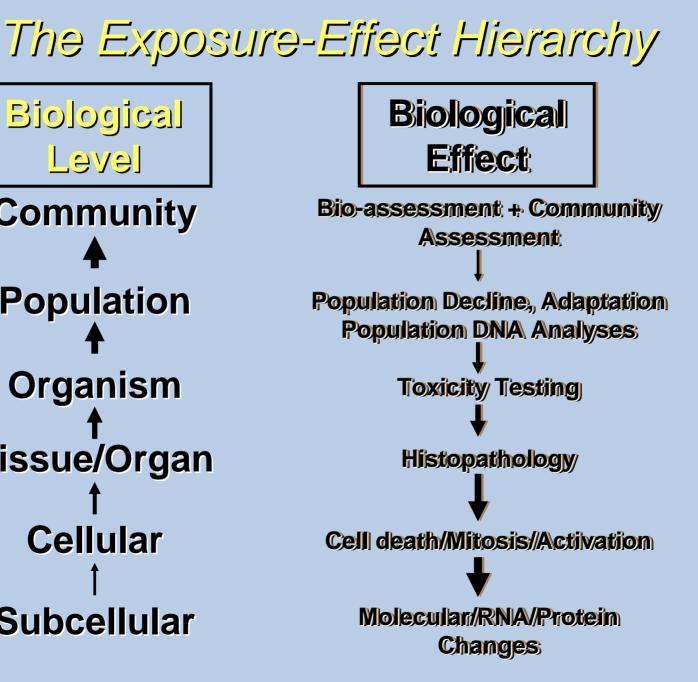
Expression Based Technology

Adam Biales NERL Postdoctoral Fellow

Building a scientific foundation for sound environmental decisions


Expression Based Technology

- Immediate responses on cellular level
 Biological information
 Can be specific for a give
- Can be specific for a given stressor
- Rapid

Building a scientific foundation for sound environmental decisions

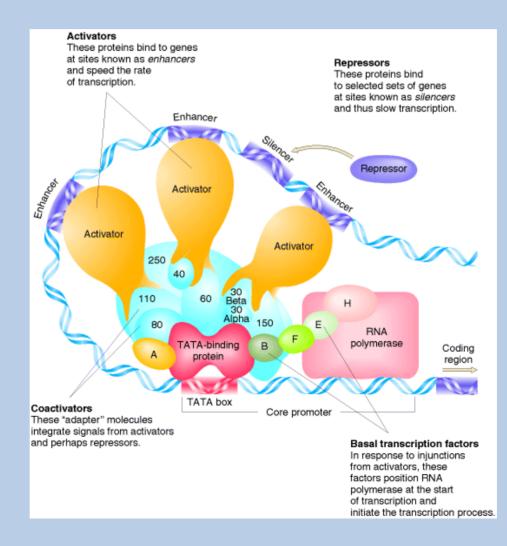
Biological Level **Community Population** Organism **Tissue/Organ** Cellular **Subcellular**

Building a scientific foundation for sound environmental decisions

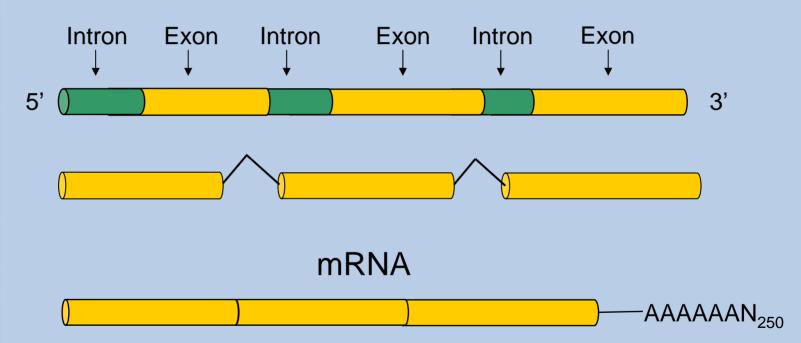
Regulation

 Needs to be heavily regulated Appropriate cell activation If not regulated leads to pathology -Cancers Cell-cycle → Signaling Occurs on each level: - DNA, RNA, Protein

Building a scientific foundation for sound environmental decisions


Gene Structure

Building a scientific foundation for sound environmental decisions


Regulation

Building a scientific foundation for sound environmental decisions

Transcription/RNA processing

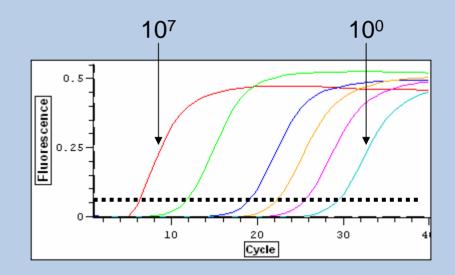
Building a scientific foundation for sound environmental decisions

The Central Dogma

Reverse Transcriptase $CDNA \rightarrow RNA \rightarrow Protein$

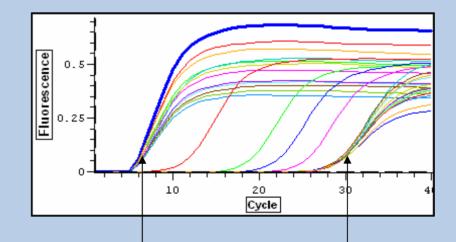
Building a scientific foundation for sound environmental decisions

QPCR


Realtime quantitative PCR
 Advantages
 Quantitative
 Sensitive
 Reproducible
 Minimal tissue requirements
 Rapid results

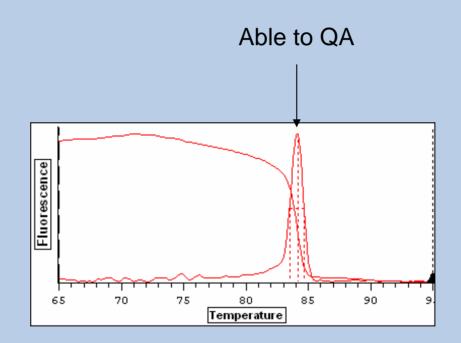
Building a scientific foundation for sound environmental decisions

to noitisticusiv "emiT-liseR" stouborg beitilgmis


Dynamic range

Building a scientific foundation for sound environmental decisions

io noitszilsusiv "emiT-lseR" ztouborg beitilgms



Highly reproducible across entire range 12 replicates each Δ Ct < 0.50 cycles

Building a scientific foundation for sound environmental decisions

to nottazilanatv "emiT-laeR" atoulorg beitilgma

Building a scientific foundation for sound environmental decisions

Microarrays

- Monitor changes across 1000s of genes in 1 experiment
 - Available for rainbow trout
 - Zebrafish
 - FHM 2006
 - Daphnia
- Signatures 1 set of genes = 1 chemical
- Systems biology
- Information about mechanism
 - Cluster analysis

Building a scientific foundation for sound environmental decisions

Treatment (ie. effluent)

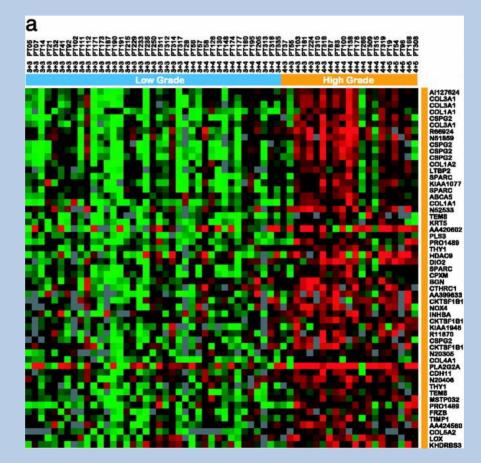
Isolate Tissue \rightarrow RNA \downarrow RT & label \downarrow^1 \downarrow^2 \downarrow^2 \downarrow^2 \downarrow^1 \downarrow^2 \downarrow^2

Control (reference sample)

Isolate Tissue \rightarrow RNA \downarrow RT & label

Microarray

Building a scientific foundation for sound environmental decisions


Message present Message present only in control only in treatment Message present at equal levels in both treatment and control

Adapted from H. Hamadeh and C. Afshari, American Scientist 88:508-515

Building a scientific foundation for sound environmental decisions

Genes Expression Comparison between High and Low Grade Cancer

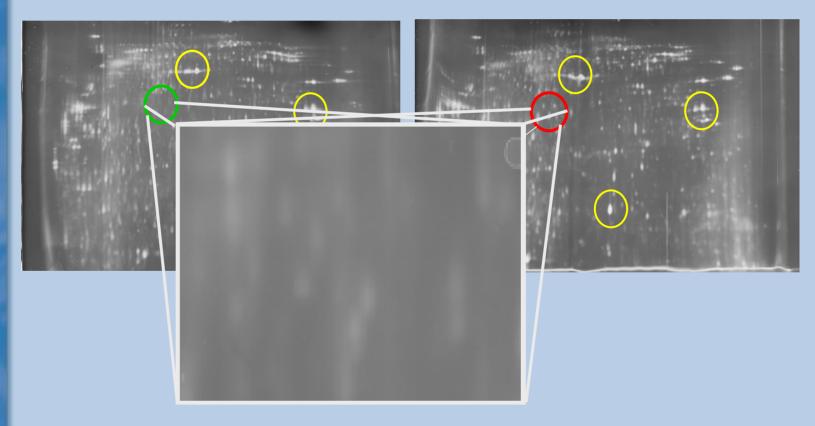
Lapointe, Jacques et al. (2004) Proc. Natl. Acad. Sci. USA 101, 811-816

Building a scientific foundation for sound environmental decisions

Proteomics

Study of protein populations of one cell versus another

- Similar to microarrays global changes
- Protein data more biologically relevant
 - Higher biological level
 - Less variable
- 2-D gel electrophoresis
 - Non-directed, no assumptions
 - Can see modifications



Building a scientific foundation for sound environmental decisions

2-D Gel Electrophoresis

Contro

Treatment

Building a scientific foundation for sound environmental decisions

Current Molecular Assays

Vitellogenin

- Egg protein only females in breeding season
- Males turn it on when exposed to estrogen
- All kinds of fish
 - Fathead, trout, bass, gudgeon, shiners, roach, flounder
- Can be used as an indicator to estrogen exposure
- LOEC Vg protein 0.1 ng/L

Building a scientific foundation for sound environmental decisions

Estrogens

Estradiol, estrone, EE₂

- Sources
 - Farm runoff
 - Contraceptives
- Environmental levels EE₂
 - Surface water 0.05 30.8 ng/L EE₂
 - Sewage effluents 0.05 62.0 ng/L EE₂
- Can have additive effects
- Potent responses at low levels

- (4 ng/L EE₂)

Building a scientific foundation for sound environmental decisions

Estrogenic Effects

- Male fish with ovatestes
 - LOEC sex interchange 0.6 ng/L
- Decreased male fitness
- Decreased size/physical abnormalities
- Decreased reproductive success (.32 ng/L)
 NO EGGS PRODUCED at 3.5 ng/L
- Skewed sex ratios
 - 0 males with secondary sex characters
 - 3.5 ng/L
- May have long-term effect on reproductive success
 - 50% reduction in reproductive success 29 days after exposure
 - 5 months following treatment decreased fertility

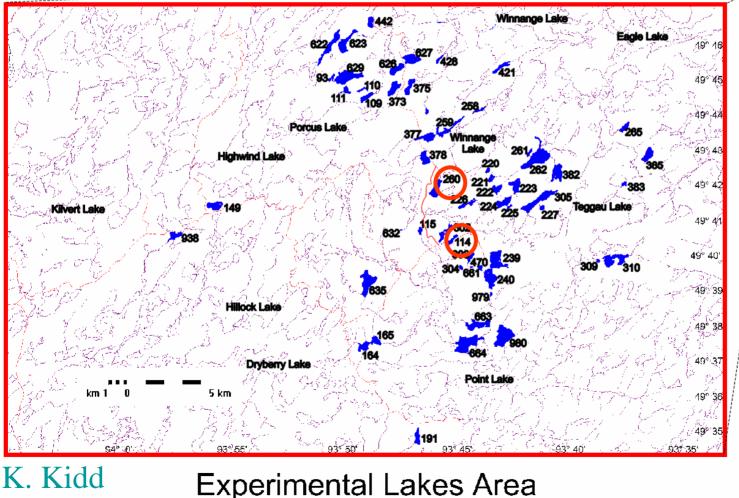
Building a scientific foundation for sound environmental decisions

Issues

Fish swim

- Not sitting by effluent for whole life
- Level of real world exposure
- Linkage between biological levels not completely established
- Why are there any fish at all?
- Needs field testing
- Mixtures
- Can we use gene expression as a metric in bioassessment

Building a scientific foundation for sound environmental decisions


ELA

58 Designated Research Lakes and their Watersheds Detailed Monitoring since 1969

Located in northwestern Ontario approximately 250 km east of Winnipeg

and 50 km east-southeast of Kenora.

Designated Research Lakes shaded Blue

Boreal Shield of northwestern Ontario

Building a scientific foundation for sound environmental decisions

ELA

Objective: To study the long term effects of xenoestrogens on wild fish population

- Dose lake with 4-6 ng/L EE2 or not for 3 continuous years (2001-03)
- Measure Vg expression in wild fish, deployed fish, laboratory, embryo/larval exposures
- Water chemistry
- Sediment elutriate exposure in fry
- Other biological measurements aggression, mortality

Building a scientific foundation for sound environmental decisions

ELA results

- Male FHM had elevated Vg expression from 24 hours until October (last sample of year)
- Females had elevated Vg levels past end of breeding season
- Male pearl dace also exhibited high Vg levels
- In fall of second year no age 0 fish found
- Histopathology
 - liver hypertrohpy
 - fibrotic sperm ducts

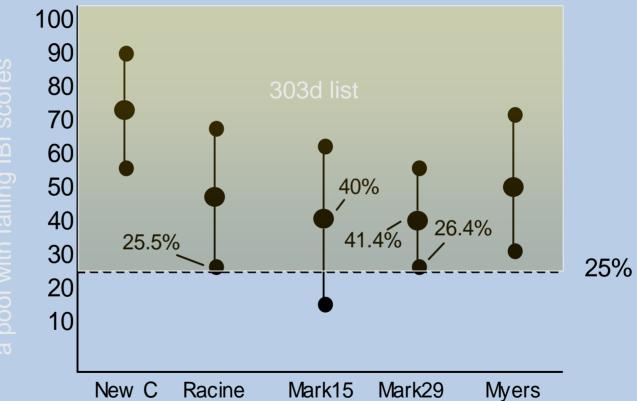
Building a scientific foundation for sound environmental decisions

Ohio River

Collaboration with Ohio River Valley Water Sanitation Commission ORSANCO

Building a scientific foundation for sound environmental decisions

Vg – Sewage Treatment Plants


- Objective: Create Vg assay and identify the number of species and geographic extent effected by estrogenic compounds found in effluents
- 3 sampling sites
 - Region 3 Wheeling, ALCOSAN, Parkersburg
 - Downstream proximal
 - Downstream distal
 - Upstream reference
- Multiple species
- Multiple exposures lab, deployment high & low flow
- Chemical analysis
- Histopath analysis
- Sex Ratios
- Questions
 - Are male fish in reference sites producing Vg?
 - If fish aren't stuck at effluent is there an effect?

Building a scientific foundation for sound environmental decisions

Percentage of sites within pool with failing IBI scores

Assessment of Ohio River Pools, 2004

Building a scientific foundation for sound environmental decisions

Ohio River - EDC

- Using probabilistic sampling to determine extent of exposure in a pool of the Ohio River
 - Fish localized to a given pool Dams
 - 15 probabilistic sites
 - Exposure differences ecology
 - Multiple species
 - Bottom feeders
 - Water column
 - Sex ratios
 - Vg expression
 - Result: does expression aid in identifying causes

Building a scientific foundation for sound environmental decisions

Forthcoming Projects

 Several other projects targeting non-estrogenic compounds

Atrazine

- 2-D gels → Gene expression markers
 5 different tissues
- Androgen indicators
- Invertebrate sources
- Mixtures
- Pulsed exposures

Building a scientific foundation for sound environmental decisions

Expression Technology Summary

Informative

- Available microarrays are online or under developed for a number of aquatic species
- Sensitive
- Targets changes early in exposure
- High through-put
- Making linkages to higher biological levels
- Assays are being developed for a number of different species representing an array of different ecological catagories (habitat, feeding groups, etc.