
Network Support under VxWorks
Strategies

Mon, Dec 14, 1998

The VxWorks operating system kernel provides for extensive networking support. Part
of this support is the network sockets interface for the TCP/IP suite of Internet protocols.
This note discusses strategies for using the sockets interface network support for the
IRM-style system software.

The communications support needed by the system code is based upon UDP. The socket
interface supports UDP transactions via the sendto and recvfrom functions. The calling
sequences are as follows:

sendto(int s, caddr_t buf, int bufLen, int flags,
struct sockaddr *to, int tolen)

recvfrom(int s, char *buf, int bufLen, int flags,
struct sockaddr *from, int *pFromLen)

s = the socket used to send a datagram to or receive a datagram from.
buf = the buffer containing the datagram to be sent or received.
bufLen = length of datagram buffer
flags = flags to underlying protocols
to = buffer holding recipient's socket address
from = buffer for holding sender's socket address
tolen = length of <to> socket address
pFromLen = value/result of <from>

The socket number is returned from invoking the function
socket(int domain, int type, int protocol)

domain = protocol family (e.g. PF_INET = 2)
type = SOCK_DGRAM
protocol = socket protocol (usually 0)

A socket address is housed in a sockaddr_in structure.
struct sockaddr_in {

u_short sin_family; /* address family AF_INET = 2 */
u_short sin_port; /* protocol port# */
u_long sin_addr; /* IP address */
char sin_zero[8]; /* unused (set to zero) */
}

The socket address layout is simply a structure for holding an IP address and a port#. It
is normally declared as a structure 16-bytes in length. Note that when using recvfrom, a
pointer to the length of this structure is passed. The variable must be initialized to be
large enough for the entire structure that is provided. On return the variable will be set
to the size of the structure actually used to return the socket address value. One might
set the variable that holds the socket address length to 16, then find that it holds the
value 8 upon return from recvfrom.

It is important to note that the sendto function returns only after the datagram has been
delivered to the network. The return value is the number of bytes transmitted, or ERROR
(–1).

A significant part of system support for networking is that which combines multiple
messages into a single datagram, when they are queued sequentially and do not exceed
the maximum datagram size. The system operates at the message level, and it seeks to
queue up messages that are to be sent to the network. It needs to keep things moving,
because it is trying to operate in real-time (15 Hz). Therefore, it continues to queue
messages to other nodes without waiting for transmissions to complete to a given node.
But the way sendto operates in the socket interface, this cannot easily happen, as each
sendto call awaits completion of the transmission. And in the case that the target node
is not present in the local node's ARP table, an ARP request will have to be sent, and an
ARP reply received, before the transmission can be initiated.

The front end is mostly a server; it supplies data in response to host requests. It operates
at 15 Hz, so that at one point in the 15 Hz cycle, the system builds replies to all
outstanding data requests for delivery to the various requesting nodes. The linked list
of data requests is maintained in an order that is sorted by target node, so as to increase
the likelihood that multiple messages destined for the same target node will be queued
consecutively, which in turn allows coalescing of multiple messages that are destined
for the same target node into a common datagram. So that all reply messages do not
have to be queued before the first datagram is sent to its target node, a check is made
for each message processed. If the target node is different from the oldest message
queued, the queue is flushed to the network.

To get around the problem that sendto will not return until it is finished, we can utilize
a high-priority task whose job it is to transmit datagrams; i.e., this task will be the one
that invokes sendto. A task that flushes the network queue, which results in one or
more datagrams being constructed each from one or more messages, sends a short
reference message to the message queue on which the high-priority transmission task
awaits. It awakes and calls sendto, which will block until the transmission is complete.
Upon return, the review of transmitted messages to mark their completion in the
network queue can be performed. (This logic is done currently by the network transmit
interrupt code.) During the time that sendto blocks, the original task can continue
building additional datagrams for transmission in the same way. The high priority task
will keep the network hardware busy.

A wrinkle in the above scheme shows up in the case that the target node is not in the
ARP table. The function etherAddrResolve may be used to assist with this.

etherAddrResolve(struct ifnet *pIf, char *targetAddr, char *eHdr,
int numTries, int numTicks)

This routine sends an ARP request if needed, else it signals that it already has the
hardware address. If it sent an ARP request, it may be some time before the ARP reply is
received. To handle this, we may use another high-priority task that handles
transmissions to target nodes for which an ARP request was sent as a result of invoking

Network Support - VxWorks p. 2

etherAddrResolve. Thus we will have two high-priority tasks that invoke sendto. Their
code can be the same, except that they await different message queues. In this way,
target nodes that need ARP handling will not impede transmissions to target nodes that
do not. In summary, the code that is to send a datagram to a target node first invokes
etherAddrResolve, then writes a reference message to one of two message queues. A
higher-priority task will see to it that sendto is invoked as necessary to get the
datagrams delivered to the network.

The reason all the above is necessary is that the socket interface is not designed to
operate in real-time. It originated with unix. It has no buffered output operations.

Multicast support
VxWorks supplies support for IP multicasting via its SENS enhancement package.

(This multicasting support may be included in a future release of VxWorks.)

The IRM system software needs to know whether a message it receives was multicast or
unicast. For Classic protocol, server support is provided a request/setting message if
the server bit is set in the message header. The protocol also includes in its header a
destination node field, which should be either the local node#, the related Acnet node#,
a multicast form of 09Fx, or zero.

For Acnet protocols, a server mode is supported without requiring that the requesting
node supply a server bit as part of the protocol. The request is "previewed" before
processing begins in earnest, so it can be determined how the request should be
supported—whether server support is required. As part of this determination, we must
know whether the request was multicast or unicast. If it was unicast, and if any of the
device data requested is sourced from other front ends, according to analysis of the
SSDN, then server support is provided for the request; i.e., the request message is
forwarded to a multicast target address so that the rest of the nodes in the project can
have a look at it, after which each such node that finds any of its own device data
included in the request gears up to return a reply of only its own data. If the original
request was unicast, but all device data is sourced from a single other node, then the
forwarding is unicast to that single node. If a request is received that includes only the
local node's data, the request is initialized in the usual way to return only local data,
independent of how the request was received. To determine whether a message was
received via multicast or unicast, the destination node field in the Acnet header is
checked. If it is of the form xxFx, then it was multicast, else it was unicast. (Under IP, the
form of this multicast node number is 09Fx.)

In lieu of being able to determine to what destination physical address a received
message was delivered, we can decide the matter in a different way, by examining the
destination node field in the Acnet header. If it is of the form 09Fx, it means that it was
multicast. This may only be true for IRMs, but that should be enough, since Vax consoles
do not support IP multicasting, and only IRM servers send such multicast request
messages when they forward requests.

Booting after power on
On occasions when the lab electricity is out, all IRMs cease operation. When

Network Support - VxWorks p. 3

power is restored, all IRMs attempt to perform a TFTP protocol boot via the network. But
the network itself, with its router and switch hardware, may take a long time before it
comes up, even many minutes or even hours. Current IRMs have no problem with this;
when the network comes up enough so that they can reach the boot server node, within
two minutes they will succeed in booting. (This is because a failure by the 162Bug TFTP
client results a retry two minutes later.)

VxWorks boot support operates in a different way. If a boot attempt fails, it just quits
trying. This means that following a lab site-wide loss of power, and subsequent
recovery of same, every front end using network booting will fail, requiring a visit to
each and every node to manually reset it. Some front ends, knowing this, may devise
elaborate schemes to operate the reset button remotely. We are currently pursuing an
effort to rectify this situation, so that network booting under VxWorks will retry until
the network is able to support the boot operation.

Network Support - VxWorks p. 4

