COMPUTER, COMPUTATIONAL & STATISTICAL SCIENCES

A5

LA-UR-08-2847

Moore, More Cores, and More Application Performance

Darren J. Kerbyson

with

Kevin J. Barker, Kei Davis, Adolfy Hoisie, Michael Lang, Scott Pakin, Jose Carlos Sancho

Performance and Architecture Laboratory (PAL) http://www.c3.lanl.gov/pal Computer, Computational & Statistical Sciences Division Los Alamos National Laboratory

Cores Complexity

Constraints

С

"The future will be like the present only more so"

Groucho Marx

- Performance at the *µSystem* scale
 - Quad-core node level performance
- Performance at the *mSystem* scale
 - Some different networks
- Performance at the **System** scale
 - Dual-core to Quad-core upgrade
 - Accelerated system

Examples drawn from

Roadrunner, PERCS, AMD, Intel, SiCortex, Cray,

PAL Question: How can I analyze the performance of a non-existent Machine?

- Answer: Need a model.
- A model should encapsulate the understanding of:
 - What resources an application uses during execution
 - How often it does it
 - How its usage changes when scaling
 - How long the system takes in order to satisfy the resource requirements

PAL Design Space Exploration: Performance Modeling for IBM PERCS (HPCS and BlueWaters)

• Input to model: single-PE / single-chip performance from Mambo

PAL Performance at the µSystem scale: Quad-cores

• Two quad-core architectures:

- Intel Tigerton, 4-socket, 2 dies per socket, 2 cores per die
- AMD Barcelona, 4-socket, 1 die per socket, 4 cores per die

Barcciona

- For performance experiments, need to know core ordering
- MPI ping-pong test from every core to every other core
 - Xeon X7350: same die (DCM), same socket, different socket
 - Barcelona: same die/socket, one HT hop, two HT hops

Constant problem size per socket

- Strong scaling within a socket
- Weak scaling across sockets

Mimics typical usage

- Weak scaling
- Use all of the available memory in a node

Experiments:

PAL Microbenchmark: Memory bandwidth

Streams triad

 Barcelona observes superior memory bandwidth to Xeon X7350 both per core and aggregate

• Xeon X7350 faster than Barcelona on all single-core tests

- 50% higher clock speed
- Double the cache per core
- Only 20% less memory bandwidth

 Barcelona outperforms Xeon X7350 on over half the applications studied

- 1.75X more per-core bandwidth at 16 cores (1.1 vs. 0.63 GB/s)

- Milagro, SPaSM, and Sweep3D (compute-bound)
 - Good speedup on both Xeon X7350 and Barcelona
- VH1, GTC, VPIC, and S3D (neither compute- nor memory-bound)
 - Good speedup on Barcelona, poor speedup on Xeon X7350
 - SAGE and Partisn (memory-bound)
 - Poor speedup on both Xeon X7350 and Barcelona

Early Experiences of Current Quad-Core Processors. LSPP, IPDPS 2008, Miami, FL, April 2008

- Connectivity is an important issue
 - Topologies
 - Routing

Hierarchical communication structures

- Traditionally: intra- & inter-node
- Additionally: NoCs (Network on Chips)
 - » Already see this on embedded devices: e.g. PicoChip, Cswitch, Tilera, and Cell-BE
- Take a look here at some existing, and possible, networks
 - Infiniband
 - Meshes: Cray XT
 - Kautz: SiCortex

PAL Infiniband: an example of Model Driven Optimization

 Example: SAGE, 256 node, 288-port IB 4x SDR

Model

- Developed several years ago
- Good prediction accuracy
- Include node -> network conter
- Includes contention in mesh networks (e.g. BG/L) NOT fat-trees

No significant network contention observed on other Fat-tree networks (Quadrics)

- Use logical-shift communication pattern
 - $P_i \rightarrow P_{i+d}$ where d = 1..128
- Maximum modeled contention plotted (1024 PE job)

Optimization of Infiniband for Scientific Applications. LSPP, IPDPS 2008, Miami, FL, April 2008

• Kautz Graph:

Largest node count for a given degree and diameter

• SiCortex: Degree 3

- 3 input and 3 output links

Diameter	Node Count	SiCortex System
2	12	SC072
3	36	
4	108	SC648
5	324	
6	972	SC5832

- Example: Degree 3, diameter 3
 - Node name: 3 symbols of a 4-character alphabet, no two adjacent symbols the same
 - Rule for node connections: XYZ -> YZ[W|X|Y]

logical-shift communication pattern

 $-P_i \rightarrow P_{i+d}$ where d = 1..128

Early Performance Evaluation of the SiCortex SC648. Unique Chips & Systems, Austin, TX, April 2008

What about a fully connected network? OCS - System Concept (HPCS, IBM)

- Bandwidth where it is needed (nodes actually communicating)
- Nodes: *m* PEs, (*L*+*K*) > m communication links
- Optical Circuit Switching (OCS) network planes
- Electronic Packet Switched (EPS) network planes
 - low bandwidth links (~10% of OCS)
 - collectives

EST. 1943

PAL Communication degree: temporal analysis

• Degree vs. rate-of-change (Hz)

- Higher rate-of-change means higher OCS set-up costs
- e.g. 3ms OCS set-up:
 - OCS overhead between 0% and 0.021%.

• Using both OCS and EPS:

- Degree reduced
- Rate-of-change unaltered

PAL OCS performance: comparable to best

- Analyzed performance of OCS in various system configurations
- Example: 2,048 PE job (256-node system, 64-way)
 - FC Fully-connected 1-hop
 - OCS 1-hop or 2-hop
 - 2D, 3D meshes
 - FT Fat-tree
 - OCS-D OCS-Dynamic
- Best hardware latency of 50ns, 4GB/s links

 Graph shows relative performance or eacn network relative to the best performing network

Performance Analysis of an Optical Circuit Switched Network for Peta-scale systems. EuroPar, August 2007

PAL Jaguar System upgrade @ ORNL

• Main aspects of Jaguar upgrade:

- Dual-core -> Quad-core
- SeaStar 2 -> SeaStar 2+

Developed application performance models

GTC and S3D

Models Validated on existing hardware

– Jaguar (pre-upgrade) & AMD/Infiniband system

Models used to predict performance

Jaguar (post-upgrade)

Models used to explore network contention issues

PAL Contention in the XT4

- Jaguar pre- and post-upgrade
- Different allocations considered:

Typical– assigned by the schedulerDedicated – using the first n nodes of the systemIdeal– layout of nodes matches application

- 18 Connected Units
 - 180 compute-nodes ea.

• Infiniband DDR 4x

- Full fat-tree within CU
- Half fat-tree between CUs

System		
CU count	18	
Node count	3,240	
Peak Performance (DP)	1.46 Pflops/s	
Connected Unit (CU)		
Node count	180	
Peak performance per CU	80.9 Tflops	

PAL Roadrunner node – a 'triblade'

Node (triblade)	1 Opteron blade	2 Cell blades
Processor count	2	4
Processor-core count	4	4 PPEs, 32 SPEs
Clock Speed	1.8 GHz	3.2 GHz
Peak-performance per node (DP)	14.4 Gflops/s	435.2 Gflops/s
Memory per processor	4 GB (800MHz DDR2)	4 GB (800MHz DDR2)

PAL PowerXCell8i : Instruction characteristics

Instruction Latency

Repetition Delay

• Two different implementations of the Cell-Broadband Engine

- PowerXCell 8i version has 7x improved FPD repetition delay, and
- Slightly lower pipeline latency

PAU Using of accelerators

General accelerator approach

- One MPI rank per Opteron
- SPE = accelerator
- Opterons see each other and their local SPEs
- Opteron pushes work (data) to SPEs and receives results

- Cell-Messaging-Layer
 - One MPI rank per SPE
 - Opteron = NIC & extra storage
 - SPEs see each other and their local Opteron
 - SPEs communicate directly with other SPEs
 - PPE provides support
 - "Cluster of 100,000 SPEs"

Receiver-initiated Message Passing over RDMA Networks. IPDPS 2008, Miami, FL, April 2008

PAL Roadrunner Performance Comparison: for Sweep3D

Performance of

Roadrunner vs. *equivalent* Quad-core System

• Technology:

- Heterogeneity, accelerators, GPUs
- Clusters on a chip (cores++, networks)
 - » Network hierarchy (cf memory hierarchy)
- Integrating processors on top of memory, or
- Integrating memory on top of processors
- Silicon Photonics
- Hierarchical Connectivity (many levels of networks)
- Workload:
 - Programming models
 - Code optimizations
 - » Overlap: communicate and compute
 - » Overlap: memory and compute (SW prefetching)

All of the above ?

Performance modeling can help in this process

Core performance + application performance model = Performance Exploration

Predictions at scale Predictions on new systems Predictions in the design space

- *µSystem* : quad-core nodes
- *mSystems* : networks increasingly important Infiniband, Kautz, OCS
- **Systems** : Modeling used to examine:

Jaguar - performance during system upgrade

Roadrunner – performance in advance of deployment & compare against other state-of-the-art systems

