

Characterization of Scientific Workloads on Systems with
Multi-Core Processors1

Sadaf R. Alam, Richard F. Barrett, Jeffery A. Kuehn, Philip C. Roth, Jeffrey S. Vetter

Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, TN, USA 37831
{alamsr,rbarrett,kuehn,rothpc,vetter}@ornl.gov

1 The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S.
Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S.
Government purposes.

Abstract. Multi-core processors are planned for virtually all
next-generation HPC systems. In a preliminary evaluation of AMD
Opteron Dual-Core processor systems, we investigated the scaling
behavior of a set of micro-benchmarks, kernels, and applications. In
addition, we evaluated a number of processor affinity techniques for
managing memory placement on these multi-core systems. We
discovered that an appropriate selection of MPI task and memory
placement schemes can result in over 25% performance improvement
for key scientific calculations. We collected detailed performance
data for several large-scale scientific applications. Analyses of the
application performance results confirmed our micro-benchmark and
scaling results.

Keywords: Performance characterization, Multi-core processor,

AMD Opteron, micro-benchmarking, scientific applications.

1 Introduction
The move by major microprocessor vendors toward

processors containing multiple homogeneous processor cores
is arguably the most important trend in contemporary
computer architectures. Given the ability to produce chips with
an ever-increasing number of transistors, the approach of
duplicating existing cores is a straightforward way to address
problems related to physical constraints (e.g., power, thermal,
and signaling) and limited instruction-level parallelism.
However, because all cores of a processor share the link
between the processor’s socket and memory, contention for
this memory link can limit the achievable performance when
using more than one core per processor. Applications can
perform well on systems with these multi-core processors, but
only if they expose enough parallelism to use the multiple
cores within their collective memory bandwidth limitations.

The fundamental question for HPC scientific computing is
whether multiple cores per processor can provide performance
commensurate with initial expectations. Simply put, the
shared memory and I/O (network) bandwidth of multiple cores
in a socket draws into question both how efficiently an

application can use multiple cores and what methods provide
the highest efficiency.

In a preliminary evaluation of multi-core processors for
scientific computing, we investigated the behavior of micro-
benchmarks, macro-benchmarks, and applications running on
systems with multi-core AMD Opteron processors [3]. We
evaluated not only the processors’ computation capabilities,
but also the communication capabilities of symmetric
multiprocessing (SMP) systems with multi-core processors
that might be used as the building blocks of a large parallel
system. We discovered that although systems with multi-core
processors can be effective for scientific computation,
approaches that are aware of the multi-core processors are
necessary to achieve highest performance. We evaluated a
number of processor affinity techniques for managing memory
placement on multi-core systems and discovered that an
appropriate selection of MPI task and memory placement
schemes can result in over 25% performance improvement for
key scientific calculations.

To evaluate computation characteristics of multi-core
processors, we measured the performance of several low-level
micro-benchmarks and a subset of the NAS Parallel
Benchmarks [4] running on test systems with multi-core
Opteron processors. We observed the expected effect that
performance remained comparable to that of single-core
processors when memory accesses were satisfied out of
processor cache, but performance degraded when processes
running on cores in the same processor socket contended for a
common link to memory.

To evaluate the communication performance of multi-core
processors, we investigated the intra-node communication
behavior of several MPI benchmarks on our multi-core test
systems [6, 11]. Although a hybrid programming model that
uses OpenMP for parallelism within a node and MPI for
parallelism among nodes is often proposed as the best way to
use systems with multi-core processors, the traditional MPI
programming model is likely to remain important for

 - 2 -

portability reasons and to satisfy the requirements of the huge
base of existing applications. To evaluate the traditional MPI
programming model on systems with multi-core processors,
we ran benchmarks, such as the Intel MPI Benchmark suite
and the High Performance Computing Challenge (HPCC)
benchmark [2] suite, on systems with at least two Opteron
multi-core processors.

Based on our observations of the micro-benchmark and
kernel results, we experimented with a set of representative
applications from bio-molecular and climate simulations [7, 9,
10]. We confirmed that the memory and task placement
configurations that result in an optimal performance for
scientific kernels provide 10-20% performance improvement
for full application runs. This validates our assertion that
applications or the system software needs to be aware of multi-
core resources and should be configured to exploit these
resources.

2 Evaluation Systems
Because no definition of terms, such as “processor,” has

been widely accepted for multi-core processors, we use the
following terminology. A computing system is a collection of
nodes interconnected with a high-speed network. A node is a
group of sockets that typically share main memory and
perhaps other components of the memory hierarchy, such as
cache, and communicate through one or more ports to the
high-speed interconnect. A socket contains one or more cores,
a memory link, and possibly an interconnect link and an IO
link. A core is the fundamental execution unit in the system,
containing functional units, registers, etc.

For our evaluation, we used several systems with AMD
Opteron processors; the systems are summarized in Table 1.

Table 1: System Configurations

Longs system is an eight-socket Iwill H8501 server as
shown in Figure 1. Each socket consists of a 1.8 GHz dual core
AMD Opteron 865 and 4GBytes of dual channel DDR400
memory, connected via a 2x4 HyperTransport ladder topology
network. Each core has a 64KB data cache, a 64 KB
instruction cache, and a unified 1MB L2 cache. The system
runs the Fedora Core 4 distribution of Linux, with a 2.6.13
SMP kernel. All code was compiled using GNU v4 compilers.

DMZ is a cluster of four nodes, each consisting of two
dual core AMD 2.2 GHz Opteron 275 processors and 4
GBytes of shared memory, running Red Hat Enterprise Linux
4 update 3. The nodes are not connected by a high
performance network, so we limit our experiments to a single
node. All code was compiled using GNU v4 compilers.

Figure 1: Iwill H8501 system architecture

In contrast to the dual core processor-based DMZ and
Longs systems, the Cray XD-1, known as Tiger, consists of
144 single core 2.2 GHz AMD Opteron 248 processors. A
node consists of two processors, each capable of 4.4 GFlop/s,
with 8 GBytes of memory. The 72 nodes, connected by the
Cray RapidArray fabric, run the Linux operating system;
however, the compute nodes have a special kernel that allows
them to synchronize with a global clock and co-schedule
processes to avoid latency in global communication. All code
was compiled using the PGI release 6.0.

2.1 Processor and Memory Affinity
A full evaluation of multi-core processors requires the use

of processor affinity, the capability to specify that processes
run only on a specific core or set of cores. Each of our test
systems runs the Linux operating system, which provides a
few mechanisms for controlling processor affinity. On systems
with Non-Uniform Memory Access (NUMA) architectures,
such as our AMD Opteron test systems, the numactl
command controls processor affinity for a process and all of its
children processes. It can also be used to control the operating
system’s memory page placement policy to ensure, for
example, that a process’ memory pages are always allocated in
the memory that is directly attached to the socket that is
running the process. Recent Linux kernels (version 2.6 and
newer, and even some 2.4 versions) also contain system calls
such as sched_setaffinity to set processor affinity. In our
experiments, we used the numactl command to control
processor and memory affinities.

3 Microbenchmarks and Kernels
Part of our evaluation of multi-core Opteron processors

involved a study of the computation and memory access
behavior of multi-core Opteron processors. In this section, we
discuss our findings from the results from a collection of
benchmarks used as part of the ongoing early systems
evaluation effort at the Oak Ridge National Laboratory.

3.1 STREAM: Memory Latency & Bandwidth
STREAM is a benchmark used for determining a system’s

maximum memory throughput [14]. The LMbench benchmark
suite includes an implementation of the STREAM benchmark.
Figure 2 and Figure 3 show bandwidth scaling plots based on
the LMbench3 STREAM-triad benchmark. Global bandwidth

N
am

e

O
pt

er
on

 M
od

el

Fr
eq

ue
nc

y
(G

hz
)

C
or

es
 p

er

So
ck

et

So
ck

et
s

pe
r

N
od

e
To

ta
l C

or
es

pe

r N
od

e
N

od
e

M
em

or
y

Si
ze

 (G
B

)

N
od

e
M

em
or

y
Ty

pe

O
S

Tiger 248 2.2 1 2 2 8 DDR-400 Suse Linux
DMZ 275 2.2 2 2 4 4 DDR-400 RH Linux 2.6.9

Longs 865 1.8 2 8 16 32 DDR-400 RH Linux 2.6.13

 - 3 -

increases almost linearly as the first core in each socket is
activated; however, activating the second core in each socket
generally provides flat or degraded performance. Interestingly,
a significant difference in bandwidth is observed (especially
clear at 1-2 cores, i.e., 1 or 2 sockets active) among the 8
socket system and systems with 2 or 4 sockets.

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

M
em

or
y

B
an

dw
id

th
 (M

B
/s

)

8 socket 4 socket 2 socket

Figure 2: Memory bandwidth

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of cores

M
em

or
y

B
an

dw
id

th
 p

er
 c

or
e

(M
B

/s
/c

or
e)

8 socket 4 socket 2 socket

Figure 3: Memory bandwidth per core

3.2 BLAS Level 1 and 3 Operations
Many numerical operations common to scientific

computing codes are represented by the Basic Linear Algebra
Subprograms (BLAS) library [1]. Most vendors provide BLAS
as an optimized system library, which provides a special
opportunity for comparing the compiler’s ability to optimize
Fortran code (we refer to this as the “vanilla” version) against
code that the vendor has invested significant effort. Here, we
consider vector addition (DAXPY, with alpha=1) and matrix-
matrix multiplication (DGEMM, with alpha=1 and beta=0).
The high data reuse and cache-friendly nature of the DGEMM
provides a significant opportunity for achieving strong
performance relative to the theoretical peak capability.

We measured performance both with the vendor
optimized implementations found in the AMD Math Core
library (ACML) and with a vanilla implementation of the
operation. The graphs shown in Figure 4 and Figure 6 compare
the performance of DAXPY, and DGEMM operations
provided with the ACML library on the DMZ system. These
figures show the aggregated performance as well as the
performance per core. For example, Total (n cores) is the
aggregated performance and nT (core x) is performance of
core x in an n processor run. Figure 5 and Figure 7 show the

performance of “vanilla” implementations of the same
operations, unoptimized for any particular processor. Here, we
compare performance of single vs. two MPI tasks per socket.

0.00E+00
5.00E-01

1.00E+00
1.50E+00
2.00E+00
2.50E+00
3.00E+00
3.50E+00
4.00E+00
4.50E+00
5.00E+00

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

26
21

44

10
48

57
6

41
94

30
4

Vector Length

G
flo

ps

Total (1 core) Total (2 cores) 2T (core 1) 2T (core2)
4T (core 1) 4T (core 2) 4T (core 3) 4T (core 4)

Figure 4: BLAS Level 1 (DAXPY) performance (ACML)

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

26
21

44

10
48

57
6

41
94

30
4

vector length

G
Fl

op
s

1 CPU/core (acml) 1 CPU/core (vanilla)
2 CPU/core (acml) 2 CPU/core (vanilla)

Figure 5: BLAS Level 1 (DAXPY) performance/ core

0.00E+00
2.00E+00
4.00E+00
6.00E+00
8.00E+00
1.00E+01
1.20E+01
1.40E+01
1.60E+01
1.80E+01

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

Matrix Dimension

G
Fl

op
s

Total (1 core) Total (2 cores) 2T (core 1)
2T (core2) Total (4 cores) 4T (core 1)
4T (core 2) 4T (core 3) 4T (core 4)

Figure 6: BLAS Level 3 performance (ACML)

0.00E+00
5.00E-01

1.00E+00
1.50E+00
2.00E+00

2.50E+00
3.00E+00
3.50E+00

4.00E+00
4.50E+00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

Matrix dimension

G
Fl

op
s

1 CPU/core (acml) 1 CPU/core (vanilla)
2 CPU/core (acml) 2 CPU/core (vanilla)

Figure 7: BLAS level 3 performance per core

 - 4 -

3.3 HPC Challenge Benchmarks
HPC Challenge is a suite of benchmarks that do not focus

tightly on a particular aspect of performance (i.e., computation
or communication) but instead represent another step toward
fidelity with respect to full scientific applications [2]. We
performed this part of our evaluation on the Iwill system that
contains eight sockets arranged in a 4x2 mesh topology (also
referred to as a ladder), with a dual-core Opteron in each
socket. The message passing capability was provided by LAM,
version 7.7.1.

HPCC results were generated on 16 cores with a single
binary, varying the NUMA memory placement and contrasting
these variances with changes to the MPI communication layer.
HPL results in Figure 8 demonstrate a variety of interactions
between memory placement and the MPI communication
layer. There are two memory placement schemes, localalloc
(which forces pages to be allocated nearest the CPU where the
allocation is performed) and interleave (which forces pages to
be allocated round-robin across the CPUs). There are also
several choices for the locking mechanism used in the MPI
sub-layer, including SysV that uses System V semaphores, and
USysV that uses spin locks. The memory placement schemes
have a smaller impact than the selection of MPI sub-layer.
Examination of the other HPCC benchmarks will shed further
light on these results. Since Longs has a large NUMA domain,
it is used to evaluate the NUMA related options (usysv and
localalloc). In contrast, the HPCC benchmarks on the DMZ
system are minimally affected by different NUMA options
because it has a much simpler organization than the Longs
system. Hence, we present HPCC benchmark results with six
different runtime options on Longs but only one result for the
DMZ system.

0
5

10
15
20
25
30
35
40

D
ef

au
lt

Lo
ca

la
llo

c

U
sy

sv

lo
ca

la
llo

c+
us

ys
v

Sy
sv

lo
ca

la
llo

c+
sy

sv

D
m

z

G
Fl

op
s

Figure 8: HPL performance with LAM/NUMA options

The computationally intensive kernels DGEMM
(evaluated on the DMZ system) and FFT are extremely cache-
friendly and are only slightly impacted by memory placement,
the MPI sub-layer, and the number of cores actively executing
the same algorithm, as shown in Figure 9. The figure shows
results for several benchmarks from the HPCC benchmark
suite, in both their Single mode (where exactly one processor
runs the benchmark) and Star mode (also known as
“embarrassingly parallel” mode, where all processors run the
benchmark concurrently but without explicit communication).

 Note that the Star DGEMM and Single DGEMM results
are almost identical, whereas the somewhat less cache-friendly
FFT shows slightly more impact going from Single FFT to
Star FFT. The nearly 1:1 ratio between Single DGEMM and
Star DGEMM equates to the second core effectively doubling
the per socket performance.

The HPCC STREAM benchmark measures memory
bandwidth, and thus is greatly impacted by choice of memory
placement. Oddly, this benchmark is nominally independent of
MPI performance; however, the results show some sensitivity
to the choice of MPI sub-layer. Clearly, the MPI sub-layer is
affecting page placement. Most surprising is that the impact of
running the benchmark across all cores is greater than the
expected factor of two in the cases of default placement and
MPI sub-layer and localalloc with the USysV sub-layer as
shown in Figure 10. With a Single to Star ratio of greater than
2:1, engaging the second core on this memory bandwidth
intensive benchmark results in a net performance loss per
socket. More disturbing is that the best achievable single core
bandwidth on the 8 socket system is less than half of the more
than 4 GBytes per second one would typically expect from an
Opteron. More details will follow as we drill down on the
other benchmarks.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

D
ef

au
lt

Lo
ca

la
llo

c

U
sy

sv

lo
ca

la
llo

c+
us

ys
v

S
ys

v

lo
ca

la
llo

c+
sy

sv

D
m

z

G
Fl

op
s

Single DGEMM Star DGEMM Single FFT Star FFT MPI FFT

Figure 9: Processor performance with runtime options

0

0.5

1

1.5

2

2.5

3

3.5

Si
ng

le
ST

R
EA

M
Ad

d

St
ar

ST
R

EA
M

Ad
d

Si
ng

le
ST

R
EA

M
C

op
y

St
ar

ST
R

EA
M

C
op

y

Si
ng

le
ST

R
EA

M
Sc

al
e

St
ar

ST
R

EA
M

Sc
al

e

Si
ng

le
ST

R
EA

M
Tr

ia
d

St
ar

ST
R

EA
M

Tr
ia

d

B
an

dw
id

th
 (G

B
/s

)

Default Localalloc Usysv localalloc+usysv Sysv localalloc+sysv Dmz

Figure 10: Impact of LAM and NUMA runtime options on

memory performance

The RandomAccess (RA) benchmark is designed to
measure the performance of the last level of hierarchy of the
memory system. The messages sent by the MPI
implementation of the RA benchmark are small. Thus the high
MPI latency (see below), attributable to the high cost of the
Linux implementation of the SystemV semaphore, results in

 - 5 -

poor performance of this benchmark. Figure 11 demonstrates
that the MPI sub-layer appears to impact memory performance
for the Single RA benchmark, comparing localalloc to
localalloc+USysV, and default to SysV. Notably on each of
the benchmarks thus far, the selection of sysv seems to
dominate choice of localalloc vs. interleave. Relative to
STREAMS, Single and Star RA stronger dependence on
memory latency than memory bandwidth impacts the relative
performance of single and star RA, with the ratio (less than
2:1) from bringing the second core per socket online creates a
net performance gain per socket for the second core.

MPI communication bandwidth is not particularly relevant
to our understanding of the performance of dual-core
processors; however, comparing the Ring and PingPong
bandwidths clearly exposes the topology and congestion
effects on the HT8501’s HyperTransport ladder. As shown in
Figure 12, the PTRANS benchmark demonstrates more
extreme differences in performance for SysV and USysV MPI
sub-layers, with USysV’s spinlocks providing a clear
performance advantage. Localalloc does well on its own, but
degrades both SysV and USysV when combined. Again,
localalloc and the choice of MPI sub-layer are interacting
poorly.

0

0.005

0.01

0.015

0.02

0.025

D
ef

au
lt

Lo
ca

la
llo

c

U
sy

sv

lo
ca

la
llo

c+
us

ys
v

Sy
sv

lo
ca

la
llo

c+
sy

sv

D
m

z

U
pd

at
e

ra
te

 (G
U

PS
)

Single RandomAccess Star RandomAccess MPI RandomAccess

Figure 11: Another view of HPCC memory performance

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
ef

au
lt

Lo
ca

la
llo

c

U
sy

sv

lo
ca

la
llo

c+
us

ys
v

Sy
sv

lo
ca

la
llo

c+
sy

sv

D
m

z

B
an

dw
id

th
 (G

B
/s

)

PTRANS Min PingPong Avg PingPong
Max PingPong Naturally Ordered Ring Randomly Ordered Ring

Figure 12: Impact of LAM and NUMA runtime options on

communication performance

The MPI latency benchmarks expose information about
the HT ladder interconnect. As expected ring latencies are
higher than PingPong latencies (see Figure 13). However the
differences between these are overwhelmed by the high
latencies associated with the SysV MPI sub-layer. Comparing

against the MPI-RA benchmark, the key conclusion is that the
high SysV latencies have a strong negative impact on
performance when the message size is small; however, with
larger messages, the impact can be essentially negligible as in
MPI-FFT.

0
5

10
15
20
25
30
35

D
ef

au
lt

Lo
ca

la
llo

c

U
sy

sv

lo
ca

la
llo

c+
us

ys
v

S
ys

v

lo
ca

la
llo

c+
sy

sv

D
m

zLa
te

nc
y

(m
ic

ro
-s

ec
on

ds
) Min PingPong Avg PingPong Max PingPong Naturally Ordered Ring Randomly Ordered Ring

Figure 13: Communication performance

3.4 Intel MPI Benchmarks
On distributed memory systems with multi-core

processors, a hybrid programming model consisting of MPI for
inter-node communication and OpenMP (or a similar threading
approach) is often proposed as the best match for such
systems. However, a pure MPI model without intra-node
threading is also likely to be used on such systems for the sake
of application portability and due to the large base of existing
applications written in MPI. Because of the continuing
importance of the pure MPI programming model, we
examined the behavior of MPI benchmarks and applications on
systems similar to those found as nodes in a distributed
memory parallel computer with multi-core processors. In this
section we discuss the results from the Intel MPI Benchmarks.

We considered two popular MPI implementations,
MPICH2 version 1.0.3 [13] and LAM version 7.1.2 [12]. We
also considered OpenMPI version 1.0.1, because it appears to
have the potential for widespread adoption going forward.
Experiments executed on a DMZ node. Although this system
is not part of a larger distributed memory system, this type of
system could serve as a node in a cluster or MPP. Ideally, the
MPI implementation on a system like this uses an optimized
communication mechanism for intra-node communication
such as shared memory buffers; each of the MPI
implementations we considered has this capability.

Based on these PingPong and Exchange benchmark
results (Figure 14 and Figure 15), there is no clear consensus
on which MPI implementation makes best use of the shared
memory approach for intra-node communication. MPICH2
seems to have a high latency overhead compared to the others
for small message lengths, but becomes comparable with the
others with messages of approximately 16KB. The bandwidth
results also show no clear picture with respect to which MPI
implementation best took advantage of the dual-core
processors. LAM showed superior performance for messages
smaller than 16KB, OpenMPI showed the best performance
for intermediate-sized messages, and MPICH was superior for
large messages.

(a) bandwidth

(b) latency

Figure 14: Intra-node Intel MPI Benchmark PingPong benchmark performance.

(a) bandwidth

(b) latency

Figure 15: Intra-node Intel MPI Benchmark Exchange benchmark performance

The second part of our investigation focused on the effects
of multi-core processors on the intra-node communication
behavior of a single MPI implementation. We chose the
OpenMPI implementation for these experiments because it
exhibited good performance for large messages using its
default configuration. These results are shown in Figure 16 and
Figure 17 for the PingPong and Exchange benchmarks,
respectively. For each benchmark, we report the bandwidth
and latency of the operation when run in several different
configurations intended to provide insight into the effect of the
multi-core processors on intra-node communication. In each
plot, the curves labeled “2 procs, bound n” indicate a
configuration where the benchmark was limited to two
processes, and the Linux numactl command was used to set
the processor affinity and memory allocation policies so that
the processes ran only on one or the other of the system’s dual-
core processors and always allocated memory locally to that
processor. The “2 procs, unbound” curve represents a
configuration where the benchmark was limited to two
processes but used the default processor affinity and memory
allocation policy. The “2 procs, unbound, 2 parked”
configuration created four processes but only two were
involved in the MPI communication operation. Finally, for the

Exchange benchmark, a “4 procs” configuration was used that
measured performance of a four-processor IMB Exchange
operation.

Based on these results, for both benchmarks there is a
small but non-negligible bandwidth benefit (approximately 10
to 13%) from confining communication within a multi-core
processor. A latency benefit also appears to be present for
small messages.

The experiments described in this section show that one
must consider the topology of a node with more than one
multi-core processor to achieve the highest communication
performance. We observed better bandwidth and latency
between processes running on the same multi-core processor
than between processes running on distinct multi-core
processors connected via a coherent HyperTransport link. We
also observed the possibility of non-negligible communication
degradation on systems with a relatively large number of
multi-core processors (eight dual-core processors in our case)
arranged in a 2D mesh topology, suggesting that cache
coherence traffic imposes a limit on the number of processor
sockets each node should contain for best performance.

(a) bandwidth

(b) latency

Figure 16: Intra-node OpenMPI PingPong benchmark performance with scheduler affinity

(a) bandwidth

(b) latency

Figure 17: Intra-node OpenMPI Exchange benchmark performance with scheduler affinity.

Combining these two observations suggests that for best
performance we must view systems that use multi-core
processors as having not two classes of communication
channels, but three: the system interconnect, the links between
processor sockets within an SMP node, and the links within
each multi-core processor. A programming model using
OpenMP only within each multi-core processor, and MPI for
communication both between processor sockets and between
system nodes might be a high-performance alternative that best
exploits the three classes of communication performance
found in systems with SMP nodes and multi-core processors.

3.5 NAS Parallel Benchmarks
The NAS Parallel Benchmark (NPB) Suite consists of

several small programs derived from computational fluid
dynamics applications [4]. Using the MPI version from NAS
benchmark distribution 3.2, the experiments reported here
were performed using the class B problem sets. The code was
compiled using gnu4 on DMZ and Longs and PGI on Tiger.

The MPICH2 library provided the message passing capability
on all platforms.

Table 4 shows the speedup for two representative kernels
(CG and FT) relative to single processor performance. Because
a goal of this work is to examine intra-node communication
behavior, and there are four total cores in our DMZ test
system, we used at most four MPI tasks for the DMZ tests.
Note that this benchmark suite tests the strong scaling
capabilities of a computer, and thus we can (and do here) see
speedups greater than 1.0.

As anticipated, the scaling within a system largely
depends on the underlying characteristics of the algorithms.
Scaling of three different dual-core Opteron systems are
consistent. At the same time, the HT ladder in the Longs
system prevents the two benchmarks from sustaining speedup
on 8 and 16 processors. Since CG and FFT calculations are
widespread in a number of scientific applications, we
investigated the effects of processor and memory affinity
techniques for these two calculations on the Longs and the
DMZ system.

Number of
MPI tasks

Kernel Default One MPI +
Local Alloc

One MPI +
Membind

Two MPI +
Local Alloc

Two MPI +
Membind

Interleave

2 CG 162.81 162.68 162.72 172.08 170.79 190.18
4 CG 98.51 88.21 111.02 102.94 99.54 109.93
8 CG 50.93 51.15 109.11 49.24 115.87 67.23

16 CG 54.17 — — 54.45 121.87 72.62
2 FFT 118.97 118.56 123.15 129.18 129.12 137.79
4 FFT 79.96 67.72 91.84 74.38 92.79 84.89
8 FFT 42.32 39.96 69.79 62.80 81.95 47.13

16 FFT 30.77 — — 31.36 63.39 41.48

Table 2: Effect of numactl options on NAS CG and FT benchmarks on the Longs system. Times listed in seconds.

Number of
MPI tasks

Kernel Default One MPI +
Local Alloc

One MPI +
Membind

Two MPI +
Local Alloc

Two MPI +
Membind

Interleave

2 CG 106.8 106.24 125.87 111.17 111.20 115.02
4 CG 59.22 — — 68.16 86.93 66.74
2 FFT 93.58 100.84 115.42 108.30 101.18 105.13
4 FFT 57.05 — — 57.03 75.50 63.67

Table 3: Impact of numactl options on NAS CG and FT benchmarks performance. Times listed in seconds

Table 5 lists a combination of memory and processor
affinity schemes that are used in running the NAS parallel
benchmark and scientific applications experiments.

Benchmark System 2

cores
4

cores
8

cores
16

cores
CG DMZ 1.07 0.86 — —
CG Longs 1.07 0.73 0.52 0.25
CG Tiger 1.01 — — —
FT DMZ 0.82 0.64 — —
FT Longs 0.85 0.69 0.62 0.42
FT Tiger 0.88 — — —

Table 4: Multi-core speedup for NAS benchmarks

Name Description
Default Default (no numactl)
One MPI+Local Alloc One MPI task per socket and local

allocation policy
One MPI+Membind One MPI task per socket with

explicit memory binding per core
Two MPI+Local Alloc Two MPI tasks per socket and local

allocation policy
Two MPI+Membind Two MPI tasks per socket with

explicit memory binding per core
Interleave Interleaved memory allocation

Table 5: numactl options used for experiments

The runtime performance for CG and FFT (Class B)
benchmarks for Longs and DMZ is listed in Table 2 and Table
3 respectively. Note that as the number of cores increases (one
MPI task per core) the workload per core decreases and the
total number of inter-process communication messages
increases. On the Longs system experiments are run so as to
minimize the effect of the HT ladder (or the number of
communication hops) on up to four cores. For example, we
have used nodes 2, 3, 4, and 5 to run four single task/core
experiments and 8 two tasks/core experiments. Overall, the FT
benchmark is found to be more sensitive to the memory

placement techniques as compared to the CG benchmark. On
the Longs system, one task/core with localalloc option
provides the best performance for the two benchmarks.
Memory interleaving and forcing membind (allocate memory
from nodes) and cpubind (execute process on CPU of nodes)
processors result in worst-case performance for almost all test
cases.

4 Applications

4.1 Molecular Dynamics Simulations
Molecular dynamics (MD) simulations enable the study of

complex, dynamic processes that occur in biological systems
[8]. MD methods are now used routinely to investigate the
structure, dynamics, functions, and thermodynamics of
biological molecules and their complexes. The types of
biological activity that have been investigated using MD
simulations include protein folding, enzyme and DNA, and
biological membrane complexes. Biological molecules exhibit
a wide range of time and length scales over which specific
processes occur, hence the computational complexity of an
MD simulation depends greatly on the time and length scales
considered. With an explicit solvation model, typical system
sizes of interest range from 20K atoms to more than 1 million
atoms; if the solvation is implicit, sizes range from a few
thousand atoms to about 100K. The simulation time period can
range from pico-seconds to the a few micro-seconds or longer.

Several commercial and open source MD software
frameworks are in use by a large community of biologists,
including AMBER and LAMMPS. These packages differ in
the form of their potential function and also in their force-field
calculations. Some of them are able to use force-fields from
other packages as well. The version of LAMMPS used in our
evaluation does not use the energy minimization technique.

 Benchmark dhfr factor_ix gb_cox2 gb_mb JAC
Number of atoms 22,930 90,906 18,056 2,492 23,558

MD technique PME PME GB GB PME

Table 6: Description of AMBER benchmarks

MPI tasks System Default One MPI +
Local Alloc

One MPI +
Membind

Two MPI +
Local Alloc

Two MPI +
Membind

Interleave

2 Longs 3.13 2.76 3.13 3.3 3.31 3.50
4 Longs 1.83 1.45 1.78 1.48 1.77 1.75
8 Longs 0.81 0.82 1.17 0.77 1.01 0.85

16 Longs 0.63 — — 0.57 1.32 2.22
2 DMZ 1.81 1.77 2.39 2.25 2.25 1.96
4 DMZ 1.03 — — 1.08 1.51 1.09

Table 7: FFT Performance in the JAC benchmark. Times listed in seconds.

Number of cores System dhfr factor_ix gb_cox2 gb_mb JAC
2 DMZ 1.90 1.91 1.98 1.98 1.96
4 DMZ 3.45 3.35 3.92 3.94 3.63
2 Longs 1.95 1.89 1.98 2.06 1.93
4 Longs 3.63 3.43 3.92 4.07 3.78
8 Longs 6.02 5.94 7.63 7.96 6.22
16 Longs 7.24 7.35 14.29 14.93 7.97

Table 8: AMBER PME multi-core speedup with no numactl option

AMBER consists of about 50 programs that perform a

diverse set of calculations for system preparation, energy
minimization (EM), molecular dynamics (MD), and analysis
of results [9]. AMBER's main module for EM and MD is
known as sander (for simulated annealing with NMR-derived
energy restraints). We used sander to investigate the
performance characteristics of EM and MD techniques using
the Particle Mesh Ewald (PME) and Generalized Born (GB)
methods. Table 6 lists five benchmarks that are part of
AMBER 8.0 release. The PME benchmarks use FFT
calculations as part of the reciprocal PME calculations, while
GB calculations are more computation-intensive as compared
to the PME calculations. Table 8 lists the AMBER PME
benchmark speedup across multiple cores for DMZ and Longs.
Both MD techniques manage to utilize the dual-core resources
efficiently as we observe near linear scaling on up to 4 cores
systems for PME method and on up to 16 cores for the GB
calculations.

Since we observed a notable difference in the NAS FFT
calculation using processor and memory affinity techniques,
we anticipated a performance improvement on AMBER PME
simulation runs, not only in its FFT calculations but also in
overall simulation runtime. Table 7 lists the variations in FFT
performance and Table 9 lists the overall runtime as a function
of different processor and memory placement techniques on
the JAC benchmark on the DMZ and Longs systems. As we
noted in the NAS benchmark runs, the processor and memory
affinity techniques significantly influence performance on the
Longs system. We observed similar behavior on a full-scale
application run. Likewise we demonstrate that the default
option on the DMZ system is sufficient to obtain near optimal

runtimes for NAS FFT benchmark. This is also true for
AMBER benchmark runs.

LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) is a classical MD code. LAMMPS models
an ensemble of particles in a liquid, solid or gaseous state and
can be used to model atomic, polymeric, biological, metallic or
granular systems [10]. We used the latest (2006) C++ and MPI
version and ran the following three benchmarks: Lennard-
Jones (LJ), Polymer (chain), and Metal (eam).

The above benchmarks contain 32,000 atoms each and run
for 100 simulation time steps. We ran the experiments on the
DMZ, Longs and Tiger systems. These results are listed in
Table 10. The LAMMPS benchmarks scale linearly on
multiple cores and the scaling behavior is increasingly
different for different classes of computation. For instance, the
chain calculations perform local, point-to-point interactions,
while the LJ benchmark calculates the overall energy effect
using the non-local calculations. The scaling behavior is
consistent across different dual-core Opteron system
configurations. Table 11 lists the impact of different processor
and memory affinity techniques on the LJ calculations that
perform FFT operations. The performance impacts are similar
to what we observed in AMBER.

4.2 Parallel Ocean Program (POP)
POP is the ocean component of Community Climate

System Model (CCSM) [5, 7]. The code is based on a finite-
difference formulation of the three-dimensional flow equations
on a shifted polar grid. In its high-resolution configuration,
1/10-degree horizontal resolution, the code resolves eddies for
effective heat transport and the locations of ocean currents.

MPI tasks System Default One MPI +
Local Alloc

One MPI +
Membind

Two MPI +
Local Alloc

Two MPI +
Membind

Interleave

2 Longs 38.08 35.21 35.63 35.91 36.75 36.99
4 Longs 20.18 18.70 19.72 18.83 19.63 19.97
8 Longs 11.47 11.39 13.85 11.12 13.42 12.06

16 Longs 8.96 — — 8.95 14.71 14.99
2 DMZ 27.05 26.30 28.08 28.01 27.59 27.27
4 DMZ 14.38 — — 14.44 16.08 14.74

Table 9: Overall performance of the JAC benchmark. Times listed in seconds.

Number of cores System LJ Chain EAM
2 DMZ 1.79 2.13 1.96
4 DMZ 3.61 4.41 3.60
2 Longs 1.89 2.23 1.82
4 Longs 3.51 5.53 3.45
8 Longs 6.63 11.52 6.74

16 Longs 10.65 19.95 12.54
2 Tiger 1.92 2.13 1.87

Table 10: LAMMPS benchmark: Multi-core speedup (no numactl)

MPI tasks System Default One MPI +
Local Alloc

One MPI +
Membind

Two MPI +
Local Alloc

Two MPI +
Membind

Interleave

2 Longs 3.82 3.6 3.76 3.73 3.73 3.93
4 Longs 1.95 1.87 1.99 2.52 2.99 2.03
8 Longs 1.03 1.02 1.11 1.97 1.067 1.05

16 Longs 0.63 — — 0.63 0.77 0.64
2 DMZ 3.07037 2.89618 3.10457 3.00691 3.00305 2.96663
4 DMZ 1.55389 — — 1.53995 1.73746 1.58052

Table 11: LAMMPS benchmark: Impact of numactl options on overall performance

POP performance is characterized by the performance of

two phases: baroclinic and barotropic. The baroclinic phase is
three dimensional with limited nearest-neighbor
communication and typically scales well on all platforms. In
contrast, runtime of the barotropic phase is dominated by the
iterative solution of a two-dimensional, implicit system using a
conjugate gradient method. The performance of the barotropic
solver is very sensitive to network latency and typically scales
poorly on all platforms.

For our evaluation we used version 1.4.3 of POP and a
POP benchmark configuration called x1,’which represents a
relatively coarse resolution similar to that currently used in
coupled climate models. The horizontal resolution is roughly
one degree (320×384). The vertical coordinate uses 40 vertical
levels.

Number of cores System Baroclinic Barotropic

2 DMZ 2.04 2.07
4 DMZ 3.87 3.99
2 Tiger 1.97 1.93
2 Longs 2.02 2.002
4 Longs 4.08 4.07
8 Longs 8.26 8.28

16 Longs 16.11 14.85

Table 12: POP multi-core speedup.

Using the embedded timers, we measured performance
and scaling of baroclinic and barotropic calculation phases. All
timings are presented in seconds, for a 50 time-step or 2-day
simulation run. Table 12 lists the speedups across multiple
cores for POP runs on the DMZ, Tiger, and Longs systems.
Although the baroclinic process is relatively more
computationally expensive than the barotropic process, both
phases of calculations scale almost linearly on dual-core
Opteron systems.

Conjugate Gradient (CG) calculations are performed as
part of the Barotropic calculations in POP. Like FFT, NAS CG
benchmarks show sensitivity to the processor and memory
affinity schemes, therefore, we conducted experiments on the
DMZ and Longs systems with combinations of numactl
options. Table 13 shows the impact of the numactl options
on the Baroclinic calculations and Table 14 lists barotropic
runtimes on the DMZ and Longs system. Note that the number
of MPI invocations and message volume are much higher in
the barotrpic phase as compared to the baroclinic phase.
Therefore, the effect of the HT ladder in the Longs system
results in higher performance when there are 2 MPI tasks per
core as compared to one MPI task per core. On 2 and 4 MPI
tasks runs, the CG options that provided higher performance
number on the NAS CG benchmark, shows a similar effect on
the barotropic calculations.

 - 11 -

MPI tasks System Default One MPI +

Local Alloc
One MPI +
Membind

Two MPI +
Local Alloc

Two MPI +
Membind

Interleave

2 Longs 358.57 332.29 343.89 354.01 354.62 408.66
4 Longs 177.64 163.37 191.78 169.08 275.91 194.99
8 Longs 87.58 86.61 118.87 84.5 184.33 98.09

16 Longs 44.93 — — 44.9 75.96 57.08
2 DMZ 301.82 284.53 326.43 316.36 305.34 306.05
4 DMZ 150.15 — — 154.03 199.51 156.79

Table 13: Impact of numactl on POP baroclinic execution time (in seconds).

MPI tasks System Default One MPI +
Local Alloc

One MPI +
Membind

Two MPI +
Local Alloc

Two MPI +
Membind

Interleave

2 Longs 36.13 34.35 35.12 37.28 37.37 41.41
4 Longs 17.75 17.08 20.3 17.51 34.92 19.29
8 Longs 8.74 10.06 10.41 8.96 21.99 9.31

16 Longs 4.87 — — 4.23 4.55 4.36
2 DMZ 29.78 26.18 29.68 30.40 28.21 29.84
4 DMZ 13.76 — — 13.94 17.55 14.33

Table 14: Impact of numactl on POP barotropic execution time (in seconds).

5 Summary and Conclusions
We considered multi-core processors using computation

and communication micro-benchmarks, and using higher-level
benchmark suites that reach toward full scientific applications.
We observed a significant benefit (approximately 8% to 12%)
when communicating between processes running within a
multi-core processor as opposed to between cores on different
processors, indicating an opportunity for a programming
model (or an implementation of an existing programming
model) that is multi-core processor-aware. Most disappointing
were the scalability issues inherent in our eight-socket dual
core Opteron system Longs, suggesting that the current cache
coherence scheme is not sufficient to sustain the full memory
bandwidth capability of the memory parts or the Opteron’s
memory interface. We expect that this is a function of the
maturity level of the architecture and/or compilers and that a
combination of improved prefetching and latency hiding in
future compilers and improvements in future Opteron products
will improve the scalability. The DGEMM, FFT, and
RandomAccess results show that while adding a second core
to a socket decreases the per core performance (varying
depending on cache hit rate), it does increase the overall per
socket performance (again, varying depending on the cache hit
rate). The impact on STREAM performance, however, was
significantly worse than expected, in that adding the second
core resulted in an overall decrease not only in per core
performance, but also in per socket (overall) performance.
From our initial results, we conclude that dual core processors
are generally worth the investment in 1, 2, and 4 socket
configurations, but that current 8 socket configurations should
be reserved to those application classes which exhibit
extremely high cache locality as exemplified by DGEMM. The
odd interactions between the page placement algorithms and
the MPI sublayers are only observable on the 8 socket
configurations, leading us to believe that the cache coherence
issues noted on the Longs platform negatively impact the

benchmark behavior and predictability. Investigation and
understanding of the micro-benchmarks and scientific kernels
results subsequently informed analysis of large-scale
applications that are discussed in this paper.

References
1. Basic Linear Algebra Subprograms (BLAS),

http://www.netlib.org/blas/
2. HPC Challenge Website, http://icl.cs.utk.edu/hpcc
3. “Software Optimization Guide for AMD Athlon™ 64 and AMD

Opteron™ Processors,” Technical Manual 25112, 2004.
4. D. Bailey, E. Barszcz et al., “The NAS Parallel Benchmarks

(94),” NASA Ames Research Center, RNR Technical Report
RNR-94-007, 1994,
http://www.nas.nasa.gov/Pubs/TechReports/RNRreports/dbailey/
RNR-94-007/RNR-94-007.html

5. M.B. Blackmon, B. Boville et al., “The Community Climate
System Model,” BAMS, 82(11):2357--76, 2001.

6. P. Ekman and P. Mucci, “Design Considerations for Shared
Memory MPI Implementations on Linux NUMA Systems: An
MPICH/MPICH2 Case Study,” AMD, 2005

7. P.W. Jones, P.H. Worley et al., “Practical performance
portability in the Parallel Ocean Program (POP),” Concurrency
and Computation: Experience and Practice, 2005; 17:1317-
1327.

8. M. Karplus and G.A. Petsko, “Molecular dynamics simulations
in biology,” Nature, 347, 1990.

9. D.A. Pearlman, D.A. Case et al., “AMBER, a package of
computer programs for applying molecular mechanics, normal
mode analysis, molecular dynamics and free energy calculations
to simulate the structural and energetic properties of molecules,”
Computer Physics Communication, 91, 1995.

10. S.J. Plimpton, “Fast Parallel Algorithms for Short-Range
Molecular Dynamics,” in Journal of Computational Physics, vol.
117, 1995.

11. M. Snir, W.D. Gropp et al., Eds., MPI--the complete reference
(2-volume set), 2nd ed. Cambridge, Mass.: MIT Press, 1998.

12. LAM, http://www.lam-mpi.org
13. MPICH, http://www-unix.mcs.anl.gov/mpi/mpich
14. STREAM benchmarks, http://www.cs.virginia.edu/stream

