
From Measuring Programs to
Measuring Programmers

Jeffrey K. Hollingsworth

University of Maryland

2

Background

• Spent past 15+ years developing tools for tuning programs
– Goal: Provide Information to get most out of machine
– Assumption: Big machines are scarce, programmers do (and

must) spend time getting every cycle available

• Recently (past 3 years) looking at programmer performance
– Goal: Identify ways to get most out of programmers

3

HPCS Example Questions

• How does the HPC environment (hardware, software, human)
affect the development of codes?

– What is the cost and benefit of applying a particular HPC
technology (MPI, Open MP, UPC, Co-Array Fortran, XMTC,
StarP,…)?

– What are the relationships among the technologies, the work
flows, development cost, the defects, and the performance?

– What context variables affect the development cost and
effectiveness of the technology in achieving its product goals?

– Can we build predictive models of the above relationships?

– What tradeoffs are possible?

4

HPCS Research Activities

Empirical Data
Development Time

Experiments –
Novices and Experts

Predictive Models

(Quantitative
Guidance)

General Heuristics

(Qualitative
Guidance)

E.g. Tradeoff between effort and performance:

MPI will increase the development effort by y%
and increase the performance z% over OpenMP

E.g. Experience:

Novices can achieve speed-up in cases
X, Y, and Z, but not in cases A, B, C.

5

Areas of Studies

• Effort
– How do you measure effort? What variables effect effort? Can

we build and evolve hypotheses about the relationship
between effort and other variables? Can we identify effective
productivity variables, e.g., values and costs?

• Defects
– What are the domain specific defect classes? Can we identify

patterns, symptoms, causes, and potential cures and
preventions? Can we measure effort to isolate and fix
problems?

• Process flow
– What is the normal process followed? What is the breakdown

between work and rework? Can we use automated data
collection to automatically measure process steps?

6

Type of Studies

Controlled experiments
Identify key variables,
study programming in the
small, check out methods
for data collection, get
professors interested in
empiricism

E.g., compare effort
required to develop code in
MPI vs. OpenMP

Observational studies
Simulate the effects of the
treatment variables in a
realistic environment,
validate data collection
tools and processes

E.g., build an accurate
effort data model

Case studies and field
studies

Programming in the large,
study typical environments

E.g., understand multi-
programmer development
workflow

7

Type of Testbeds

Full scientific applications

Compact applications

climate modeling, protein
folding, ….)
Developed at ASCI Centers at 5
universities
Run at the San Diego
Supercomputer Center

Bioinformatics, graph theory,
sensor & I/O: combination of
kernels, e.g., Embarrassingly
Parallel, Coherence, Broadcast,
Nearest Neighbor, Reduction
Developed by experts testing
key benchmarks

Array Compaction, the Game of
Life, Parallel Sorting, LU
Decomposition,
Developed in graduate courses
at a variety of universities

We are experimenting with a series of testbeds ranging in size

Classroom assignments

8

Study Locations

UCSB
3 studies

USC
4 studies

UCSD
1 study

MIT
3 studies

UMD
10 studies

Mississippi State
2 studies

U Utah
ASC-Alliance

Iowa State
1 study

CalTech
ASC-Alliance

UIUC
ASC-Alliance

U Chicago
ASC-Alliance

Stanford U
ASC-Alliance

U Hawaii
1 study

SDSC
Multiple
studies

9

Approach: Learning over time
• Pilot classroom studies on single programmer assignments

– Identify variables, data collection problems, workflows,
experimental designs

• Lead to Observational Studies on single programmers
– Develop variables and data we can collect with confidence based

upon our understanding of the problems
• Lead to Controlled experiments of single programmers

– Generate more confidence in the variables, data collection,
models, provide hypotheses about novices

• Lead to team projects with graduate students
– Study scale-up, multi-developer workflows,

• Lead to professional developer studies
– Study scale-up, multi-developer workflows,

• Interviews with developers and users in a variety of environments…

Crawl before you walk before you run

10

Approach: Learning over time
Variables to Models

• Identify relevant variables, context variables, programmer
workflows, mechanisms for identifying variables and relationships
– Developers: Novice, experts
– Problem spaces: various kernels; computationally- based vs.

communication based; …
– Work-flows: single programmer research model, …
– Mechanisms: controlled experiments, folklore elicitation, case

studies

• Identify measures and proxies for those variables that can be
collected accurately or what proxies can be substituted for those
variables, understand the data collection problems,

• Identify the relationships among those variables, and the
contexts in which those relationships are true

• Build models of time to development, productivity, relative
effectiveness of different programming models,
– E.g., OpenMP offers more speedup for novices in a shorter

amount of time when the problem is more computationally-
based than communication based.

11

Approach: Learning over time
Folklore to Supported Hypotheses

• Identify folklore*: elicit expert opinion to identify the relevant
variables and terminology, some simple relationships among
variables, looking for consensus or disagreement

• Evolve the folklore: evolve the relationships and identify the
context variables that affect their validity, using surveys and
other mechanisms

• Turn the folklore into hypotheses using variables that can be
specified and measured

• Verify hypotheses or generate more confidence in their
usefulness in various studies about development, productivity,
relative effectiveness of different programming models,
– E.g., OpenMP offers more speedup for novices in a shorter

amount of time when the problem is more computationally-
based than communication based.

*Folklore: An unsupported notion, story, or saying widely circulated

12

Classroom Studies
Models & Problems

MPI OpenMP UPC/CAF Matlab*P XMT-C
Embarrassingly parallel
Buffon-Laplace needle problem 2 2 2
Dense matrix-vector multiply 1 1
Nearest neighbor
Game of life 3 1 1 1
Sharks & fishes 2 2 1
Grid of resistors 1 1 1
Laplace's equation 1 1
Quantum dynamics 1 1
All-to-all
Sparse matrix-vector multiply 1 1
Sparse conjugate gradient 2 2 1 1
Matrix power via prefix 1 1
Other
Sorting 2 1
(Shared memory)
LU decomposition 1
Shallow water model 1
Randomized selection 2
Breadth-first search 1

13

Models & Problems

14

Development Time Studies: Sample Results
% Effort saved using OpenMP instead of MPI

Buffon
MPI

Buffon
OpenMP

Matvec
MPI

Matvec
OpenMP

Resistors
MPI

Resistors
OpenMP

Life
MPI

Life
OpenMP

Sharks
MPI

Sharks
OpenMP

Sharks
CAF

SWIM
OpenMP

Sorting
MPI

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
ffi
ci
en

cy

Performance (efficiency) by problem/language -1
00

-5
0

0
50

10
0

%
 e

ffo
rt

 re
du

ct
io

n

Buffon Matvec Resistors Life Sharks

Effect of model & problem on:

Performance

Effort

15

Development Time Studies:
Comparing MPI & OpenMP

MPI vs. OpenMP
Mean difference in programming effort

95% confidence intervals
MPI - OpenMP
Hours

16

Some Classroom Study Results

• Threats to validity:
– Internal: measurement, problem experience
– External: size, experience, motivation, new vs. existing,

other development activities (e.g. porting), …
• Acknowledging these threats, it appears that:

– OpenMP saves 35-75% of effort vs. MPI on most problems
– UPC/CAF saves ~40% of effort vs. MPI
– XMT-C saves ~50% of effort vs. MPI
– Experience with problem reduces effort, but effect of programming

model is greater than effect of experience
– When performance is the goal:

• Experts and students spend the same amount of time
• Experts get significantly better performance

– Performance variation is considerable, especially for MPI
– Many do not achieve good performance
– No correlation between effort and performance

17

ASC-Alliance Studies

• Extensive reuse of libraries, but no reuse of frameworks
– Everyone has to write MPI code

• Codes are multi-language and run on remote machines
– Many software tools won’t work in this environment

• Determining inputs can take weeks, are themselves research projects
– Modeling complex objects (e.g. space shuttle)
– Determining initial conditions (e.g. supernova)

• Debugging is very challenging
– Modules may work in isolation, but fail when connected together
– Program may work on 32 processors, break on 64 processors
– Hard to debug failures on hundreds of processors (print statements

don’t scale up!)
• Portability is a must

– Can’t commit to technologies unless they know they will be there on
future platforms

– Some projects have broken compilers and libraries on every
platform!

18

SDSC Studies
• HPC users fall into different categories

– Marquee users
• run at very large scale, often using full system
• Often have a consultant to help them improve performance

– Normal users:
• typically use 128-512 processors
• Less likely to need to tune

– Small users
• just learning parallel programming

• Queue is a major obstacle to productivity
• Performance is treated as a constraint, not a goal to be maximized

– Performance is important until it is “good enough” for their machine
allocation

• Many users prefer not to use performance tools
– Problems scaling to large processors
– Difficult-to-use interfaces
– Steep learning curve
– Too much detail provided by tool

• Many projects do not have anyone with a computer science background
• Visualization is regularly used for validation

19

Productivity Research (w/ SDSC)

• SDSC Team
– Allan Snavely, Nicole Wolter, Michael McCracken

• Do HPC users all have similar concerns and difficulties with
productivity?

• Are users with the largest allocations and most experience the most
productive?

• Is time to solution the limiting factor for productivity on HPC systems?
• Lack of publicity is the main roadblock to adoption of tools?
• Would HPC programmers demand dramatic performance

improvements to consider major structural changes to their code?
• A computer science background is crucial to success in performance

optimization?
• Is visualization not on the critical path to productivity in HPC?

20

Where we need to go?

• Build an empirical research engine for software engineering

• Build testbeds for experimentation and evolution of processes

• Build product models that allow us to make trade-off decisions

• Build decision support systems offering the best empirical
advice for selecting and tailoring the right processes for the
problem

• Use empirical study to test and evolve technologies for their
appropriateness in context

HPC Software is “big science”;
not small independent technology developments

Software Engineering

21

Study Team

UMD: Vic Basili, Jeff Hollingsworth, Marv Zelkowitz,
Taiga Nakamura, Sima Asgari, Forrest Shull,
Nico Zazworka, Rola Alameh, Daniela Suares Cruces
UNL: Lorin Hochstein
MSU: Jeff Carver
UH: Philip Johnson

Professors teaching classes:
Alan Edelman [MIT], John Gilbert [UCSB], Mary Hall,
Aiichiro Nakano, Jackie Charme [USC] Allan Snavely
[UCSD], Alan Sussman, Uzi Vishkin, [UMD], Ed Luke
[MSU], Henri Casanova [UH], Glenn Leucke [ISU]

