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Background

• Spent past 15+ years developing tools for tuning programs
– Goal: Provide Information to get most out of machine
– Assumption: Big machines are scarce, programmers do (and 

must) spend time getting every cycle available

• Recently (past 3 years) looking at programmer performance
– Goal: Identify ways to get most out of programmers
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HPCS Example Questions

• How does the HPC environment (hardware, software, human) 
affect the development of codes?

– What is the cost and benefit of applying a particular HPC 
technology (MPI, Open MP, UPC, Co-Array Fortran, XMTC, 
StarP,…)?

– What are the relationships among the technologies, the work 
flows, development cost, the defects, and the performance?

– What context variables affect the development cost and 
effectiveness of the technology in achieving its product goals?

– Can we build predictive models of the above relationships?

– What tradeoffs are possible?
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HPCS Research Activities

Empirical Data
Development Time 

Experiments –
Novices and Experts

Predictive Models

(Quantitative 
Guidance)

General Heuristics

(Qualitative 
Guidance)

E.g. Tradeoff between effort and performance:

MPI will increase the development effort by y% 
and increase the performance z% over OpenMP

E.g. Experience:

Novices can achieve speed-up in cases 
X, Y, and Z, but not in cases A, B, C.
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Areas of Studies

• Effort 
– How do you measure effort? What variables effect effort? Can 

we build and evolve hypotheses about the relationship 
between effort and other variables? Can we identify effective 
productivity variables, e.g., values and costs?

• Defects 
– What are the domain specific defect classes? Can we identify 

patterns, symptoms, causes, and potential cures and 
preventions? Can we measure effort to isolate and fix 
problems?

• Process flow
– What is the normal process followed? What is the breakdown 

between work and rework? Can we use automated data 
collection to automatically measure process steps?
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Type of Studies

Controlled experiments
Identify key variables, 
study programming in the 
small, check out methods 
for data collection, get 
professors interested in 
empiricism

E.g., compare effort 
required to develop code in 
MPI vs. OpenMP

Observational studies 
Simulate the effects of the 
treatment variables in a 
realistic environment, 
validate data collection 
tools and processes

E.g., build an accurate 
effort data model

Case studies and field 
studies

Programming in the large, 
study typical environments 

E.g., understand multi-
programmer development 
workflow
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Type of Testbeds

Full scientific applications

Compact applications

climate modeling, protein 
folding, ….)
Developed at ASCI Centers at 5 
universities
Run at the San Diego 
Supercomputer Center

Bioinformatics, graph theory, 
sensor & I/O: combination of 
kernels, e.g., Embarrassingly 
Parallel, Coherence, Broadcast, 
Nearest Neighbor, Reduction
Developed by experts testing 
key benchmarks

Array Compaction, the Game of 
Life, Parallel Sorting, LU 
Decomposition, 
Developed in graduate courses 
at a variety of universities

We are experimenting with a series of testbeds ranging in size

Classroom assignments
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Study Locations

UCSB
3 studies

USC
4 studies

UCSD
1 study

MIT
3 studies

UMD
10 studies

Mississippi State
2 studies

U Utah
ASC-Alliance

Iowa State
1 study

CalTech
ASC-Alliance

UIUC
ASC-Alliance

U Chicago
ASC-Alliance

Stanford U
ASC-Alliance

U Hawaii
1 study

SDSC
Multiple 
studies
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Approach: Learning over time
• Pilot classroom studies on single programmer assignments

– Identify variables, data collection problems, workflows, 
experimental designs

• Lead to Observational Studies on single programmers
– Develop variables and data we can collect with confidence based 

upon our understanding of the problems
• Lead to Controlled experiments of single programmers

– Generate more confidence in the variables, data collection, 
models, provide hypotheses about novices

• Lead to team projects with graduate students
– Study scale-up, multi-developer workflows, 

• Lead to professional developer studies
– Study scale-up, multi-developer workflows,

• Interviews with developers and users in a variety of environments…

Crawl before you walk before you run
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Approach: Learning over time
Variables to Models

• Identify relevant variables, context variables, programmer 
workflows, mechanisms for identifying variables and relationships 
– Developers: Novice, experts
– Problem spaces: various kernels; computationally- based vs. 

communication based; …
– Work-flows: single programmer research model, …
– Mechanisms: controlled experiments, folklore elicitation, case 

studies

• Identify measures and proxies for those variables that can be 
collected accurately or what proxies can be substituted for those 
variables, understand the data collection problems,  

• Identify the relationships among those variables, and the 
contexts in which those relationships are true

• Build models of time to development, productivity, relative 
effectiveness of different programming models, 
– E.g., OpenMP offers more speedup for novices in a shorter 

amount of time when the problem is more computationally-
based than communication based. 
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Approach: Learning over time
Folklore to Supported Hypotheses

• Identify folklore*: elicit expert opinion to identify the relevant 
variables and terminology, some simple relationships among 
variables, looking for consensus or disagreement

• Evolve the folklore: evolve the relationships and identify the 
context variables that affect their validity, using surveys and 
other mechanisms

• Turn the folklore into hypotheses using variables that can be 
specified and measured 

• Verify hypotheses or generate more confidence in their 
usefulness in various studies about  development, productivity, 
relative effectiveness of different programming models, 
– E.g., OpenMP offers more speedup for novices in a shorter 

amount of time when the problem is more computationally-
based than communication based. 

*Folklore: An unsupported notion, story, or saying widely circulated
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Classroom Studies
Models & Problems

MPI OpenMP UPC/CAF Matlab*P XMT-C
Embarrassingly parallel
Buffon-Laplace needle problem 2 2 2
Dense matrix-vector multiply 1 1
Nearest neighbor
Game of life 3 1 1 1
Sharks & fishes 2 2 1
Grid of resistors 1 1 1
Laplace's equation 1 1
Quantum dynamics 1 1
All-to-all
Sparse matrix-vector multiply 1 1
Sparse conjugate gradient 2 2 1 1
Matrix power via prefix 1 1
Other
Sorting 2 1
(Shared memory)
LU decomposition 1
Shallow water model 1
Randomized selection 2
Breadth-first search 1
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Models & Problems
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Development Time Studies: Sample Results
% Effort saved using OpenMP instead of MPI
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Development Time Studies: 
Comparing MPI & OpenMP

MPI vs. OpenMP
Mean difference in programming effort

95% confidence intervals
MPI - OpenMP
Hours
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Some Classroom Study Results

• Threats to validity:
– Internal: measurement, problem experience
– External: size, experience, motivation, new vs. existing, 

other development activities (e.g. porting), …
• Acknowledging these threats, it appears that:

– OpenMP saves 35-75% of effort vs. MPI on most problems 
– UPC/CAF saves ~40% of effort vs. MPI
– XMT-C saves ~50% of effort vs. MPI
– Experience with problem reduces effort, but effect of programming 

model is greater than effect of experience
– When performance is the goal:

• Experts and students spend the same amount of time
• Experts get significantly better performance

– Performance variation is considerable, especially for MPI
– Many do not achieve good performance
– No correlation between effort and performance
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ASC-Alliance Studies

• Extensive reuse of libraries, but no reuse of frameworks
– Everyone has to write MPI code

• Codes are multi-language and run on remote machines
– Many software tools won’t work in this environment

• Determining inputs can take weeks, are themselves research projects
– Modeling complex objects (e.g. space shuttle)
– Determining initial conditions (e.g. supernova)

• Debugging is very challenging
– Modules may work in isolation, but fail when connected together
– Program may work on 32 processors, break on 64 processors
– Hard to debug failures on hundreds of processors (print statements 

don’t scale up!)
• Portability is a must

– Can’t commit to technologies unless they know they will be there on 
future platforms

– Some projects have broken compilers and libraries on every 
platform!
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SDSC Studies
• HPC users fall into different categories

– Marquee users
• run at very large scale, often using full system
• Often have a consultant to help them improve performance

– Normal users: 
• typically use 128-512 processors
• Less likely to need to tune

– Small users
• just learning parallel programming

• Queue is a major obstacle to productivity
• Performance is treated as a constraint, not a goal to be maximized

– Performance is important until it is “good enough” for their machine 
allocation

• Many users prefer not to use performance tools
– Problems scaling to large processors
– Difficult-to-use interfaces
– Steep learning curve
– Too much detail provided by tool

• Many projects do not have anyone with a computer science background
• Visualization is regularly used for validation
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Productivity Research (w/ SDSC)

• SDSC Team
– Allan Snavely, Nicole Wolter, Michael McCracken

• Do HPC users all have similar concerns and difficulties with 
productivity?

• Are users with the largest allocations and most experience the most 
productive?

• Is time to solution the limiting factor for productivity on HPC systems?
• Lack of publicity is the main roadblock to adoption of tools?
• Would HPC programmers demand dramatic performance 

improvements to consider major structural changes to their code?
• A computer science background is crucial to success in performance 

optimization?
• Is visualization not on the critical path to productivity in HPC?
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Where we need to go?

• Build an empirical research engine for software engineering

• Build testbeds for experimentation and evolution of processes

• Build product models that allow us to make trade-off decisions

• Build decision support systems offering the best empirical 
advice for selecting and tailoring the right processes for the 
problem

• Use empirical study to test and evolve technologies for their 
appropriateness in context 

HPC Software is “big science”; 
not small independent technology developments

Software Engineering
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Study Team

UMD: Vic Basili, Jeff Hollingsworth, Marv Zelkowitz, 
Taiga Nakamura, Sima Asgari, Forrest Shull, 
Nico Zazworka, Rola Alameh, Daniela Suares Cruces
UNL: Lorin Hochstein
MSU: Jeff Carver
UH: Philip Johnson

Professors teaching classes:
Alan Edelman [MIT], John Gilbert [UCSB], Mary Hall, 
Aiichiro Nakano, Jackie  Charme [USC] Allan Snavely 
[UCSD], Alan Sussman, Uzi Vishkin, [UMD], Ed Luke 
[MSU], Henri Casanova [UH], Glenn Leucke [ISU]


