
Lattice Boltzmann Simulation Optimization
on Leading Multicore Platforms
Samuel Williams?†, Jonathan Carter?, Leonid Oliker?

John Shalf?, Katherine Yelick?†

?CRD/NERSC, Lawrence Berkeley National Laboratory Berkeley, CA 94720
†CS Division, University of California at Berkeley, Berkeley, CA 94720

Abstract

We present an auto-tuning approach to optimize application performance on emerging multicore
architectures. The methodology extends the idea of search-based performance optimizations, popular in
linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this
strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar
microprocessors due to its complex data structures and memory access patterns. We explore one of the
broadest sets of multicore architectures in the HPC literature, including the Intel Clovertown, AMD
Opteron X2, Sun Niagara2, STI Cell, as well as the single core Intel Itanium2. Rather than hand-tuning
LBMHD for each system, we develop a code generator that allows us identify a highly optimized version
for each platform, while amortizing the human programming effort. Results show that our auto-tuned
LBMHD application achieves up to a 14× improvement compared with the original code. Additionally,
we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and
software challenges for future multicore systems and applications.

1 INTRODUCTION

The computing revolution towards massive on-chip parallelism is moving forward with rela-
tively little concrete evidence on how to best to use these technologies for real applications [1].
Future high-performance computing (HPC) machines will almost certainly contain multicore
chips, likely tied together into (multi-socket) shared memory nodes as the machine building
block. As a result, applications scientists must fully harness intra-node performance in order to
effectively leverage the enormous computational potential of emerging multicore-based super-
computers. Thus, understanding the most efficient design and utilization of these systems, in the
context of demanding numerical simulations, is of utmost priority to the HPC community.

In this paper, we present an application-centric approach for producing highly optimized
multicore implementations through a study of LBMHD — a mesoscale algorithm for simulating
homogeneous isotropic turbulence in dissipative magnetohydrodynamics. Although LBMHD is
numerically-intensive, sustained performance is generally poor on superscalar-based microproces-
sors due to the complexity of the data structures and memory access patterns [11]. Our work uses
a novel approach to implementing LBMHD across one of the broadest sets of multicore platforms
in existing HPC literature, including the homogeneous multicore designs of the dual-socket×dual-
core AMD Opteron X2 and the dual-socket×quad-core Intel Clovertown, the heterogeneous
local-store based architecture of the dual-socket×eight-core STI Cell QS20 Blade, as well as
one of the first scientific studies of the hardware-multithreaded single-socket×eight-core×eight-
thread Sun Niagara2. Additionally, we examine performance on the monolithic VLIW dual-
socket×single-core Intel Itanium2 platform.

2

Our work explores a number of LBMHD optimizations strategies, which we analyze to identify
the microarchitecture bottlenecks in each system; this leads to several insights in how to build
effective multicore applications, compilers, tools and hardware. In particular, we discover that,
although the original LBMHD version runs poorly on all of our superscalar platforms, memory
bus bandwidth is not the limiting factor on most examined systems. Instead, performance is
limited by lack of resources for mapping virtual memory pages (TLB limits), insufficient cache
bandwidth, high memory latency, and/or poor functional unit scheduling. Although of some these
bottlenecks can be ameliorated through code optimizations, the optimizations interact in subtle
ways both with each other and the underlying hardware. We therefore create an auto-tuning
environment for LBMHD, which searches over a set of optimizations and their parameters to
maximize performance. We believe such application-specific auto-tuners are the most practical
near-term approach for obtaining high performance on multicore systems.

Results show that our auto-tuned optimizations achieve impressive performance gains —
attaining up to 14× speedup compared with the original version. Moreover, our fully optimized
LBMHD implementation sustains the highest fraction of theoretical peak performance on any
superscalar platform to date. We also demonstrate that, despite the relatively slow double preci-
sion capabilities, the STI Cell provides considerable advantages in terms of raw performance and
power efficiency — at the cost of increased programming complexity. Finally we present several
key insights into the architectural tradeoffs of emerging multicore designs and their implications
on scientific algorithm design.

An appendix including additional figures has been submitted to the Program Chair.

2 OVERVIEW, RELATED WORK, AND CODE GENERATION

During the past fifteen years Lattice Boltzmann methods (LBM) have emerged from the field of
statistical mechanics as an alternative [14] to other numerical simulation techniques in numerous
scientific disciplines. The basic idea is to develop a simplified kinetic model that incorporates
the essential physics and reproduces correct macroscopic averaged properties. In the field of
computational fluid dynamics LBM have grown in popularity due to their flexibility in handling
irregular boundary conditions and straightforward inclusion of mesoscale effects such as porous
media, or multiphase and reactive flows. More recently LBM have been applied to the field of
magnetohydrodynamics [5], [10] with some success.

The LBM equations break down into two separate pieces operating on a set of distribution
functions, a linear free-streaming operator and a local non-linear collision operator. The most
common current form of LBM makes use of a Bhatnagar-Gross-Krook [2] (BGK) inspired
collision operator — a simplified form of the exact operator that casts the effects of collisions
as a relaxation to the equilibrium distribution function on a single timescale. Further implicit in
the method is a discretization of velocities and space onto a lattice, where a set of mesoscopic
quantities (density, momenta, etc.) and distribution functions are associated with each lattice site.
In discretized form:

fa(x + ca∆t, t+ ∆t) = fa(x, t)− 1/τ (fa(x, t)− f eq
a (x, t)) (1)

where fa(x, t) denotes the fraction of particles at time step t moving with velocity ca, f eq is
the local equilibrium distribution function constructed from the macroscopic variables to satisfy
basic conservation laws and τ the relaxation time. The velocities ca arise from the basic structure
of the lattice and the requirement that a single time step should propagate a particle from one

3

lattice point to another. A typical discretization in 3D is the D3Q27 model [21] which uses 27
distinct velocities (including zero velocity) is shown in Figure 1(a).

Conceptually, a LBM simulation proceeds by a sequence of collision() and stream() steps,
reflecting the structure of the master equation. The collision() step involves data local only to
that spatial point, allowing concurrent, dependence-free point updates; the mesoscopic variables
at each point are calculated from the distribution functions and from them the equilibrium
distribution formed through a complex algebraic expression originally derived from appropriate
conservation laws. Finally the distribution functions are updated according to Equation 1. This
is followed by the stream() step that evolves the distribution functions along the appropriate
lattice velocities. For example, the distribution function with phase-space component in the +x
direction is sent to the lattice cell one step away in x. The stream() step also manages the
boundary-data exchanges with neighboring processors for the parallelized implementation. This
is often referred to as the “halo update” or “ghost zone exchange” in the context of general PDE
solvers on block-structured grids.

However, a key optimization described by Wellein and co-workers [17] is often implemented,
which incorporates the data movement of the stream() step directly into the collision() step.
They noticed that the two phases of the simulation could be combined, so that either the newly
calculated particle distribution function could be scattered to the correct neighbor as soon as
it was calculated, or equivalently, data could be gathered from adjacent cells to calculate the
updated value for the current cell. In this formulation, the collision step looks much more like a
stencil kernel, in that data are accessed from multiple nearby cells. However, these data are are
from different phase-space as well as spatial locations. The stream step is reduced to refreshing
the ghost cells or enforcing boundary conditions on the faces of the lattice.

Rüde and Wellein have extensively studied optimal data structures and cache blocking strate-
gies for BGK LBM for various problems in fluid dynamics, in the context of both single threaded
and distributed memory parallel execution [13], [17], focusing on data layout issues and loop
fusing and reordering. In addition, inspired by Frigo and Strumpen’s [6] work on cache oblivious
algorithms for a 1- and 2-dimensional stencils, Wellein and co-workers [18] have applied cache
oblivious techniques to LBM. While this has proved a successful strategy for single threaded
serial performance, it is not obvious how it is amenable to distributed-memory parallelism since
it would require a complex set of exchanges for the boundary values of the distribution functions
and the time-skewing may be difficult to integrate into a multi-physics simulation.

2.1 LBMHD
LBMHD [9] was developed to study homogeneous isotropic turbulence in dissipative mag-

netohydrodynamics (MHD). MHD is the theory of the macroscopic interaction of electrically
conducting fluids with a magnetic field. MHD turbulence plays an important role in many
branches of physics [3]: from astrophysical phenomena in stars, accretion discs, interstellar and
intergalactic media to plasma instabilities in magnetic fusion devices. The kernel of LBMHD is
similar to that of the fluid flow LBM except that the regular distribution functions are augmented
by magnetic field distribution functions, and the macroscopic quantities augmented by the
magnetic field. Moreover, because closure for the magnetic field distribution function equations
is attained at the first moment (while that for particle distribution function equations is attained at
the second moment), the number of phase space velocities to recover information on the magnetic
field is reduced from 27 to 15. Although a D3Q27 lattice is used throughout the simulations,
only a subset of the phase-space is needed to describe the evolution of the magnetic field.

4

(a) (b)
Fig. 1. (a) the 27 streaming directions of the D3Q27 Lattice and (b) Vorticity tubes deforming near the onset of turbulence in
LBMHD simulation.

While LBM methods lend themselves to easy implementation of difficult boundary geometries
(e.g., by the use of bounce-back to simulate no slip wall conditions) LBMHD performs 3-
dimensional simulations under periodic boundary conditions — with the spatial grid and phase
space velocity grid overlaying each other on a regular three dimensional Cartesian D3Q27 lattice.
Figure 1(b) is reproduced from one of the largest 3-dimensional LBMHD simulations conducted
to date [4], aiming to understand better the turbulent decay mechanisms starting from a Taylor-
Green vortex—a problem of relevance to astrophysical dynamos. Here we show the development
of turbulent structures in the z-direction as the initially linear vorticity tubes deform.

The original Fortran implementation of the code was parallelized using MPI, partitioning the
whole lattice onto a 3-dimensional processor grid, and using ghost cells to facilitate efficient
communication. This achieved high sustained performance on the Earth Simulator, but a relatively
low percentage of peak performance on superscalar platforms [11]. The application was rewritten,
for this study, around two lattice data structures, representing the state of the system, the various
distribution functions and macroscopic quantities, at time t and at time t + 1. At each time
step one lattice is updated from the values contained in the other. The algorithm alternates
between these each data structures as time is advanced. The lattice data structure is a collection
of arrays of pointers to double precision arrays that contain a grid of values. This is close
to the ‘structure of arrays’ data layout [17], except that we have the flexibility to align the
components of distribution functions or macroscopic quantities without the restrictions implicit
in a Fortran multi-dimensional array. To simplify indexing, the unused lattice elements of the
magnetic component are simply NULL pointers (see Figure 4 in the Appendix). When allocating
the structure each 3D grid is padded to avoid cache-line aliasing.

2.2 Code Generation and Auto-Tuning
To optimize the LBMHD across a variety of multicore architectures, we employ the auto-

tuning methodology exemplified by libraries like ATLAS [19] and OSKI [16]. We created a
code generator that be configured to utilize many of the optimizations described in Section 4
including: blocking for the TLB, unrolling depth, instruction reordering, bypassing the cache, and
software prefetching. The PERL code generator produces multithreaded C for the two primary
subcomponents of the LBMHD code base: the collision() operation which implements the core
LBM solver, and the stream() operation which implements the periodic boundary conditions as
well as ghost-zone exchanges for the parallel implementation of the algorithm. We use POSIX

5

Threads API to implement parallelism on the conventional microprocessor-based platforms and
libspe 1.0 to launch the parallel computations on the Cell SPEs.

For the collision() operation this process can generate hundreds of variations that are then
placed into a function table that is indexed by the optimizations. To determine the best configu-
ration for a given problem size and thread concurrency, a tuning benchmark is run offline to search
the space of possible code optimizations; to reduce tuning overhead the search space is pruned to
eliminate optimization parameters unlikely to improve performance. For each optimization, we
measured performance on five trials and report the best overall time. Future work will incorporate
our node-centric LBMHD optimizations with explicit message-passing between nodes, allowing
experiments on large-scale distributed-memory, multicore-based HPC platforms.

3 EXPERIMENTAL TESTBED

Our work examines several leading multicore system designs in the context of the full LBMHD
application. Our architecture suite consists of the dual-socket×quad-core Intel Clovertown, the
dual-socket×dual-core AMD Opteron X2, the single-socket×eight-core hardware-multithreaded
Sun Niagara2, and the dual-socket×eight-core STI Cell blade. Additionally, we examine the
dual-socket×single-core Intel Itanium2 to explore the tradeoffs between its monolithic design
and the simpler multiprocessor cores in our study. A summary of architectural characteristics
appear in Table 1 (and Figure 6 of the Appendix). Note that, aside from the Itanium2, we
obtained sustained system power data using an in-line digital power meter while the node was
under a full computational load. We now present an overview of the examined systems.

Intel Itanium2: The Intel Itanium2 is an in-order 64-bit VLIW processor. It can issue two
bundles (six instructions) per cycle, and can execute two FP fused-multiply adds (FMAs) per
cycle. FP loads are directed to the 256KB L2 data cache rather than the L1; thus for FP code, the
L2 is in effect the first level cache. Our evaluted system is a dual-socket×single core 1.3 GHz
Madison3M incarnation with a 3MB L3 cache. Although it has 8.5 GB/s of DRAM to chipset
bandwidth, the front side bus (FSB) only runs at 200MHz, thus limiting memory bandwidth to
6.4 GB/s. We include this single-core machine to explore the tradeoffs between the complex
serial-performance-oriented Itanium2 core design and the simpler parallel-throughput-oriented
multiprocessor cores in our study, with the forethought that multicore Itaniums will soon be
available.

Intel Quad-core Clovertown: Clovertown is Intel’s foray into the quad-core arena. Remi-
niscent of their original dual-core designs, two dual-core Xeon chips are paired onto a multi-chip
module (MCM). Each core is based on Intel’s Core2 microarchitecture, runs at 2.33 GHz, can
fetch and decode four instructions per cycle, and can execute 6 micro-ops per cycle. There is
both a 128b SSE adder (two 64b floating point adders) and a 128b SSE multiplier (two 64b
multipliers), allowing each core to support 128b SSE instructions in a fully-pumped fashion.
The peak double-precision performance per core is therefore 9.33 GFlop/s.

Each Clovertown core includes a 32KB L1 cache, and each chip (two cores) has a shared
4MB L2 cache. Each socket has access to a FSB running at 1.33 GHz (delivering 10.66 GB/s)
connected to the chipset. In our study, we evaluate the Dell PowerEdge 1950 dual-socket platform,
which contains two MCMs with dual independent busses. The chipset provides the interface to
four fully buffered DDR2-667 DRAM channels that can deliver an aggregate read memory
bandwidth of 21.33 GB/s. Unlike the AMD X2, each core may activate all four channels, but
will likely never attain the peak bandwidth. The full system has 16MB of L2 cache and an
impressive 74.7 GFlop/s peak performance.

6

Core Intel Intel AMD Sun STI
Architecture Itanium2 Clovertown Opteron X2 Niagara2 Cell SPE

super scalar super scalar MT SIMDType VLIW
out of order out of order dual issue† dual issue

Clock (GHz) 1.30 2.33 2.20 1.40 3.20
DP GFlop/s 5.2 9.3 4.4 1.4 1.8
Local Store — — — — 256KB

first level Data Cache 256KB 32KB 64KB 8KB —
first level TLB entries 128 16 32 128 256

Page Size 16KB 4KB 4KB 4MB 4KB

System Itanium2 Clovertown Opteron X2 Niagara2 Cell Blade
Sockets 2 2 2 1 2

Cores/Socket 1 4 2 8 8(+1)
L2 cache 2×3MB 4×4MB(shared by 2) 4×1MB 4MB(shared by 8) —

DP GFlop/s 10.4 74.7 17.6 11.2 29
DRAM Bandwidth (GB/s) 6.4 21.33 21.33 64 51.2

Flop:Byte Ratio 1.63 3.52 0.83 0.18 0.57
Max problem size

without rolling the TLB
123 33 43 763 N/A

DRAM Capacity 4GB 16GB 16GB 64GB 1GB
Measured System

Power (Watts)
500‡ 330 230 450 285

Threading Pthreads Pthreads Pthreads Pthreads libspe1.0
Compiler icc 9.1 icc 10.0 gcc 4.1.2 gcc 4.0.4 xlc 8.2

TABLE 1
ARCHITECTURAL SUMMARY OF INTEL ITANIUM2, INTEL CLOVERTOWN, AMD OPTERON X2, SUN NIAGARA2, AND STI

CELL MULTICORE CHIPS. EXCEPT FOR THE HP/ITANIUM2, THE SYSTEM POWER FOR ALL PLATFORMS (‡EXCEPT THE
ITANIUM2) WAS MEASURED USING A DIGITAL POWER METER WHILE UNDER A FULL COMPUTATIONAL LOAD. †EACH OF

THE TWO THREAD GROUPS MAY ISSUE UP TO ONE INSTRUCTION.

AMD X2 Dual-core Opteron: The Opteron 2214 is AMD’s current dual-core processor
offering. Each core operates at 2.2 GHz, can fetch and decode three x86 instructions per cycle,
and execute 6 micro-ops per cycle. The cores support 128b SSE instructions in a half-pumped
fashion, with a single 64b multiplier datapath and a 64b adder datapath, thus requiring two cycles
to execute a SSE packed double-precision floating point multiply. The peak double-precision
floating point performance is therefore 4.4 GFlop/s per core or 8.8 GFlop/s per socket.

The Opteron contains a 64KB L1 cache, and a 1MB victim cache; victim caches are not shared
among cores, but are cache coherent. All hardware prefetched data is placed in the victim cache
of the requesting core, whereas all software prefetched data is placed directly into the L1. Each
socket includes its own dual-channel DDR2-667 memory controller and a single cache-coherent
HyperTransport (HT) link to access the other socket’s cache and memory. Each socket can thus
deliver 10.66 GB/s, for an aggregate NUMA (non-uniform memory access) memory bandwidth
of 21.33 GB/s for the dual-core, dual-socket SunFire X2200 M2 examined in our study.

Sun Niagara2: The Sun UltraSparc T2 “Niagara2” eight-core processor presents an in-
teresting departure from mainstream multicore chip design. Rather than depending on four-
way superscalar execution, each of the 8 strictly in-order cores supports two groups of four
hardware thread contexts (referred to as Chip MultiThreading or CMT) — providing a total of
64 simultaneous hardware threads per socket. Each core may issue up to one instruction per
thread group assuming there is no resource conflict. The CMT approach is designed to tolerate

7

instruction, cache, and DRAM latency through fine-grained multithreading.
Niagara2 instantiates one FPU per core (shared among 8 threads). Our study examines the

Sun UltraSparc T5120 with a one T2 processor operating at 1.4 GHz. It has a peak performance
of 1.4 GFlop/s (no FMA) performance per core (11.2 GFlop/s per socket). Each core has
access to its own private 8KB write-through L1 cache, but is connected to a shared 4MB L2
cache via a 179 GB/s(read) on-chip crossbar switch. The socket is fed by four dual channel
667 MHz FBDIMM memory controllers that deliver an impressive aggregate bandwidth of
64 GB/s (42.6 GB/s for reads, and 21.3 GB/s for writes) to the L2. Niagara has no hardware
prefetching and software prefetching only places data in the L2. Although multithreading may
hide instruction and cache latency, it may not be able to fully hide DRAM latency.

STI Cell: The Sony Toshiba IBM (STI) Cell processor is the heart of the Sony PlaySta-
tion 3 (PS3) video game console, whose aggressive design is intended to meet the demanding
computational requirements of video games. Cell adopts a heterogeneous approach to multi-
core, with one conventional processor core (Power Processing Element / PPE) to handle OS
and control functions, combined with up to eight simpler SIMD cores (Synergistic Processing
Elements / SPEs) for the computationally intensive work [7]. The SPEs differ considerably from
conventional core architectures due to their use of a disjoint software controlled local memory
instead of the conventional hardware-managed cache hierarchy employed by the PPE. Rather than
using prefetch to hide latency, the SPEs have efficient software-controlled DMA engines which
asynchronously fetch data from DRAM into the 256KB local store. This approach allows more
efficient use of available memory bandwidth than is possible with standard prefetch schemes on
conventional cache hierarchies, but also makes the programming model more complex.

Each SPE is a dual issue SIMD architecture which includes a half-pumped partially pipelined
FPU. In effect, each SPE can execute one double-precision FMA SIMD instruction every 7 cycles,
for a peak of 1.8 GFlop/s per SPE — clearly far less than the Opteron’s 4.4 GFlop/s or the
Xeon’s 9.33 GFlop/s. In this study we utilize the QS20 Cell blade comprised of two sockets
with eight SPEs each (29.2 GFlop/s peak). Each socket has its own dual channel XDR memory
controller delivering 25.6 GB/s. The Cell blade connects the chips with a separate coherent
interface delivering up to 20 GB/s; thus, like the Opteron system, the Cell blade is expected
show strong variations in sustained bandwidth if NUMA is not properly exploited.

4 MULTICORE LBMHD OPTIMIZATION

The two phases of each LBMHD time step are quite different in character. The collision()
function has an O(n3) floating-point computational cost in addtion to data movement, while
the lighter-weight stream() function performs O(n2) data movement with no floating point
requirements, (where n is the number of points per side side of the cubic lattice). Thus, the
stream step accounts for a smaller portion of the overhead with increasing domain size.

4.1 Collision() Optimization
For each point in space, the collision() routine must read 73 double precision floating point

values from neighboring points, perform 1300 floating point operations, and write 80 doubles
back to memory (see pseudo code in Figure 5 of the Appendix). Superficially, the code requires
a flop:byte ratio of approximately 2/3 on conventional cache-based machines to attain peak
performance (assuming a fill-on-write allocate cache policy). Consequently, we expect Itanium2
and Clovertown to be memory bandwidth limited, while the Niagara2 and Cell are expected
to be computationally bound (given the respective flop:byte ratios of the system configurations

8

in Table 1). Therefore, our auto-tuning optimizations target both areas given that the likely
bottlenecks are system dependent.

Thread-Based Parallelization: The first, and most obvious step in the optimization process
is to exploit thread-level parallelism. If we assume the lattice is composed of nx, ny, and nz points
in the x, y, and z directions, in FORTRAN’s column-major layout one can view the problem
as a set of nynz pencils of length nx. Our implementation distributes these nynz pencils evenly
among a number of threads (NThreads). Load balancing is straightforward for any reasonably
large problem size. We therefore create a parallelization guide structure which holds the (y, z)
coordinates of the first and last pencil for each thread.

To manage the NUMA issues associated with the Opteron and Cell systems in our study, we
also thread the lattice initialization routines (controlled by collision()’s parallelization guide) and
exploit a first-touch allocation policy, to maximize the likelihood that the pencils associated with
each thread are allocated on the closest DRAM interface. To correctly place threads, we use the
Linux scheduler’s routines for process affinity.

Phase-Space TLB Blocking: Given the structure-of-arrays memory layout of LBMHD’s
data structures, each phase-space component of the particle and magnetic-field distribution
functions (that must be gathered from neighboring points in lattice space) will be widely spaced
in DRAM. Thus for the page sizes used by our studied architectures and typical lattice sizes, a
TLB entry is required for each of the nearly 160 components read and written. (Note that this
is significantly more demanding than typical computational fluid dynamics codes, as the MHD
formulation uses an additional 15 phase-space cartesian vector components in the magnetic field
distribution function.) Since the systems have relatively small L1 TLBs (16-128 entries), the
original code version suffers greatly due to a lack of page locality and the resultant TLB misses.

Our next optimization (inspired by vector compilers) focuses on maximizing TLB-page lo-
cality. This is accomplished by fusing the real-space loops, strip mining into vectors, and
interchanging the phase-space and strip-mined loops. For our implementation, the cache hierarchy
is used to emulate a vector register file using several temporary structures. We modified our PERL
code generator to create what is essentially a series of vector operations, which are called for
each of the phase-space components.

On one hand, these vector-style inner loops can be extremely complex, placing high pressure
on the cache bandwidth, thus favoring shorter vector lengths (VL) that enable all operands to
fit within the first level cache. However, shorter VL make poor use of TLB locality (as only a
few elements in a page are used before the next phase-space component is required) and access
DRAM inefficiently for streaming loads and stores. We therefore use our auto-tuning framework
to determine the optimal VL, since it is extremely difficult to predict the ideal size given these
opposing constraints. To reduce the search space we observe that the maximum VL is limited
by the size of the on-chip shared cache. Additionally we search only in full cache lines up to
128 elements then switch to powers of two, up to the calculated maximum VL.

Loop Unrolling and Reordering: Given these vector-style loops, we then modify the code
generator to explicitly unroll each loop by a specified power of two. Although manual unrolling
is unlikely to show any benefit for compilers that are already capable of this optimization, we
have observed a broad variation in the quality of code generation on the evaluated systems. The
most naive approach to unrolling simply replicates the body of the inner loop to amortize loop
overhead. However, to get the maximum benefit of software pipelining, the inner loops must be
reordered to group statements with similar addresses, or variables, together to compensate for
limitations in some compiler’s instruction-schedulers. The optimal reorderings are not unique to
each ISA, but rather to each microarchitecture as they depend on the number of rename registers,

9

memory queue sizes, and the functional unit latency. As such, our auto-tuning environment is
well-suited for discovering the best combination of unrolling and reordering

Software Prefetching: Our previous work [8], [20] has shown that software prefetching
can significantly improve performance on certain superscalar platforms. We explore a prefetching
strategy that modifies the unrolled code to prefetch the entire array needed one iteration (our
logical VL) ahead. This creates a double buffering optimization within the cache, whereby the
cache needs space for two copies of the data: the one currently in use and one the being
simultaneously prefetched. This resulting prefetch distance easily covers the DRAM latency,
and is considerably more effective than prefetching operands for the current loop (the typical
software prefetch strategy). The Cell LBMHD implementation utilizes a similar double buffering
approach within the local store, utilizing DMAs instead of prefetching. To facilitate the vector
prefetching, we skew the first and last point in the parallelization guide to align all vectors to
cache line boundaries.

SIMDization: SIMD units have become an increasingly popular choice for improving
peak performance, but for many codes they are difficult to exploit — lattice methods are no
exception. The SIMD instructurs are small data-parallel data parallel operations that perform
multiple arithmetic operations on data loaded from contiguous memory locations. While loop
unrolling and code-reordering described previously reveals potential opportunities for exploiting
SIMD execution, SIMD implementations typically do not allow unaligned (not 128b aligned)
accesses. Structured grids and lattice methods often must access the previous point in the unit
stride direction resulting in an unaligned load. One solution to remedy the misalignment is to
always load the next quadword and permute it to extract the relevant double. Although this is
an expensive solution on most architectures, it is highly effective on Cell because each double
precision instruction is eight times the cost of a permute. The final paper version will explore
similar techniques to exploit SSE on the x86 architectures.

Streaming Stores: SSE2 introduced a streaming store (movntpd) designed to reduce cache-
pollution from contiguous writes that fill an entire cache line. Normally, a write operation requires
the entire cache line be read into cache then updated and written back out to memory. Therefore
a write requires two times more memory traffic than a read, and consumes a cache line in the
process. However, if the writes are guaranteed to update the entire cache line, the streaming-
store can completely bypass the cache and output directly to the write combining buffers. This
has a several advantages: useful data is not evicted from the cache, the write miss latency does
not have to be hidden, and most importantly the traffic associated with a cache line fill on a
write-allocate is eliminated. Theoretically, given an equal mix of loads and stores, streaming
stores can decrease an application’s memory bandwidth requirements by 50%. Note that Cell’s
DMA engines can explicitly avoid the write allocate issue and eliminate memory traffic.

4.2 Stream() Optimization:
In the original MPI version of the LBMHD code, the stream() function updates the ghost-zones

surrounding the lattice domain held by each task. Rather than explicitly exchanging ghost-zone
data with the 26 nearest neighboring subdomains, we use the shift algorithm [12], which performs
the exchange in three steps involving only six neighbors. The shift method makes use of the fact
that after the first exchange is completed in one direction, the ghost cells have been partially
populated in other directions. The next exchange includes this data, further populating the ghost
cells, and so on.

10

To optimize behavior, we consider that the ghost-zone data must be exchanged on the faces of a
logically 3D subdomain, but are not contiguous in memory for the Y and Z faces. Therefore, the
ghost-zone data for each direction are packed into and unpacked out of a single buffer, resulting in
three pairs of message exchanges per time step. Even on our SMP systems, we chose to perform
the ghost zone exchanges by copying into intermediate buffers rather than copying directly to
neighboring faces. This approach is structurally compatible with an MPI implementation, which
will be beneficial when we expand our implementation to massively-parallel distributed-memory
machines in future work.

Thread-Based Parallelization: Although the stream() routine typically contributes little to
the overall execution time, non-parallelized code fragments can become painfully apparent on
architectures such as Niagara2 that have slow serial performance (Amdahl’s law). Therefore it
is essential to parallelize the work among threads even for code sections with trivial overheads.
Given that each point on a face requires 192 bytes of communication from 24 (9 particle scalars, 5
magnetic field vectors) different arrays, we maximize sequential and page locality by parallelizing
across the lattice components followed by points within each array.

5 PERFORMANCE RESULTS AND ANALYSIS

Performance on each platform is shown in Figures 2(a–e), using the 643 and 1283 problem
sizes for varying levels of thread concurrency. Because computations on block structure grids
favor larger subdomain sizes in order to maximize the surface-to-volume ratio, the problem sizes
are selected to fill local memory on the tested platforms. The 643 problem size fills the limited
DRAM available on the Cell blade, while 1283 problem size fills a large fraction of the available
memory on the remaining platforms. Given that the surface:volume ratio decreases with problem
dimension, a larger fraction of runtime is spent in stream() for smaller problem sizes.

The stacked bar graphs in Figures 2(a–d), show LBMHD performance contributions in GFlop/s
of varying optimizations (where applicable), including: the original version (blue), auto-tuned
TLB blocking (red), auto-tuned unrolling/reordering (yellow), streaming stores (green), and
explicit prefetching (gray). Observe that the top (gray) bar is rarely seen, as auto-tuned TLB
blocking and unrolling/reordering combined with streaming stores generally attain close to
maximum performance. Additionally, Figure 2(e) shows performance of the Cell-specific im-
plementation, which includes TLB blocking, DMA transfers, and SIMDization. An overview
of the full-system per-core performance, highlighting the variation in scaling behavior can be
found in Figure 2(f). Finally, Table 2 presents a several salient performance characteristics of
LBMHD’s execution across the architectures. We now explore these data in more detail.

Itanium2 : Figure 2(a) presents Itanium2 performance results. TLB blocking shows a clear
advantage on this platform, attaining an impressive 3.7x to 13.8x runtime improvement. The re-
sults also show no benefit from explicitly inserting prefetch directives as the icc compiler appro-
priately issues software prefetching instructions. Additionally, the optimal unrolling/reordering
factor was found to be 1/1 (see Table 2), indicating that icc was effectively software pipelining
the collision() loops without manual intervention. Attempts to explicitly unroll loops resulted
in substantial performance degradation. Auto-tuning discovered the optimal vector length to be
512 grid points, the largest on any evaluated platform. This optimal VL generates a footprint
(600KB) larger than the L2 cache size, but uses only 512 doubles at a time per array — or 25%
of a 16KB page. This provides some insight into the relative importance of L2 and TLB misses.

The Itanium2 is able to sustain over 4GB/s of DRAM bandwidth (63% of peak) for LBMHD.
However, the tested system shows sublinear speedup (only 25%) when moving from one to

11

643 1283

Intel Intel AMD Sun Cell Intel Intel AMD SunSystem
IA64 Cl-town X2 Niagara2 Blade IA64 Cl-town X2 Niagara2

GFlop/s 2.4 5.1 5.7 6.2 16.7 2.7 5.5 6.3 6.3
% Peak Flops 23% 7% 32% 55% 57% 26% 7% 36% 56%

Memory Bandwidth (GB/s) 3.6 5.1 5.7 9.3 16.7 4.0 5.5 6.3 9.5
% Peak Memory Bandwidth 56% 24% 27% 14% 33% 63% 26% 29% 15%
Auto-Tuned Vector Length 512 16 256 16 64† 512 16 24 16

Auto-Tuned Unrolling/Reordering 1/1 8/8 4/4 8/1 2/2† 1/1 8/2 8/2 4/2
% Time in stream() 16% 13% 13% 9% N/A 9% 8% 8% 5%

TABLE 2
FULL-SYSTEM LBMHD OPTIMIZED PERFORMANCE CHARACTERISTICS, INCLUDING THE AUTO-TUNED VECTOR LENGTH

AND UNROLLING/REORDERING VALUES. †THE CELL CODE IS HAND OPTIMIZED, NOT AUTO-TUNED.

two sockets for the larger problem size, as can clearly by the steep drop off of Itanium2 per-
core performance in Figure 2(f). This is not surprising considering that both processors share a
common 6.4 GB/s memory bus (see Table 1).

Clovertown: The data in Figure 2(b) clearly indicates that TLB blocking benefits Clover-
town less as as the number of cores increase. The auto-tuned VL (seen in Table 2) is 16 points
(19KB), which represents only 3% of the page size. Thus it is evident that the L1 cache effect
is dominant on this processor. The auto-tuned unrolling matches well with the cache line size
(8 doubles), although icc appeared to deliver nearly the same performance without explicit
unrolling. Additionally, Clovertown benefits from streaming stores — 33% and 21% for the
single- and dual-socket configurations respectively. This indicates that Clovertown is running
into a bandwidth limit that can be forestalled by decreasing the memory traffic.

In the multithreaded experiments, the optimally auto-tuned TLB-blocking results in approxi-
mately 4.0 GB/s and 4.4 GB/s of memory bandwidth utilization for two and four cores (respec-
tively), which is close to the practical limits of a single FSB [20]. Surprisingly, performance
only improves by 43% in the eight-core experiment when both FSBs are engaged, despite the
fact that the aggregate FSB bandwidth doubled. Note, however, that although each socket cannot
consume 100% of the DRAM bandwidth, each socket can activate all of the DIMMs in the
memory subsystem. The declining per-core performance, clearly seen in Figure 2(f), suggests
the chipset’s capabilities limit multi-socket scaling on memory intensive applications.

Opteron: The performance data in Figure 2(c) shows that the TLB blocking and streaming
stores optimizations increase Opteron performance by approximately 1.7x. Similar to the Clover-
town, the auto-tuner chose a vector length for the 1283 problem that fits within the 64KB L1
cache, while the optimal unrolling also matches the cache line size — indicating the limitations
of the gcc compiler. A vector length of 256 provided a very slight performance boost over 24
on the 643 problem. Virtually no benefit was provided from explicit software prefetching.

Results also show that the Opteron only consumes 1.6 GB/s per core (Table 2) for the optimized
LBMHD algorithm. Thus memory bandwidth is not an impediment to performance, allowing the
Opteron to achieve nearly linear scaling for both the multicore and multi-socket experiments, as
seen in Figure 2(f). Given the limited bandwidth requirements, we expect the recently-released
quad-core Barcelona processor to continue linear performance scaling with the doubling of the
cores. Future experiments will extend our study to the latest generation of multicore platforms.

Niagara2: The Niagara2 experiments in Figure 2(d) show several interesting trends. For
the small (643) problem size, almost no benefit is seen from our optimization strategies because,
the entire problem can be mapped by Niagara’s 128-entry TLB, given Solaris’ 4MB pages. For

12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 1 2

64^3 128^3

Itanium2 (threads)

G
F
lo

p
/

s
Original +TLB blocking

+Unroll/Reorder Prefetching

(a)

0

1

2

3

4

5

6

1 2 4 8 1 2 4 8

64^3 128^3

Clovertown (threads)

Original +TLB blocking
+Unroll/Reorder +Streaming stores
+Prefetching

(b)

0

1

2

3

4

5

6

7

1 2 4 1 2 4

64^3 128^3

Opteron X2 (threads)

Original +TLB blocking
+Unroll/Reorder +Streaming stores
+Prefetching

(c)

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 8 16 32 64

64^3 128^3

Niagara2 (threads)

G
F
lo

p
/

s

Original +TLB blocking
+Unroll/Reorder +Prefetching

(d)

0

2

4

6

8

10

12

14

16

1 2 4 8 16

64^3

Cell Blade (threads)

G
F
lo

p
/

s
Cell-specific (TLB blocking, DMA, SIMD)

(e)

0.0

0.5

1.0

1.5

2.0

1 2 4 8 16
Total cores (64^3)

G
F
lo

p
/

s
p

e
r

co
re

Itanium
Clovertown
Opteron
Niagara2
Cell

(f)

Fig. 2. Contributions of explored optimizations of LBMHD on (a) Itanium2 (b) Clovertown (c) Opteron (d) Niagara2, as well
as (e) performance of the Cell-specific implementation. Full-system per-core performance across all platforms is shown in (f).

the larger problem case (1283), the working set can no longer be mapped by the TLB, causing
our auto-tuned TLB blocking approach to improve performance by 25%. Since the Niagara2’s
shared L1 cache is only 8KB, each computational thread is only provided a working set of about
1 point. Given each L1 cache line is 16 bytes, each core will have to rely on its L2 working set
(54 points). As a result, the auto-tuned vector length is only 16 (see Table 2), because the cache
has a more substantial influence on performance than the comparatively large TLB.

Performance (as expected) is extremely low for a single thread, and increases by 4x when
using all eight threads within a single core (multithreaded scaling), while improving more than
24x when engaging all 64 threads across the eight cores (multicore scaling) — the near linear
multicore scaling can be seen in Figure 2(f). As a result, performance on the large problem size
achieve an impressive 56% of peak while utilizing only 15% of the available memory bandwidth.
This suggests further multicore scaling can easily be exploited on future Niagara systems.

Cell Blade: Figure 2(e) shows that the Cell has a number of unique features compared with
the other platforms in our study. First observe that there is no original performance baseline.
This is because the generic microprocessor-targeted source code cannot be naively compiled and
executed on the Cell SPEs, due to its software controlled cache that requires explicit DMAs to
manage memory movement. Therefore a Cell-specific implementation must be created in order to
perform any meaningful experiments. The explicit DMAs obviate the need for streaming stores
and our preliminary Cell version does not utilize auto-tuned blocking.

13

Looking at the performance behavior, the Cell achieves near perfect linear scaling across the
16 threads, as evident from Figure 2(f). Thus, even though each individual SPE is slower than
any other core in our study (due to extremely weak double precision), the linear scaling coupled
with the large number of cores results in the fastest aggregate LBMHD execution. Each Cell
core delivers just over 1 GFlop/s, which translates to an impressive 56% of peak — despite the
inability to fully exploit FMA (due to the lack of potential FMAs in the LBMHD algorithm). In
terms of memory bandwidth utilization, it can be seen in Table 2 that Cell achieves approximately
17 GB/s or 33% of theoretical peak. This indicates that Cell can readily exploit more cores or
enhanced double precision for the LBMHD algorithm. Note that the Cell stream() function has
not yet been implemented and will presented in the final paper; however, we do not expect a
dramatic change in overall performance as stream() is extremely computationally lightweight.

5.1 Architectural Comparison
Figure 3(a) compares LBMHD performance across our suite of architectures for the 643 prob-

lem, using a single thread, single core, fully-packed single socket, and full system configuration.
Results clearly indicate that the Cell blade significantly outperforms all other platforms in our
study, achieving a 7×, 3.3×, 2.9×, and 2.7× speedups compared with the Itanium2, Clovertown,
Opteron, and Niagara2. Although the Cell platform is often considered poor at double-precision
arithmetic, results show the Cell’s LBMHD execution times are dramatically faster than all
other multicore nodes in our study. However, the high performance is comes with the significant
overhead of additional programming complexity.

Of the microprocessors that use a conventional cache hierarchy and programming model, the
Niagara2 demonstrates the highest aggregate single-socket performance for both problem sizes.
Niagara2’s single thread performance is extremely poor, but per-core performance improves
quickly with increasing thread parallelism. The overall performance, although lower than a single
Cell socket, is significantly faster than the Itanium2 and x86 systems, albeit the tested system
has dramatically higher memory bandwidth.

Comparing the x86 architectures, results shows that the dual-core Opteron attains comparable
performance with the quad-core Clovertown. This is somewhat surprising as the Clovertown’s
per-socket computational peak is 4.2× higher than the Opteron and has no NUMA constraints.
Finally, the monolithic VLIW Itanium2 system achieves the highest single-core performance
across our architecture suite. However, little improvement is gained when running across both
(single core) sockets due to its limited memory bandwidth. Thus aggregate Itanium2 system
performance is substantially lower than the fully-packed single socket rate of all the multicore
platforms in our study. These results portend a trend toward simpler high-throughput cores that
offer higher aggregate performance at the expense of the per-core serial performance.

Finally, Figure 3(b) compares LBMHD power efficiency (MFlop/s/Watt) on our evaluated
testbed (see Table 1) — one of today’s most important considerations in HPC acquisition. Results
show that the Cell blade leads in power efficiency, attaining an impressive advantage of 12.2×,
3.8×, 2.4×, and 4.3×, compared with the Clovertown, Opteron, and Niagara2 (respectively) for
the full-system experiments. Although the Niagara2 system attains high LBMHD performance,
the eight channels of FBDIMM (with 16 DIMMs) drove sustained power to 450W, causing the
power efficiency to fall below the x86 platforms. For the problem sizes in question, one could
easily remove eight DIMMs and thus cut the power by more than 100W (and improve efficiency
by 30%) without significantly reducing performance. Although the x86 systems show comparable
LBMHD runtimes, the Opterons relative power advantage resulted in a 1.6× power efficiency

14

Performance Comparison

0

2

4

6

8

10

12

14

16

18

1 thread 1 core, all
threads

1 socket, all
cores, all
threads

all sockets,
cores, threads

Concurrency (64^3)

G
F
lo

p
/

s

Itanium2

Clovertown

Opteron

Niagara2

Cell Blade

(a)

Power Efficiency Comparison

0

10

20

30

40

50

60

1 thread 1 core, all
threads

1 socket, all
cores, all
threads

all sockets,
cores, threads

Concurrency (64^3)

M
F
lo

p
/

s/
W

a
tt

Itanium2

Clovertown

Opteron

Niagara2

Cell Blade

(b)

Fig. 3. Comparison of (a) runtime performance and (b) power efficiency across all studied architectures for the 643 problem.

improvement over Clovertown. Finally, the power hungry Itanium2 looses ground against the
rest of the architectures, achieving less than a 1/12 of the Cell’s power efficiency.

6 SUMMARY AND CONCLUSIONS

The computing industry is moving rapidly away from exponential scaling of clock frequency
toward chip multiprocessors in order to better manage trade-offs among performance, energy
efficiency, and reliability. Understanding the most effective hardware design choices and code
optimizations strategies to enable efficient utilization of these systems is one of the key open
questions facing the computational community today.

In this paper we developed a set of multicore optimizations for LBMHD, a lattice Boltz-
mann method for modeling turbulence in magnetohydrodynamics simulations. We presented
an auto-tuning approach, which employs a code generator that produces multiple versions of
the computational kernels using a set of optimizations with varying parameter settings. The
optimizations include: an innovative approach of phase-space TLB blocking for lattice Boltzmann
computations, loop unrolling, code reordering, software prefetching, streaming stores, and use
of SIMD instructions. The impact of each optimization varies significantly across architectures,
making a machine-independent approach to tuning infeasible. In addition, our detailed analysis
reveals the performance bottlenecks for LBMHD in each system.

Results show that the Cell processor offered (by far) the highest raw performance and power
efficiency for LBMHD, despite having peak double-precision performance and memory band-
width that is comparable to other platforms in our study. The key architectural feature of
Cell is explicit software control of data movement between the local store (cache) and main
memory. However, this impressive computational efficiency comes with a high price — a
difficult programming environment that is a major departure from conventional programming.
Nonetheless, these performance disparities point to the deficiencies of existing automatically-
managed cache hierarchies, even for architectures with sophisticated hardware and software
prefetch capabilities. Thus there is considerable room for improvements in the latency tolerance
techniques of microprocessor core designs.

Our study has demonstrated that — for the evaluated class of algorithms — processor designs
that emphasize high throughput via a large numbers of simpler cores are more effective than
complex, monolithic cores that emphasize sequential performance. While prior reseach has shown
that these design philosophies offer substantial benefits for peak computational rates [15], our

15

work quantifies that this approach can offer significant performance benefits on real scientific
applications.

Overall the auto-tuned LBMHD code achieved sustained superscalar performance that is
substantially higher than any published results to date — over 50% of peak flops on two of
our studied architectures, with speedups of up to 14× relative to the original code. Auto-
tuning amortizes tuning effort across machines by building software to generate tuned code
and using computer time rather than human time to search over versions. It can alleviate some
of compilation problems with rapidly-changing microarchitectures, since the code generator can
produce compiler-friendly versions and can incorporate small amounts of compiler- or machine-
specific code. We therefore believe that auto-tuning will be an important tool in making use
of multicore-based HPC systems of the future. Future work will continue exploring auto-tuning
optimization strategies for important numerical kernels on the latest generation of multicore
systems, while making these tuning packages publicly available.

REFERENCES

[1] K. Asanovic, R. Bodik, B. Catanzaro, et al. The landscape of parallel computing research: A view from Berkeley. Technical
Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley, December 2006.

[2] P. Bhantnagar, E. Gross, and M. Krook. A model for collisional processes in gases i: small amplitude processes in charged
and neutral one-component systems. Phys. Rev., 94:511, 1954.

[3] D. Biskamp. Magnetohydrodynamic Turbulence. Cambridge University Press, 2003.
[4] J. Carter, M. Soe, L. Oliker, Y. Tsuda, G. Vahala, L. Vahala, and A. Macnab. Magnetohydrodynamic turbulence simulations

on the Earth Simulator using the lattice Boltzmann method. In Proc. SC2005: High performance computing, networking,
and storage conference, 2005.

[5] P.J. Dellar. Lattice kinetic schemes for magnetohydrodynamics. J. Comput. Phys., 79, 2002.
[6] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In Proceedings of the 19th ACM International Conference

on Supercomputing (ICS05), 2005.
[7] M. Gschwind. Chip multiprocessing and the cell broadband engine. In CF ’06: Proceedings of the 3rd conference on

Computing frontiers, pages 1–8, New York, NY, USA, 2006.
[8] S. Kamil, K. Datta, S. Williams, L. Oliker. J. Shalf, and K. Yelick. Implicit and explicit optimizations for stencil

computations. In Memory Systems Performance and Correctness (MSPC), 2006.
[9] A. Macnab, G. Vahala, L. Vahala, and P. Pavlo. Lattice boltzmann model for dissipative MHD. In Proc. 29th EPS

Conference on Controlled Fusion and Plasma Physics, volume 26B, Montreux, Switzerland, June 17-21, 2002.
[10] D.O. Martinez, S. Chen, and W.H. Matthaeus. Lattice Boltzmann magnetohydrodynamics. Phys. Plasmas, 1, 1994.
[11] L. Oliker, J. Carter, M. Wehner, A. Canning, S. Ethier, et al. Leading computational methods on scalar and vector HEC

platforms. In Proc. SC2005: High performance computing, networking, and storage conference, 2005.
[12] B. Palmer and J. Nieplocha. Efficient algorithms for ghost cell updates on two classes of MPP architectures. In Proc.

PDCS International Conference on Parallel and Distributed Computing Systems, volume 192, 2002.
[13] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and U. Rüde. Optimization and profiling of the cache performance of

parallel lattice Boltzmann codes. Parallel Processing Letters, 13(4):S:549, 2003.
[14] S. Succi. The Lattice Boltzmann equation for fluids and beyond. Oxford Science Publ., 2001.
[15] D. Sylvester and K. Keutzer. Microarchitectures for systems on a chip in small process geometries. In Proceedings of the

IEEE, pages 467–489, Apr. 2001.
[16] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of automatically tuned sparse matrix kernels. In Proc. of SciDAC

2005, J. of Physics: Conference Series. Institute of Physics Publishing, June 2005.
[17] G. Wellein, T. Zeiser, S. Donath, and G. Hager. On the single processor performance of simple lattice Boltzmann kernels.

Computers and Fluids, Accepted for Publication, http://dx.doi.org/10.1016/j.compfluid.2005.02.008, 2005.
[18] G. Wellein, T. Zeiser, G. Hager, A. Nitsure, K. Iglberger, and U. Rüde. Introducing a cache-oblivious blocking approach

for the lattice boltzmann method. In ICMMES-2006 Proceedings, 2006.
[19] R. C. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimization of Software and the ATLAS project. Parallel

Computing, 27(1-2):3–35, 2001.
[20] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of sparse matrix-vector multiplication

on emerging multicore platforms. In Proc. SC2007: High performance computing, networking, and storage conference,
2007, in press.

[21] D. Yu, R. Mei, W. Shyy, and L. Luo. Lattice Boltzmann method for 3d flows with curved boundary. Journal of Comp.
Physics, 161:680–699, 2000.

