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Abstract. Multi-core processors are planned for virtually all 
next-generation HPC systems. In a preliminary evaluation of AMD 
Opteron Dual-Core processor systems, we investigated the scaling 
behavior of a set of micro-benchmarks, kernels, and applications. In 
addition, we evaluated a number of processor affinity techniques for 
managing memory placement on these multi-core systems. We 
discovered that an appropriate selection of MPI task and memory 
placement schemes can result in over 25% performance improvement 
for key scientific calculations. We collected detailed performance 
data for several large-scale scientific applications. Analyses of the 
application performance results confirmed our micro-benchmark and 
scaling results. 
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1 Introduction 
The move by major microprocessor vendors toward 

processors containing multiple homogeneous processor cores 
is arguably the most important trend in contemporary 
computer architectures. Given the ability to produce chips with 
an ever-increasing number of transistors, the approach of 
duplicating existing cores is a straightforward way to address 
problems related to physical constraints (e.g., power, thermal, 
and signaling) and limited instruction-level parallelism. 
However, because all cores of a processor share the link 
between the processor’s socket and memory, contention for 
this memory link can limit the achievable performance when 
using more than one core per processor. Applications can 
perform well on systems with these multi-core processors, but 
only if they expose enough parallelism to use the multiple 
cores within their collective memory bandwidth limitations. 

The fundamental question for HPC scientific computing is 
whether multiple cores per processor can provide performance 
commensurate with initial expectations.  Simply put, the 
shared memory and I/O (network) bandwidth of multiple cores 
in a socket draws into question both how efficiently an 

application can use multiple cores and what methods provide 
the highest efficiency.  

In a preliminary evaluation of multi-core processors for 
scientific computing, we investigated the behavior of micro-
benchmarks, macro-benchmarks, and applications running on 
systems with multi-core AMD Opteron processors [3]. We 
evaluated not only the processors’ computation capabilities, 
but also the communication capabilities of symmetric 
multiprocessing (SMP) systems with multi-core processors 
that might be used as the building blocks of a large parallel 
system. We discovered that although systems with multi-core 
processors can be effective for scientific computation, 
approaches that are aware of the multi-core processors are 
necessary to achieve highest performance. We evaluated a 
number of processor affinity techniques for managing memory 
placement on multi-core systems and discovered that an 
appropriate selection of MPI task and memory placement 
schemes can result in over 25% performance improvement for 
key scientific calculations. 

To evaluate computation characteristics of multi-core 
processors, we measured the performance of several low-level 
micro-benchmarks and a subset of the NAS Parallel 
Benchmarks [4] running on test systems with multi-core 
Opteron processors. We observed the expected effect that 
performance remained comparable to that of single-core 
processors when memory accesses were satisfied out of 
processor cache, but performance degraded when processes 
running on cores in the same processor socket contended for a 
common link to memory.  

To evaluate the communication performance of multi-core 
processors, we investigated the intra-node communication 
behavior of several MPI benchmarks on our multi-core test 
systems [6, 11]. Although a hybrid programming model that 
uses OpenMP for parallelism within a node and MPI for 
parallelism among nodes is often proposed as the best way to 
use systems with multi-core processors, the traditional MPI 
programming model is likely to remain important for 
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portability reasons and to satisfy the requirements of the huge 
base of existing applications. To evaluate the traditional MPI 
programming model on systems with multi-core processors, 
we ran benchmarks, such as the Intel MPI Benchmark suite 
and the High Performance Computing Challenge (HPCC) 
benchmark [2] suite, on systems with at least two Opteron 
multi-core processors. 

Based on our observations of the micro-benchmark and 
kernel results, we experimented with a set of representative 
applications from bio-molecular and climate simulations [7, 9, 
10]. We confirmed that the memory and task placement 
configurations that result in an optimal performance for 
scientific kernels provide 10-20% performance improvement 
for full application runs. This validates our assertion that 
applications or the system software needs to be aware of multi-
core resources and should be configured to exploit these 
resources. 

2 Evaluation Systems 
Because no definition of terms, such as “processor,” has 

been widely accepted for multi-core processors, we use the 
following terminology. A computing system is a collection of 
nodes interconnected with a high-speed network. A node is a 
group of sockets that typically share main memory and 
perhaps other components of the memory hierarchy, such as 
cache, and communicate through one or more ports to the 
high-speed interconnect. A socket contains one or more cores, 
a memory link, and possibly an interconnect link and an IO 
link. A core is the fundamental execution unit in the system, 
containing functional units, registers, etc.  

For our evaluation, we used several systems with AMD 
Opteron processors; the systems are summarized in Table 1. 

 

Table 1: System Configurations 

Longs system is an eight-socket Iwill H8501 server as 
shown in Figure 1. Each socket consists of a 1.8 GHz dual core 
AMD Opteron 865 and 4GBytes of dual channel DDR400 
memory, connected via a 2x4 HyperTransport ladder topology 
network. Each core has a 64KB data cache, a 64 KB 
instruction cache, and a unified 1MB L2 cache. The system 
runs the Fedora Core 4 distribution of Linux, with a 2.6.13 
SMP kernel. All code was compiled using GNU v4 compilers.  

DMZ is a cluster of four nodes, each consisting of two 
dual core AMD 2.2 GHz Opteron 275 processors and 4 
GBytes of shared memory, running Red Hat Enterprise Linux 
4 update 3. The nodes are not connected by a high 
performance network, so we limit our experiments to a single 
node. All code was compiled using GNU v4 compilers. 

 

 
Figure 1:  Iwill H8501 system architecture 

In contrast to the dual core processor-based DMZ and 
Longs systems, the Cray XD-1, known as Tiger, consists of 
144 single core 2.2 GHz AMD Opteron 248 processors. A 
node consists of two processors, each capable of 4.4 GFlop/s, 
with 8 GBytes of memory. The 72 nodes, connected by the 
Cray RapidArray fabric, run the Linux operating system; 
however, the compute nodes have a special kernel that allows 
them to synchronize with a global clock and co-schedule 
processes to avoid latency in global communication. All code 
was compiled using the PGI release 6.0. 

2.1 Processor and Memory Affinity 
A full evaluation of multi-core processors requires the use 

of processor affinity, the capability to specify that processes 
run only on a specific core or set of cores. Each of our test 
systems runs the Linux operating system, which provides a 
few mechanisms for controlling processor affinity. On systems 
with Non-Uniform Memory Access (NUMA) architectures, 
such as our AMD Opteron test systems, the numactl 
command controls processor affinity for a process and all of its 
children processes. It can also be used to control the operating 
system’s memory page placement policy to ensure, for 
example, that a process’ memory pages are always allocated in 
the memory that is directly attached to the socket that is 
running the process. Recent Linux kernels (version 2.6 and 
newer, and even some 2.4 versions) also contain system calls 
such as sched_setaffinity to set processor affinity. In our 
experiments, we used the numactl command to control 
processor and memory affinities. 

3 Microbenchmarks and Kernels 
Part of our evaluation of multi-core Opteron processors 

involved a study of the computation and memory access 
behavior of multi-core Opteron processors. In this section, we 
discuss our findings from the results from a collection of 
benchmarks used as part of the ongoing early systems 
evaluation effort at the Oak Ridge National Laboratory. 

3.1 STREAM: Memory Latency & Bandwidth 
STREAM is a benchmark used for determining a system’s 

maximum memory throughput [14]. The LMbench benchmark 
suite includes an implementation of the STREAM benchmark. 
Figure 2 and Figure 3 show bandwidth scaling plots based on 
the LMbench3 STREAM-triad benchmark. Global bandwidth 
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increases almost linearly as the first core in each socket is 
activated; however, activating the second core in each socket 
generally provides flat or degraded performance. Interestingly, 
a significant difference in bandwidth is observed (especially 
clear at 1-2 cores, i.e., 1 or 2 sockets active) among the 8 
socket system and systems with 2 or 4 sockets. 
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Figure 2: Memory bandwidth 
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Figure 3: Memory bandwidth per core 

3.2 BLAS Level 1 and 3 Operations 
Many numerical operations common to scientific 

computing codes are represented by the Basic Linear Algebra 
Subprograms (BLAS) library [1]. Most vendors provide BLAS 
as an optimized system library, which provides a special 
opportunity for comparing the compiler’s ability to optimize 
Fortran code (we refer to this as the “vanilla” version) against 
code that the vendor has invested significant effort. Here, we 
consider vector addition (DAXPY, with alpha=1) and matrix-
matrix multiplication (DGEMM, with alpha=1 and beta=0). 
The high data reuse and cache-friendly nature of the DGEMM 
provides a significant opportunity for achieving strong 
performance relative to the theoretical peak capability.  

We measured performance both with the vendor 
optimized implementations found in the AMD Math Core 
library (ACML) and with a vanilla implementation of the 
operation. The graphs shown in Figure 4 and Figure 6 compare 
the performance of DAXPY, and DGEMM operations 
provided with the ACML library on the DMZ system. These 
figures show the aggregated performance as well as the 
performance per core. For example, Total (n cores) is the 
aggregated performance and nT (core x) is performance of 
core x in an n processor run. Figure 5 and Figure 7 show the 

performance of “vanilla” implementations of the same 
operations, unoptimized for any particular processor. Here, we 
compare performance of single vs. two MPI tasks per socket. 
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Figure 4: BLAS Level 1 (DAXPY) performance (ACML) 
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Figure 5: BLAS Level 1 (DAXPY) performance/ core 
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Figure 6: BLAS Level 3 performance (ACML) 
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Figure 7: BLAS level 3 performance per core 
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3.3 HPC Challenge Benchmarks 
HPC Challenge is a suite of benchmarks that do not focus 

tightly on a particular aspect of performance (i.e., computation 
or communication) but instead represent another step toward 
fidelity with respect to full scientific applications [2]. We 
performed this part of our evaluation on the Iwill system that 
contains eight sockets arranged in a 4x2 mesh topology (also 
referred to as a ladder), with a dual-core Opteron in each 
socket. The message passing capability was provided by LAM, 
version 7.7.1. 

HPCC results were generated on 16 cores with a single 
binary, varying the NUMA memory placement and contrasting 
these variances with changes to the MPI communication layer. 
HPL results in Figure 8 demonstrate a variety of interactions 
between memory placement and the MPI communication 
layer. There are two memory placement schemes, localalloc 
(which forces pages to be allocated nearest the CPU where the 
allocation is performed) and interleave (which forces pages to 
be allocated round-robin across the CPUs). There are also 
several choices for the locking mechanism used in the MPI 
sub-layer, including SysV that uses System V semaphores, and 
USysV that uses spin locks. The memory placement schemes 
have a smaller impact than the selection of MPI sub-layer. 
Examination of the other HPCC benchmarks will shed further 
light on these results. Since Longs has a large NUMA domain, 
it is used to evaluate the NUMA related options (usysv and 
localalloc). In contrast, the HPCC benchmarks on the DMZ 
system are minimally affected by different NUMA options 
because it has a much simpler organization than the Longs 
system. Hence, we present HPCC benchmark results with six 
different runtime options on Longs but only one result for the 
DMZ system. 
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Figure 8: HPL performance with LAM/NUMA options 

The computationally intensive kernels DGEMM 
(evaluated on the DMZ system) and FFT are extremely cache-
friendly and are only slightly impacted by memory placement, 
the MPI sub-layer, and the number of cores actively executing 
the same algorithm, as shown in Figure 9. The figure shows 
results for several benchmarks from the HPCC benchmark 
suite, in both their Single mode (where exactly one processor 
runs the benchmark) and Star mode (also known as 
“embarrassingly parallel” mode, where all processors run the 
benchmark concurrently but without explicit communication). 

 Note that the Star DGEMM and Single DGEMM results 
are almost identical, whereas the somewhat less cache-friendly 
FFT shows slightly more impact going from Single FFT to 
Star FFT.  The nearly 1:1 ratio between Single DGEMM and 
Star DGEMM equates to the second core effectively doubling 
the per socket performance. 

The HPCC STREAM benchmark measures memory 
bandwidth, and thus is greatly impacted by choice of memory 
placement. Oddly, this benchmark is nominally independent of 
MPI performance; however, the results show some sensitivity 
to the choice of MPI sub-layer. Clearly, the MPI sub-layer is 
affecting page placement. Most surprising is that the impact of 
running the benchmark across all cores is greater than the 
expected factor of two in the cases of default placement and 
MPI sub-layer and localalloc with the USysV sub-layer as 
shown in Figure 10. With a Single to Star ratio of greater than 
2:1, engaging the second core on this memory bandwidth 
intensive benchmark results in a net performance loss per 
socket. More disturbing is that the best achievable single core 
bandwidth on the 8 socket system is less than half of the more 
than 4 GBytes per second one would typically expect from an 
Opteron.  More details will follow as we drill down on the 
other benchmarks. 
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Figure 9: Processor performance with runtime options 
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Figure 10: Impact of LAM and NUMA runtime options on 

memory performance 

The RandomAccess (RA) benchmark is designed to 
measure the performance of the last level of hierarchy of the 
memory system. The messages sent by the MPI 
implementation of the RA benchmark are small. Thus the high 
MPI latency (see below), attributable to the high cost of the 
Linux implementation of the SystemV semaphore, results in 
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poor performance of this benchmark. Figure 11 demonstrates 
that the MPI sub-layer appears to impact memory performance 
for the Single RA benchmark, comparing localalloc to 
localalloc+USysV, and default to SysV.  Notably on each of 
the benchmarks thus far, the selection of sysv seems to 
dominate choice of localalloc vs. interleave.  Relative to 
STREAMS, Single and Star RA stronger dependence on 
memory latency than memory bandwidth impacts the relative 
performance of single and star RA, with the ratio (less than 
2:1) from bringing the second core per socket online creates a 
net performance gain per socket for the second core.  

MPI communication bandwidth is not particularly relevant 
to our understanding of the performance of dual-core 
processors; however, comparing the Ring and PingPong 
bandwidths clearly exposes the topology and congestion 
effects on the HT8501’s HyperTransport ladder.  As shown in 
Figure 12, the PTRANS benchmark demonstrates more 
extreme differences in performance for SysV and USysV MPI 
sub-layers, with USysV’s spinlocks providing a clear 
performance advantage. Localalloc does well on its own, but 
degrades both SysV and USysV when combined. Again, 
localalloc and the choice of MPI sub-layer are interacting 
poorly.  
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Figure 11: Another view of HPCC memory performance 
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Figure 12: Impact of LAM and NUMA runtime options on 

communication performance 

The MPI latency benchmarks expose information about 
the HT ladder interconnect. As expected ring latencies are 
higher than PingPong latencies (see Figure 13). However the 
differences between these are overwhelmed by the high 
latencies associated with the SysV MPI sub-layer.  Comparing 

against the MPI-RA benchmark, the key conclusion is that the 
high SysV latencies have a strong negative impact on 
performance when the message size is small; however, with 
larger messages, the impact can be essentially negligible as in 
MPI-FFT. 
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Figure 13: Communication performance 

3.4 Intel MPI Benchmarks 
On distributed memory systems with multi-core 

processors, a hybrid programming model consisting of MPI for 
inter-node communication and OpenMP (or a similar threading 
approach) is often proposed as the best match for such 
systems. However, a pure MPI model without intra-node 
threading is also likely to be used on such systems for the sake 
of application portability and due to the large base of existing 
applications written in MPI. Because of the continuing 
importance of the pure MPI programming model, we 
examined the behavior of MPI benchmarks and applications on 
systems similar to those found as nodes in a distributed 
memory parallel computer with multi-core processors. In this 
section we discuss the results from the Intel MPI Benchmarks. 

We considered two popular MPI implementations, 
MPICH2 version 1.0.3 [13] and LAM version 7.1.2 [12]. We 
also considered OpenMPI version 1.0.1, because it appears to 
have the potential for widespread adoption going forward. 
Experiments executed on a DMZ node. Although this system 
is not part of a larger distributed memory system, this type of 
system could serve as a node in a cluster or MPP. Ideally, the 
MPI implementation on a system like this uses an optimized 
communication mechanism for intra-node communication 
such as shared memory buffers; each of the MPI 
implementations we considered has this capability.  

Based on these PingPong and Exchange benchmark 
results (Figure 14 and Figure 15), there is no clear consensus 
on which MPI implementation makes best use of the shared 
memory approach for intra-node communication. MPICH2 
seems to have a high latency overhead compared to the others 
for small message lengths, but becomes comparable with the 
others with messages of approximately 16KB. The bandwidth 
results also show no clear picture with respect to which MPI 
implementation best took advantage of the dual-core 
processors. LAM showed superior performance for messages 
smaller than 16KB, OpenMPI showed the best performance 
for intermediate-sized messages, and MPICH was superior for 
large messages. 



 
 

 

 
(a) bandwidth 

 
(b) latency 

Figure 14: Intra-node Intel MPI Benchmark PingPong benchmark performance. 

 
(a) bandwidth 

 
(b) latency 

Figure 15: Intra-node Intel MPI Benchmark Exchange benchmark performance 

The second part of our investigation focused on the effects 
of multi-core processors on the intra-node communication 
behavior of a single MPI implementation. We chose the 
OpenMPI implementation for these experiments because it 
exhibited good performance for large messages using its 
default configuration. These results are shown in Figure 16 and 
Figure 17 for the PingPong and Exchange benchmarks, 
respectively. For each benchmark, we report the bandwidth 
and latency of the operation when run in several different 
configurations intended to provide insight into the effect of the 
multi-core processors on intra-node communication. In each 
plot, the curves labeled “2 procs, bound n” indicate a 
configuration where the benchmark was limited to two 
processes, and the Linux numactl command was used to set 
the processor affinity and memory allocation policies so that 
the processes ran only on one or the other of the system’s dual-
core processors and always allocated memory locally to that 
processor. The “2 procs, unbound” curve represents a 
configuration where the benchmark was limited to two 
processes but used the default processor affinity and memory 
allocation policy. The “2 procs, unbound, 2 parked” 
configuration created four processes but only two were 
involved in the MPI communication operation. Finally, for the 

Exchange benchmark, a “4 procs” configuration was used that 
measured performance of a four-processor IMB Exchange 
operation. 

Based on these results, for both benchmarks there is a 
small but non-negligible bandwidth benefit (approximately 10 
to 13%) from confining communication within a multi-core 
processor. A latency benefit also appears to be present for 
small messages. 

The experiments described in this section show that one 
must consider the topology of a node with more than one 
multi-core processor to achieve the highest communication 
performance. We observed better bandwidth and latency 
between processes running on the same multi-core processor 
than between processes running on distinct multi-core 
processors connected via a coherent HyperTransport link. We 
also observed the possibility of non-negligible communication 
degradation on systems with a relatively large number of 
multi-core processors (eight dual-core processors in our case) 
arranged in a 2D mesh topology, suggesting that cache 
coherence traffic imposes a limit on the number of processor 
sockets each node should contain for best performance. 

 



 
 

 

 
(a) bandwidth 

 
(b) latency 

Figure 16: Intra-node OpenMPI PingPong benchmark performance with scheduler affinity 

 
(a) bandwidth 

 
(b) latency 

Figure 17: Intra-node OpenMPI Exchange benchmark performance with scheduler affinity. 

Combining these two observations suggests that for best 
performance we must view systems that use multi-core 
processors as having not two classes of communication 
channels, but three: the system interconnect, the links between 
processor sockets within an SMP node, and the links within 
each multi-core processor. A programming model using 
OpenMP only within each multi-core processor, and MPI for 
communication both between processor sockets and between 
system nodes might be a high-performance alternative that best 
exploits the three classes of communication performance 
found in systems with SMP nodes and multi-core processors. 

3.5 NAS Parallel Benchmarks 
The NAS Parallel Benchmark (NPB) Suite consists of 

several small programs derived from computational fluid 
dynamics applications [4]. Using the MPI version from NAS 
benchmark distribution 3.2, the experiments reported here 
were performed using the class B problem sets. The code was 
compiled using gnu4 on DMZ and Longs and PGI on Tiger. 

The MPICH2 library provided the message passing capability 
on all platforms.  

Table 4 shows the speedup for two representative kernels 
(CG and FT) relative to single processor performance. Because 
a goal of this work is to examine intra-node communication 
behavior, and there are four total cores in our DMZ test 
system, we used at most four MPI tasks for the DMZ tests. 
Note that this benchmark suite tests the strong scaling 
capabilities of a computer, and thus we can (and do here) see 
speedups greater than 1.0. 

As anticipated, the scaling within a system largely 
depends on the underlying characteristics of the algorithms. 
Scaling of three different dual-core Opteron systems are 
consistent. At the same time, the HT ladder in the Longs 
system prevents the two benchmarks from sustaining speedup 
on 8 and 16 processors.  Since CG and FFT calculations are 
widespread in a number of scientific applications, we 
investigated the effects of processor and memory affinity 
techniques for these two calculations on the Longs and the 
DMZ system. 



 
 

 

Number of 
MPI tasks 

Kernel Default One MPI + 
Local Alloc 

One MPI + 
Membind 

Two MPI + 
Local Alloc 

Two MPI + 
Membind 

Interleave 

2 CG 162.81 162.68 162.72 172.08 170.79 190.18 
4 CG 98.51 88.21 111.02 102.94 99.54 109.93 
8 CG 50.93 51.15 109.11 49.24 115.87 67.23 

16 CG 54.17 — — 54.45 121.87 72.62 
2 FFT 118.97 118.56 123.15 129.18 129.12 137.79 
4 FFT 79.96 67.72 91.84 74.38 92.79 84.89 
8 FFT 42.32 39.96 69.79 62.80 81.95 47.13 

16 FFT 30.77 — — 31.36 63.39 41.48 

Table 2: Effect of numactl options on NAS CG and FT benchmarks on the Longs system. Times listed in seconds. 

Number of 
MPI tasks 

Kernel Default One MPI + 
Local Alloc 

One MPI + 
Membind 

Two MPI + 
Local Alloc 

Two MPI + 
Membind 

Interleave 

2 CG 106.8 106.24 125.87 111.17 111.20 115.02 
4 CG 59.22 — — 68.16 86.93 66.74 
2 FFT 93.58 100.84 115.42 108.30 101.18 105.13 
4 FFT 57.05 — — 57.03 75.50 63.67 

Table 3: Impact of numactl options on NAS CG and FT benchmarks performance. Times listed in seconds

Table 5 lists a combination of memory and processor 
affinity schemes that are used in running the NAS parallel 
benchmark and scientific applications experiments. 

 
Benchmark System 2 

cores 
4 

cores 
8 

cores 
16 

cores 
CG DMZ 1.07 0.86 — — 
CG Longs 1.07 0.73 0.52 0.25 
CG Tiger 1.01 — — — 
FT DMZ 0.82 0.64 — — 
FT Longs 0.85 0.69 0.62 0.42 
FT Tiger 0.88 — — — 

Table 4: Multi-core speedup for NAS benchmarks 

Name Description 
Default Default (no numactl)  
One MPI+Local Alloc One MPI task per socket and local 

allocation policy 
One MPI+Membind One MPI task per socket with 

explicit memory binding per core 
Two MPI+Local Alloc Two MPI tasks per socket and local 

allocation policy 
Two MPI+Membind Two MPI tasks per socket with 

explicit memory binding per core 
Interleave Interleaved memory allocation 

Table 5: numactl options used for experiments 

The runtime performance for CG and FFT (Class B) 
benchmarks for Longs and DMZ is listed in Table 2 and Table 
3 respectively. Note that as the number of cores increases (one 
MPI task per core) the workload per core decreases and the 
total number of inter-process communication messages 
increases. On the Longs system experiments are run so as to 
minimize the effect of the HT ladder (or the number of 
communication hops) on up to four cores. For example, we 
have used nodes 2, 3, 4, and 5 to run four single task/core 
experiments and 8 two tasks/core experiments. Overall, the FT 
benchmark is found to be more sensitive to the memory 

placement techniques as compared to the CG benchmark. On 
the Longs system, one task/core with localalloc option 
provides the best performance for the two benchmarks. 
Memory interleaving and forcing membind (allocate memory 
from nodes) and cpubind (execute process on CPU of nodes) 
processors result in worst-case performance for almost all test 
cases. 

4 Applications 

4.1 Molecular Dynamics Simulations 
Molecular dynamics (MD) simulations enable the study of 

complex, dynamic processes that occur in biological systems 
[8]. MD methods are now used routinely to investigate the 
structure, dynamics, functions, and thermodynamics of 
biological molecules and their complexes. The types of 
biological activity that have been investigated using MD 
simulations include protein folding, enzyme and DNA, and 
biological membrane complexes. Biological molecules exhibit 
a wide range of time and length scales over which specific 
processes occur, hence the computational complexity of an 
MD simulation depends greatly on the time and length scales 
considered. With an explicit solvation model, typical system 
sizes of interest range from 20K atoms to more than 1 million 
atoms; if the solvation is implicit, sizes range from a few 
thousand atoms to about 100K. The simulation time period can 
range from pico-seconds to the a few micro-seconds or longer. 

Several commercial and open source MD software 
frameworks are in use by a large community of biologists, 
including AMBER and LAMMPS. These packages differ in 
the form of their potential function and also in their force-field 
calculations. Some of them are able to use force-fields from 
other packages as well. The version of LAMMPS used in our 
evaluation does not use the energy minimization technique. 

 
  



 
 

 

 Benchmark  dhfr factor_ix gb_cox2 gb_mb JAC 
Number of atoms 22,930 90,906 18,056 2,492 23,558 

MD technique PME PME GB GB PME 

Table 6: Description of AMBER benchmarks 

MPI tasks System Default One MPI + 
Local Alloc 

One MPI + 
Membind 

Two MPI + 
Local Alloc 

Two MPI + 
Membind 

Interleave 

2 Longs 3.13 2.76 3.13 3.3 3.31 3.50 
4 Longs 1.83 1.45 1.78 1.48 1.77 1.75 
8 Longs 0.81 0.82 1.17 0.77 1.01 0.85 

16 Longs 0.63 — — 0.57 1.32 2.22 
2 DMZ 1.81 1.77 2.39 2.25 2.25 1.96 
4 DMZ 1.03 — — 1.08 1.51 1.09 

Table 7: FFT Performance in the JAC benchmark. Times listed in seconds. 

Number of cores System dhfr factor_ix gb_cox2 gb_mb JAC 
2 DMZ 1.90 1.91 1.98 1.98 1.96 
4 DMZ 3.45 3.35 3.92 3.94 3.63 
2 Longs 1.95 1.89 1.98 2.06 1.93 
4 Longs 3.63 3.43 3.92 4.07 3.78 
8 Longs 6.02 5.94 7.63 7.96 6.22 
16 Longs 7.24 7.35 14.29 14.93 7.97 

Table 8: AMBER PME multi-core speedup with no numactl option 

 
AMBER consists of about 50 programs that perform a 

diverse set of calculations for system preparation, energy 
minimization (EM), molecular dynamics (MD), and analysis 
of results [9]. AMBER's main module for EM and MD is 
known as sander (for simulated annealing with NMR-derived 
energy restraints). We used sander to investigate the 
performance characteristics of EM and MD techniques using 
the Particle Mesh Ewald (PME) and Generalized Born (GB) 
methods. Table 6 lists five benchmarks that are part of 
AMBER 8.0 release. The PME benchmarks use FFT 
calculations as part of the reciprocal PME calculations, while 
GB calculations are more computation-intensive as compared 
to the PME calculations. Table 8 lists the AMBER PME 
benchmark speedup across multiple cores for DMZ and Longs. 
Both MD techniques manage to utilize the dual-core resources 
efficiently as we observe near linear scaling on up to 4 cores 
systems for PME method and on up to 16 cores for the GB 
calculations. 

Since we observed a notable difference in the NAS FFT 
calculation using processor and memory affinity techniques, 
we anticipated a performance improvement on AMBER PME 
simulation runs, not only in its FFT calculations but also in 
overall simulation runtime. Table 7 lists the variations in FFT 
performance and Table 9 lists the overall runtime as a function 
of different processor and memory placement techniques on 
the JAC benchmark on the DMZ and Longs systems. As we 
noted in the NAS benchmark runs, the processor and memory 
affinity techniques significantly influence performance on the 
Longs system. We observed similar behavior on a full-scale 
application run. Likewise we demonstrate that the default 
option on the DMZ system is sufficient to obtain near optimal 

runtimes for NAS FFT benchmark. This is also true for 
AMBER benchmark runs. 

LAMMPS (Large-scale Atomic/Molecular Massively 
Parallel Simulator) is a classical MD code. LAMMPS models 
an ensemble of particles in a liquid, solid or gaseous state and 
can be used to model atomic, polymeric, biological, metallic or 
granular systems [10]. We used the latest (2006) C++ and MPI 
version and ran the following three benchmarks: Lennard-
Jones (LJ), Polymer (chain), and Metal (eam). 

The above benchmarks contain 32,000 atoms each and run 
for 100 simulation time steps. We ran the experiments on the 
DMZ, Longs and Tiger systems. These results are listed in 
Table 10. The LAMMPS benchmarks scale linearly on 
multiple cores and the scaling behavior is increasingly 
different for different classes of computation. For instance, the 
chain calculations perform local, point-to-point interactions, 
while the LJ benchmark calculates the overall energy effect 
using the non-local calculations. The scaling behavior is 
consistent across different dual-core Opteron system 
configurations. Table 11 lists the impact of different processor 
and memory affinity techniques on the LJ calculations that 
perform FFT operations. The performance impacts are similar 
to what we observed in AMBER. 

4.2 Parallel Ocean Program (POP) 
POP is the ocean component of Community Climate 

System Model (CCSM) [5, 7]. The code is based on a finite-
difference formulation of the three-dimensional flow equations 
on a shifted polar grid. In its high-resolution configuration, 
1/10-degree horizontal resolution, the code resolves eddies for 
effective heat transport and the locations of ocean currents. 

 



 
 

 

MPI tasks System Default One MPI + 
Local Alloc 

One MPI + 
Membind 

Two MPI + 
Local Alloc 

Two MPI + 
Membind 

Interleave 

2 Longs 38.08 35.21 35.63 35.91 36.75 36.99 
4 Longs 20.18 18.70 19.72 18.83 19.63 19.97 
8 Longs 11.47 11.39 13.85 11.12 13.42 12.06 

16 Longs 8.96 — — 8.95 14.71 14.99 
2 DMZ 27.05 26.30 28.08 28.01 27.59 27.27 
4 DMZ 14.38 — — 14.44 16.08 14.74 

Table 9: Overall performance of the JAC benchmark. Times listed in seconds. 

Number of cores System LJ Chain EAM 
2 DMZ 1.79 2.13 1.96 
4 DMZ 3.61 4.41 3.60 
2 Longs 1.89 2.23 1.82 
4 Longs 3.51 5.53 3.45 
8 Longs 6.63 11.52 6.74 

16 Longs 10.65 19.95 12.54 
2 Tiger 1.92 2.13 1.87 

Table 10: LAMMPS benchmark: Multi-core speedup (no numactl) 

MPI tasks System Default One MPI + 
Local Alloc 

One MPI + 
Membind 

Two MPI + 
Local Alloc 

Two MPI + 
Membind 

Interleave 

2 Longs 3.82 3.6 3.76 3.73 3.73 3.93 
4 Longs 1.95 1.87 1.99 2.52 2.99 2.03 
8 Longs 1.03 1.02 1.11 1.97 1.067 1.05 

16 Longs 0.63 — — 0.63 0.77 0.64 
2 DMZ 3.07037 2.89618 3.10457 3.00691 3.00305 2.96663 
4 DMZ 1.55389 — — 1.53995 1.73746 1.58052 

Table 11: LAMMPS benchmark: Impact of numactl options on overall performance 

 
POP performance is characterized by the performance of 

two phases: baroclinic and barotropic. The baroclinic phase is 
three dimensional with limited nearest-neighbor 
communication and typically scales well on all platforms. In 
contrast, runtime of the barotropic phase is dominated by the 
iterative solution of a two-dimensional, implicit system using a 
conjugate gradient method. The performance of the barotropic 
solver is very sensitive to network latency and typically scales 
poorly on all platforms. 

For our evaluation we used version 1.4.3 of POP and a 
POP benchmark configuration called x1,’which represents a 
relatively coarse resolution similar to that currently used in 
coupled climate models. The horizontal resolution is roughly 
one degree (320×384). The vertical coordinate uses 40 vertical 
levels. 

 
Number of cores System Baroclinic Barotropic 

2 DMZ 2.04 2.07 
4 DMZ 3.87 3.99 
2 Tiger 1.97 1.93 
2 Longs 2.02 2.002 
4 Longs 4.08 4.07 
8 Longs 8.26 8.28 

16 Longs 16.11 14.85 

Table 12: POP multi-core speedup. 

Using the embedded timers, we measured performance 
and scaling of baroclinic and barotropic calculation phases. All 
timings are presented in seconds, for a 50 time-step or 2-day 
simulation run. Table 12 lists the speedups across multiple 
cores for POP runs on the DMZ, Tiger, and Longs systems. 
Although the baroclinic process is relatively more 
computationally expensive than the barotropic process, both 
phases of calculations scale almost linearly on dual-core 
Opteron systems. 

Conjugate Gradient (CG) calculations are performed as 
part of the Barotropic calculations in POP. Like FFT, NAS CG 
benchmarks show sensitivity to the processor and memory 
affinity schemes, therefore, we conducted experiments on the 
DMZ and Longs systems with combinations of numactl 
options. Table 13 shows the impact of the numactl options 
on the Baroclinic calculations and Table 14 lists barotropic 
runtimes on the DMZ and Longs system. Note that the number 
of MPI invocations and message volume are much higher in 
the barotrpic phase as compared to the baroclinic phase. 
Therefore, the effect of the HT ladder in the Longs system 
results in higher performance when there are 2 MPI tasks per 
core as compared to one MPI task per core. On 2 and 4 MPI 
tasks runs, the CG options that provided higher performance 
number on the NAS CG benchmark, shows a similar effect on 
the barotropic calculations. 
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MPI tasks System Default One MPI + 

Local Alloc 
One MPI + 
Membind 

Two MPI + 
Local Alloc 

Two MPI + 
Membind 

Interleave 

2 Longs 358.57 332.29 343.89 354.01 354.62 408.66 
4 Longs 177.64 163.37 191.78 169.08 275.91 194.99 
8 Longs 87.58 86.61 118.87 84.5 184.33 98.09 

16 Longs 44.93 — — 44.9 75.96 57.08 
2 DMZ 301.82 284.53 326.43 316.36 305.34 306.05 
4 DMZ 150.15 — — 154.03 199.51 156.79 

Table 13: Impact of numactl on POP baroclinic execution time (in seconds). 

MPI tasks System Default One MPI + 
Local Alloc 

One MPI + 
Membind 

Two MPI + 
Local Alloc 

Two MPI + 
Membind 

Interleave 

2 Longs 36.13 34.35 35.12 37.28 37.37 41.41 
4 Longs 17.75 17.08 20.3 17.51 34.92 19.29 
8 Longs 8.74 10.06 10.41 8.96 21.99 9.31 

16 Longs 4.87 — — 4.23 4.55 4.36 
2 DMZ 29.78 26.18 29.68 30.40 28.21 29.84 
4 DMZ 13.76 — — 13.94 17.55 14.33 

Table 14: Impact of numactl on POP barotropic execution time (in seconds). 

5 Summary and Conclusions 
We considered multi-core processors using computation 

and communication micro-benchmarks, and using higher-level 
benchmark suites that reach toward full scientific applications. 
We observed a significant benefit (approximately 8% to 12%) 
when communicating between processes running within a 
multi-core processor as opposed to between cores on different 
processors, indicating an opportunity for a programming 
model (or an implementation of an existing programming 
model) that is multi-core processor-aware. Most disappointing 
were the scalability issues inherent in our eight-socket dual 
core Opteron system Longs, suggesting that the current cache 
coherence scheme is not sufficient to sustain the full memory 
bandwidth capability of the memory parts or the Opteron’s 
memory interface. We expect that this is a function of the 
maturity level of the architecture and/or compilers and that a 
combination of improved prefetching and latency hiding in 
future compilers and improvements in future Opteron products 
will improve the scalability. The DGEMM, FFT, and 
RandomAccess results show that while adding a second core 
to a socket decreases the per core performance (varying 
depending on cache hit rate), it does increase the overall per 
socket performance (again, varying depending on the cache hit 
rate).  The impact on STREAM performance, however, was 
significantly worse than expected, in that adding the second 
core resulted in an overall decrease not only in per core 
performance, but also in per socket (overall) performance.  
From our initial results, we conclude that dual core processors 
are generally worth the investment in 1, 2, and 4 socket 
configurations, but that current 8 socket configurations should 
be reserved to those application classes which exhibit 
extremely high cache locality as exemplified by DGEMM. The 
odd interactions between the page placement algorithms and 
the MPI sublayers are only observable on the 8 socket 
configurations, leading us to believe that the cache coherence 
issues noted on the Longs platform negatively impact the 

benchmark behavior and predictability. Investigation and 
understanding of the micro-benchmarks and scientific kernels 
results subsequently informed analysis of large-scale 
applications that are discussed in this paper.  
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