximation

The P-S approximation assumes solar beam attenuation for a curved atmosphere. The approximation is a
standard feature of many radiative transfer models. We follow the formulation in [29]. Fig. 2 provides
geometrical sketches appropriate to both sections of this appendix.

http://www.rtslidort.com
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We consider a stratified atmosphere of optically uniform layers, with extinction optical depths {Dn}, n ¼ 1,
NTOTAL (the total number of layers). We take points Vn�1 and Vn on the vertical (Fig. 2, upper panel), and the
respective solar beam transmittances to these points are then:

Tn�1 ¼ exp �
Xn�1
k¼1

sn�1;kDk

" #
; Tn ¼ exp �

Xn

k¼1

sn;kDk

" #
. (A.1)

Here, sn,k is the path distance geometrical factor (Chapman factor), equal to the path distance covered by the
Vn beam as it traverses through layer k divided by the corresponding vertical height drop (geometrical
thickness of layer k). At the top of the atmosphere, T0 ¼ 1. In the average secant parameterization, the
transmittance to any intermediate point between Vn�1 and Vn is parameterized by:

TðxÞ ¼ Tn�1 exp �lnx½ �, (A.2)
Fig. 2. (Upper panel) Pseudo-spherical viewing geometry for scattering along the zenith. (Lower panel) Line of sight path AB in a curved

atmosphere, with viewing and solar angles changing along the path from A to B.



ARTICLE IN PRESS
R.J.D. Spurr / Journal of Quantitative Spectroscopy & Radiative Transfer 102 (2006) 316–342338
where x is the vertical optical thickness measured downwards from Vn�1 and ln the average secant for this
layer. Substituting (A.2) into (A.1) and setting x ¼ Dn we find:

ln ¼
1

Dn

Xn

k¼1

sn;kDk �
Xn�1
k¼1

sn�1;kDk

" #
. (A.3)

In the plane-parallel case, we have ln ¼ m�10 for all n.
Linearization: We require derivatives with respect to an atmospheric property xk in layer k. The basic

linearized optical property input is the normalized derivative Vn of the layer optical depth extinction Dn

(Eq. (33)). Applying the linearization operator to (A.3) and (A.1), we find:

Lk½ln� ¼
V

Dn

sn;n � ln

� 

; Lk½Tn� ¼ 0; ðk ¼ nÞ, (A.4)

Lk½ln� ¼
Vk

Dn

sn;k � sn�1;k

� 

; Lk½Tn� ¼ �Vksn�1;kTn; ðkonÞ, (A.5)

Lk½ln� ¼ 0; Lk½Tn� ¼ 0; ðk4nÞ. (A.6)

For the plane-parallel case, we have:

Lk½ln� ¼ 0 ð8k;8nÞ; Lk½Tn� ¼ �
VkTn

m0
ðkonÞ; Lk½Tn� ¼ 0 ðkXnÞ. (A.7)

A.2. Sphericity along the line-of-sight

In the previous section, scattering was assumed to take place along the nadir, so that the scattering geometry
O � fm0; m;f� f0g is unchanged along the vertical. For a slant line-of-sight path (Fig. 2, lower panel), the
scattering geometry varies along the path. For layer n traversed by this path, the upwelling Stokes vector at the
layer-top is (to a high degree of accuracy) given by:

I"ðOn�1Þ ffi I"ðOnÞTðOnÞ þ K"n ðOnÞ þM"n ðOnÞ. (A.8)

Here, I"ðOnÞ is the Stokes vector at the layer bottom, TðOnÞ the layer transmittance along the line of sight,
and K"n ðOnÞ and M"n ðOnÞ are the single- and multiple-scatter layer 4-vector source terms, respectively. The
transmittance and layer source terms are evaluated with scattering geometry On at position Vn. Equation (A.8)
is applied recursively, starting with the upwelling Stokes vector I

"

BOAðONTOTAL
Þ evaluated at the surface for

geometry ONTOTAL
, and finishing with the Stokes field at top of atmosphere (n ¼ 0). The transmittances and

single-scatter layer source terms may be determined through an accurate single scatter calculation (cf. Eq. (97))
allowing for changing geometrical angles along the line of sight. To evaluate the multiple scatter sources, we
run VLIDORT in ‘‘multiple-scatter mode’’ successively for each of the geometries from ONTOTAL

to O1,
retaining only the appropriate multiple scatter layer source terms, and, for the first VLIDORT calculation
with the lowest-layer geometry ONTOTAL

, the surface upwelling Stokes vector I"BOAðONTOTAL
Þ.

For NTOTAL layers in the atmosphere, we require NTOTAL separate calls to VLIDORT, and this is much
more time consuming that a single P-S call with geometry ONTOTAL

(this would be the default in the absence of a
line-of-sight correction). However, since scattering is strongest near the surface, the first VLIDORT call (with
geometry ONTOTAL) is the most important as it provides the largest scattering source term M

"

NTOTAL
ðONTOTAL

Þ.
An even simpler line-of-sight correction is to assume that all multiple scatter source terms are taken from this
first VLIDORT call; in this case, we require only the accurate single scatter calculation to complete I"TOA. This
approximation is known as the ‘‘poor man’s’’ sphericity correction; it requires very little extra computational
effort compared to a single call with the regular P-S geometry. The sphericity correction can also be set up
with just two calls to VLIDORT made with the start and finish geometries ONTOTAL

and O1; in this case,
multiple scatter source terms at other geometries are interpolated at all levels between results obtained for the
two limiting geometries. Accuracies for these corrections were investigated in [31] for the scalar code; results
for VLIDORT are similar.
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Appendix B. Boundary value problem telescoping

The exposition below is given for scalar RT, but the same principles apply to the vector model; the
bookkeeping is more complicated. The discrete ordinate solution for layer n may be written:

I�n ðx;miÞ ¼
XN

a¼1

LnaX
�
inae
�knax þMnaX

�

inae
�knaðDn�xÞ

� �
þ G�in exp½�lnx�. (B.1)

Let us assume now that n is a single ‘‘active’’ layer containing aerosol scatterers in what is otherwise a
Rayleigh atmosphere with NTOTAL layers. When solution saving (Section 6.4) is in place, then X�ipa ¼ dia and
G�ip ¼ 0 for all Fourier components m42 and for all layers p 6¼n. Thus for non-active layers, the downwelling
and upwelling solutions are:

IþpjðxÞ ¼ Lpj exp½�x
�
mj�; I�pjðxÞ ¼Mpj exp½�ðDp � xÞ

�
mj�. (B.2)

Boundary value constants propagate upwards and downwards through non-active layers via:

Lpþ1;j ¼ Lpj exp½�Dp

�
mj�; Mp�1;j ¼Mpj exp½�Dp

�
mj�. (B.3)

If we can find BVP coefficients Lna;Mnaf g for the active layer n, then coefficients for all other layers will
follow by propagation. At the top of layer n, the boundary condition is:

XN

a¼1

LnaX
þ
ina þMnaX

�
inaYna

� �
þ Gþin ¼ Ln�1;iCn�1;i, (B.4)

XN

a¼1

LnaX
�
ina þMnaX

þ
inaYna

� �
þ G�in ¼Mn�1;i. (B.5)

At the bottom of this active layer, the boundary condition is:

XN

a¼1

LnaX
þ
inaYna þMnaX

�
ina

� �
þ GþinLna ¼ Lnþ1;i, (B.6)

XN

a¼1

LnaX
�
inaYna þMnaX

þ
ina

� �
þ G�inLna ¼Mnþ1;iCnþ1;j. (B.7)

We have used the following abbreviations:

Yna ¼ exp½�knaDn�; Dn ¼ exp½�lnDn�; Cnj ¼ exp½�Dn

�
mj �. (B.8)

We now consider the top and bottom of atmosphere boundary conditions. At TOA, there is no diffuse
radiation, so that Lpa ¼ 0 for p ¼ 1 and hence by Eq. (B.3) for all 1opon. At the surface, the Lambertian
reflection condition only applies for Fourier m ¼ 0; for any other component, there is no reflection, and so
Mpa ¼ 0 for p ¼ NTOTAL and hence by Eq. (B.3) for all NTOTAL4p4n. Eqs. (B.4) and (B.7) then become:

XN

a¼1

LnaX
þ
ina þMnaX

�
inaYna

� �
¼ �Gþin, (B.9)

XN

a¼1

LnaX
�
inaYna þMnaX

þ
ina

� �
¼ �G�inLna. (B.10)

This is a system of rank 2N for the unknowns {Lpa, Mpa} and is solved by usual means (there is no
compression here). For the layer immediately above n, we use (B5) to find Mn�1,a and for the remaining layers
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to TOA, we use the propagation rule (B.2). Similarly, for the layer immediately below n, we use (B.6) to find
Ln+1,a and for the remaining layers to the ground, we again use the propagation rule (B.2). This process may
be applied to situations with more general boundary conditions at TOA and BOA. For example, a BRDF will
in general provide a relation between LNTOTAL;a and MNTOTAL;a, from which a relation between Ln+1,a and
Mn+1,a is established from the propagation rules. Then, (B.6) and (B.7) can be combined in one equation to
replace (B.10).

Solution saving and BVP telescoping operations come together in a natural way when one uses layer adding
to solve for the radiation field (instead of the BVP linear algebra methods). In the Radiant model [67], layer
RTE solutions are determined by discrete ordinate methods. Solutions are then combined to generate layer
reflection and transmission matrices rn and tn, and source vectors s7n. Invariant principles are then used to add
these quantities on a layer-by-layer basis to the stack of multilayer reflection and transmission matrices Rn and
Tn, and source vectors S7

n, until values for the whole atmosphere have been assembled. In solution saving
mode, rn ¼ 0, s7n ¼ 0 and tn is a diagonal matrix with entries Cnj as defined in Eq. (B.8). Stack building with
these layer terms is straightforward. Linearization principles for the Radiant model can be found in [66].
References

[1] Chandrasekhar S. Radiative Transfer. New York: Dover Publications Inc.; 1960.

[2] Coulson K, Dave J, Sekera D. Tables related to radiation emerging from planetary atmosphere with Rayleigh scattering. Berkeley:

University of California Press; 1960.

[3] Hovenier JW. Multiple scattering of polarized light in planetary atmospheres. Astron Astrophys 1971;13:7–29.

[4] Dave JV. Intensity and polarization of the radiation emerging from a plane-parallel atmosphere containing monodispersed aerosols.

Appl Opt 1970;9:2673–84.

[5] Hansen JE, Travis LD. Light scattering in planetary atmospheres. Space Sci Rev 1974;16:527–610.

[6] Siewert CE. On the equation of transfer relevant to the scattering of polarized light. Astrophys J 1981;245:1080–6.

[7] Siewert CE. On the phase matrix basic to the scattering of polarized light. Astron Astrophys 1982;109:195–200.

[8] Vestrucci P, Siewert CE. A numerical evaluation of an analytical representation of the components in a Fourier decomposition of the

phase matrix for the scattering of polarized light. JQSRT 1984;31:177–83.

[9] Garcia RDM, Siewert CE. A generalized spherical harmonics solution for radiative transfer models that include polarization effects.

JQSRT 1986;36:401–23.

[10] Garcia RDM, Siewert CE. The FN method for radiative transfer models that include polarization. JQSRT 1989;41:117–45.

[11] Hovenier JW, van der Mee CVM. Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere.

Astron Astrophys 1983;128:1–16.

[12] de Rooij WA, van der Stap CCAH. Expansion of Mie scattering matrices in generalized spherical functions. Astron Astrophys

1984;131:237–48.

[13] de Haan JF, Bosma PB, Hovenier JW. The adding method for multiple scattering of polarized light. Astron Astrophys

1987;183:371–91.

[14] Stammes P, de Haan JF, Hovenier JW. The polarized internal radiation field of a planetary atmosphere. Astron Astrophys

1989;225:239–59.

[15] Wauben WMF, Hovenier JW. JQSRT 1992;47:491–500.

[16] Stamnes K, Tsay S-C, Wiscombe W, Jayaweera K. Numerically stable algorithm for discrete ordinate method radiative transfer in

multiple scattering and emitting layered media. Appl Optics 1988;27:2502–9.

[17] Schulz FM, Stamnes K. Angular distribution of the Stokes vector in a plane-parallel vertically inhomogeneous medium in the vector

discrete ordinate radiative transfer (VDISORT) model. JQSRT 2000;65:609–20.

[18] Siewert CE. A concise and accurate solution to Chandrasekhar’s basic problem in radiative transfer. JQSRT 2000;64:109–30.

[19] Siewert CE. A discrete-ordinates solution for radiative transfer models that include polarization effects. JQSRT 2000;64:227–54.

[20] Barichello LB, Garcia RDM, Siewert CE. Particular solutions for the discrete-ordinates method. JQSRT 2000;64:219–26.

[21] Rodgers CD. Inverse methods for atmospheric sounding: theory and practice. Singapore: World Scientific Publishing Co. Pte. Ltd.;

2000.

[22] Rozanov V, Diebel D, Spurr R, Burrows J. GOMETRAN: radiative transfer model for the satellite project GOME, the plane-parallel

version. J Geophys Res 1997;102:16683–95.

[23] Rozanov V, Kurosu T, Burrows J. Retrieval of atmospheric constituents in the UV-visible: a new quasi-analytical approach for the

calculation of weighting functions. JQSRT 1998;60:277–99.

[24] Ustinov EA. Analytic evaluation of the weighting functions for remote sensing of blackbody planetary atmospheres: a general

linearization approach. JQSRT 2002;74:683–6.

[25] Ustinov EA. Atmospheric weighting functions and surface partial derivatives for remote sensing of scattering planetary atmospheres

in thermal spectral region: general adjoint approach. JQSRT 2005;92:351–71.



ARTICLE IN PRESS
R.J.D. Spurr / Journal of Quantitative Spectroscopy & Radiative Transfer 102 (2006) 316–342 341
[26] Landgraf J, Hasekamp O, Trautmann T, Box M. A linearized radiative transfer model for ozone profile retrieval using the analytical

forward-adjoint perturbation theory approach. J Geophys Res 2001;106:27291–306.

[27] Hasekamp OP, Landgraf J. A linearized vector radiative transfer model for atmospheric trace gas retrieval. JQSRT 2002;75:

221–38.

[28] Spurr RJD, Kurosu TP, Chance KV. A linearized discrete ordinate radiative transfer model for atmospheric remote sensing retrieval.

JQSRT 2001;68:689–735.

[29] Spurr RJD. Simultaneous derivation of intensities and weighting functions in a general pseudo-spherical discrete ordinate radiative

transfer treatment. JQSRT 2002;75:129–75.

[30] Van Oss RF, Spurr RJD. Fast and accurate 4- and 6-stream linearized discrete ordinate radiative transfer models for ozone profile

retrieval. JQSRT 2002;75:177–220.

[31] Spurr RJD. LIDORT V2PLUS: a comprehensive radiative transfer package for UV/VIS/NIR nadir remote sensing; a general quasi-

analytic solution. In: Proceedings of the SPIE International Symposium, Remote Sensing 2003, Barcelona, Spain, September 2003.

[32] Spurr RJD. A new approach to the retrieval of surface properties from earthshine measurements. JQSRT 2004;83:15–46.

[33] Mishchenko M, Lacis A, Travis L. Errors induced by the neglect of polarization in radiance calculations for Rayleigh scattering

atmospheres. JQSRT 1994;51:491–510.

[34] Lacis A, Chowdhary J, Mishchenko M, Cairns B. Modeling errors in diffuse sky radiance: vector vs. scalar treatment. Geophys Res

Lett 1998;25:135–8.

[35] Sromovsky LA. Effects of Rayleigh-scattering polarization on reflected intensity: a fast and accurate approximation method for

atmospheres with aerosols. Icarus 2005;173:284.

[36] Schutgens N, Stammes P. A novel approach to the polarization correction of spaceborne spectrometers. J Geophys Res

2003;108:4229, doi:10.1029/2002JD002736.

[37] Hasekamp O, Landgraf J, van Oss R. The need of polarization monitoring for ozone profile retrieval from backscattered sunlight. J

Geophys Res 2002;107:4692.

[38] Stam DM, de Haan JF, Hovenier JW, Stammes P. Degree of linear polarization of light emerging from the cloudless atmosphere in

the oxygen A band. J Geophys Res 1999;104:16843.

[39] Jiang Y, Jiang X, Shia R-L, Sander SP, Yung YL. Polarization study of the O2 A-band and its application to the retrieval of O2

column abundance. EOS Trans Am Geophys Union 2003;84:255.

[40] Natraj V, Spurr R, Boesch H, Jiang Y, Yung YL. Evaluation of errors from neglecting polarization in the forward modeling of O2 a

band measurements from space, with relevance to the CO2 column retrieval from polarization-sensitive instruments. JQSRT 2006 in

press, doi:10.1016/j.jqsrt.2006.02.073.

[41] Mishchenko MI, Travis LD. Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected

sunlight. J Geophys Res 1997;102:16989.

[42] Deuze JL, Goloub P, Herman M, Marchand A, Perry G, Susana S, et al. Estimate of the aerosol properties over the ocean with

POLDER. J Geophys Res 2000;105:15329.

[43] Heintzenberg J, Graf H- F, Charlson RJ, Warneck P. Climate forcing and physico-chemical life cycle of the atmospheric aerosol—

why do we need an integrated, interdisciplinary global research programme? Contr Atmos Phys 1996;69:261–71.

[44] Mishchenko MI, Cairns B, Hansen JE, Travis LD, Burg R, Kaufman YJ, et al. Monitoring of aerosol forcing of climate from space:

Analysis of measurement requirements. JQSRT 2004;88:149–61.

[45] EPS/METOP System—Single Space Segment—GOME-2 requirements Specification, ESA/EUMETSAT, MO-RS-ESA-GO-0071,

1999: Issue 2.

[46] Crisp D, Atlas RM, Breon F- M, Brown LR, Burrows JP, Ciais P, et al. The orbiting carbon observatory (OCO) mission. Adv Space

Res 2004;34:700.

[47] Mishchenko MI. Microphysical approach to polarized radiative transfer: extension to the case of an external observation point. Appl

Optics 2003;42:4963–7.

[48] Dahlback A, Stamnes K. A new spherical model for computing the radiation field available for photolysis and heating at twilight.

Planet Space Sci 1991;39:671.

[49] Mishchenko M, Hovenier J, Travis L, editors. Light scattering by non-spherical particles. Newyork: Academic Press; 2000.

[50] Hovenier JW, van der Mee C, Domke H. Transfer of polarized light in planetary atmospheres basic concepts and practical methods.

Dordrecht: Kluwer Academic Press; 2004.

[51] Mackowski DW, Mishchenko MI. Calculation of the T matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A

1996;13:2266–78.

[52] Mishchenko MI, Travis LD. Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for

randomly oriented, rotationally symmetric scatterers. JQSRT 1998;60:309–24.

[53] Quirantes A. A T-matrix method and computer code for randomly oriented, axially symmetric coated scatterers. JQSRT

2005;92:373–81.

[54] Stamnes K, Thomas G. Radiative transfer in the atmosphere and ocean. Cambridge: Cambridge University Press; 1999.

[55] Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J, Du Croz J, et al. LAPACK user’s guide, 2nd Ed. Philadephia: Society for

Industrial and Applied Mathematics; 1995.

[56] Stamnes K, Conklin P. A new multilayer discrete ordinate approach to radiative transfer in vertically inhomogeneous atmospheres.

JQSRT 1984;31:273.

[57] Wiscombe W. The delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J Atmos

Sci 1977;34:1408–22.

dx.doi.org/10.1029/2002JD002736
dx.doi.org/10.1016/j.jqsrt.2006.02.073


ARTICLE IN PRESS
R.J.D. Spurr / Journal of Quantitative Spectroscopy & Radiative Transfer 102 (2006) 316–342342
[58] Chami M, Santer R, Dilligeard E. Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere

system: polarization properties of suspended matter for remote sensing. Appl Optics 2001;40:2398–416.

[59] Nakajima T, Tanaka M. Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation

approximation. JQSRT 1988;40:51–69.

[60] Stamnes K, Tsay S-C, Wiscombe W, Laszlo I. DISORT: a general purpose fortran program for discrete-ordinate-method radiative

transfer in scattering and emitting media. Documentation of methodology report, available from ftp://climate.gsfc.nasa.gov/

wiscombe/Multiple_scatt/, 2000.

[61] Stammes P, Levelt P, de Vries J, Visser H, Kruizinga B, Smorenburg C, et al. Scientific requirements and optical design of the ozone

monitoring instrument on EOS-CHEM, In: Proceedings of the SPIE conference on earth observing systems IV. Denver, Colorado,

USA, July 1999, vol. SPIE 3750, 221–232.

[64] Cox C, Munk W. Statistics of the sea surface derived from sun glitter. J Mar Res 1954;13:198–227.

[65] Wellemeyer CG, Taylor SL, Seftor CJ, McPeters RD, Barthia PK. A correction for total ozone mapping spectrometer profile shape

errors at high latitude. J Geophys Res 1997;102:9029–38.

[66] Spurr R, Christi M. Linearization of the interaction principle: analytic jacobians in the radiant model. JQSRT 2006 in press,

doi:10.1016/j.jqsrt.2006.05.001.

[67] Christi MJ, Stephens GL. Retrieving profiles of atmospheric CO2 in clear sky and in the presence of thin cloud using spectroscopy

from the near and thermal infrared: a preliminary case study. J Geophys Res 2004;109:D04316, doi:10.1029/2003JD004058.
Further reading

[62] Caudill TR, Flittner DE, Herman BM, Torres O, McPeters RD. Evaluation of the pseudo-spherical approximation for backscattered

ultraviolet radiances and ozone retrieval. J Geophys Res 1997;102:3881–90.

[63] Rozanov AV, Rozanov VV, Burrows JP. Combined differential-integral approach for the radiation field computation in a spherical

shell atmosphere: nonlimb geometry. J Geophys Res 2000;105:22937–42.

http://climate.gsfc.nasa.gov/wiscombe/Multiple_scatt/
http://climate.gsfc.nasa.gov/wiscombe/Multiple_scatt/
dx.doi.org/10.1016/j.jqsrt.2006.05.001
dx.doi.org/10.1029/2003JD004058

	VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and �retrieval studies in multilayer multiple scattering media
	Introduction
	Theoretical framework
	The vector RTE
	Azimuthal separation
	Boundary conditions
	Jacobian definitions
	Solution strategy

	Discrete ordinate solutions and linearizations
	Homogeneous RTE, eigenproblem reduction
	Linearization of the eigenproblem
	Particular integrals of the vector RTE
	Solving the RTE by substitution
	Linearizing the particular solution


	The post-processed solution
	Boundary value problem (BVP) and linearization
	Source function integration

	Additional VLIDORT implementations
	The delta-M approximation
	Exact single scatter solutions
	BRDF treatment

	The numerical VLIDORT model
	Summary of model capability
	Preparation of inputs
	Optical property inputs
	Additional inputs
	Reducing the number of jacobians

	Validation and benchmarking
	Checking against the scalar code
	The rayleigh slab problem
	Benchmarking for aerosol slab problems
	Weighting function verification

	Performance considerations
	Multiple solar zenith angle facility
	Convergence of the fourier cosine/sine azimuth series
	Eigensolver usage
	Solution saving and BVP telescoping


	Concluding remarks
	Acknowledgments
	Spherical corrections
	Pseudo-spherical approximation
	Sphericity along the line-of-sight

	Boundary value problem telescoping
	References

	bm_fur

