[Code of Federal Regulations]
[Title 40, Volume 28]
[Revised as of July 1, 2002]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR795.250]

[Page 74-79]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
         CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)
 
PART 795--PROVISIONAL TEST GUIDELINES--Table of Contents
 
            Subpart D--Provisional Health Effects Guidelines
 
Sec. 795.250  Developmental neurotoxicity screen.

    (a) Purpose. In the assessment and evaluation of the toxic 
characteristics of a chemical, it is important to determine when 
acceptable exposures in the

[[Page 75]]

adult may not be acceptable to a developing organism. This test is 
designed to provide information on the potential functional and 
morphologic hazards to the nervous system which may arise in the 
offspring from exposure of the mother during pregnancy and lactation.
    (b) Principle of the test method. The test substance is administered 
to several groups of pregnant animals during gestation and lactation, 
one dose level being used per group. Offspring are randomly selected 
from within litters for neurotoxicity evaluation. The evaluation 
includes observation to detect gross neurological and behavioral 
abnormalities, determination of motor activity, neuropathological 
evaluation, and brain weights. Measurements are carried out periodically 
during both postnatal development and adulthood.
    (c) Test procedures--(1) Animal selection--(i) Species and strain. 
Testing should be performed in the Sprague Dawley rat.
    (ii) Age. Young adult animals (nulliparous females) shall be used.
    (iii) Sex. Pregnant females shall be used at each dose level.
    (iv) Number of animals. The objective is for a sufficient number of 
pregnant rats to be exposed to ensure that an adequate number of 
offspring are produced for neurotoxicity evaluation. At least 20 litters 
are recommended at each dose level. This number assumes a coefficient of 
variation of 20 to 25 percent for most behavioral tests. If, based upon 
experience with historical control data or data for positive controls in 
a given laboratory, the coefficient of variation for a given task is 
higher than 20 to 25 percent, then calculation of appropriate sample 
sizes to detect a 20 percent change from control values with 80 percent 
power would need to be done. For most designs, calculations can be made 
according to Dixon and Massey (1957) under paragraph (e)(5) of this 
section, Neter and Wasserman (1974) under paragraph (e)(10) of this 
section, Sokal and Rohlf (1969) under paragraph (e)(11) of this section, 
or Jensen (1972) under paragraph (e)(8) of this section.
    (A) On day 4 after birth, the size of each litter should be adjusted 
by eliminating extra pups by random selection to yield, as nearly as 
possible, 4 males and 4 females per litter. Whenever the number of male 
or female pups prevents having 4 of each sex per litter, partial 
adjustment (for example, 5 males and 3 females) is permitted. 
Adjustments are not appropriate for litters of less than 8 pups. 
Elimination of runts only is not appropriate. Individual pups should be 
identified uniquely after standardization of litters. A method that may 
be used can be found in Adams et al. (1985) under paragraph (e)(1) of 
this section.
    (B) After standardization of litters, males and females shall be 
randomly assigned to one of each of three behavioral tasks. 
Alternatively, more than one of the behavioral tasks may be conducted in 
the same animal. In the latter case, a minimum of 1 to 2 days should 
separate the tests when conducted at about the same age.
    (C) One male and one female shall be randomly selected from each 
litter for sacrifice at weaning as specified in paragraph (c)(8) of this 
section.
    (2) Control group. A concurrent control group shall be used. This 
group shall be a sham treated group, or, if a vehicle is used in 
administering the test substance, a vehicle control group. Animals in 
the control groups shall be handled in an identical manner to test group 
animals. The vehicle shall neither be developmentally toxic nor have 
effects on reproduction.
    (3) Dose levels and dose selection. (i) At least 3 dose levels plus 
a control (vehicle control, if a vehicle is used) shall be used.
    (ii) If the substance has been shown to be developmentally toxic 
either in a standard developmental toxicity study or a pilot study, the 
highest dose level shall be the maximum dose which will not induce in 
utero or neonatal deaths or malformations sufficient to preclude a 
meaningful evaluation of neurotoxicity.
    (iii) In the absence of standard developmental toxicity, unless 
limited by the physicochemical nature or biologicial properties of the 
substance, the highest dose level shall induce some overt maternal 
toxicity but shall not result in a reduction in weight gain exceeding 20 
percent during gestation and lactation.

[[Page 76]]

    (iv) The lowest dose should not produce any grossly observable 
evidence of either maternal or developmental neurotoxicity.
    (v) The intermediate dose(s) shall be equally spaced between the 
highest and lowest dose.
    (4) Dosing period. Day 0 in the test is the day on which a vaginal 
plug and/or sperm are observed. The dose period shall cover the period 
from day 6 of gestation through weaning (21 days postnatally).
    (5) Administration of test substance. The test substance or vehicle 
should be administered orally by intubation. The test substance shall be 
administered at the same time each day. The animals shall be weighed 
periodically and the dosage based on the most recent weight 
determination.
    (6) Observation of dams. (i) A gross examination of the dams shall 
be made at least once each day, before daily treatment. The animals 
shall be observed by trained technicians who are blind with respect to 
the animal's treatment, using standardized procedures to maximize inter-
observer reliability. Where possible, it is advisable that the same 
observer be used to evaluate the animals in a given study. If this is 
not possible, some demonstration of inter-observer reliability is 
required.
    (ii) During the treatment and observation periods, cage-side 
observations shall include:
    (A) Any responses with respect to body position, activity level, 
coordination of movement, and gait.
    (B) Any unusual or bizarre behavior including, but not limited to 
headflicking, head searching, compulsive biting or licking, self-
mutilation, circling, and walking backwards.
    (C) The presence of:
    (1) Convulsions.
    (2) Tremors.
    (3) Increased levels of lacrimation and/or red-colored tears.
    (4) Increased levels of salivation.
    (5) Piloerection.
    (6) Pupillary dilation or constriction.
    (7) Unusual respiration (shallow, labored, dyspneic, gasping, and 
retching) and/or mouth breathing.
    (8) Diarrhea.
    (9) Excessive or diminished urination.
    (10) Vocalization.
    (iii) Signs of toxicity shall be recorded as they are observed, 
including the time of onset, the degree and duration.
    (iv) Animals shall be weighed at least weekly.
    (v) The day of delivery of litters shall be recorded.
    (7) Study conduct--(i) Observation of offspring. (A) All offspring 
shall be examined cage-side daily for gross signs of mortality and 
morbidity.
    (B) All offspring shall be examined outside the cage for gross signs 
of toxicity whenever they are weighed or removed from their cages for 
behavioral testing. The offspring shall be observed by trained 
technicians, who are blind with respect to the animal's treatment using 
standardized procedures to maximize inter-observer reliability. Where 
possible, it is advisable that the same observer be used to evaluate the 
animals in a given study. If this is not possible, some demonstration of 
inter-observer reliability is required. At a minimum, the end points 
outlined in paragraph (c)(6)(ii) of this section shall be monitored as 
appropriate for the developmental stage being observed.
    (C) Any gross signs of toxicity in the offspring shall be recorded 
as they are observed, including the time of onset, the degree, and 
duration.
    (ii) Developmental landmarks. Live pups should be counted and 
litters weighed by weighing each individual pup at birth, or soon 
thereafter, and on days 4, 7, 13, 17, and 21, and biweekly thereafter. 
The age of the pups at the time of the appearance of the following 
developmental landmarks shall be determined:
    (A) Vaginal opening. General procedure for this determination may be 
found in Adams et al. (1985) under paragraph (e)(1) of this section.
    (B) Testes descent. General procedure for this determination may be 
found in Adams et al. (1985) under paragraph (e)(1) of this section.
    (iii) Motor activity. (A) Motor activity shall be monitored 
specifically on days 13, 17, 21, 45 ([plusmn]2 days), and 60 ([plusmn]2 
days). Motor activity shall be monitored by an automated activity 
recording apparatus. The device used shall be capable

[[Page 77]]

of detecting both increases and decreases in activity, i.e., baseline 
activity as measured by the device shall not be so low as to preclude 
decreases nor so high as to preclude increases. Each device shall be 
tested by standard procedures to ensure, to the extent possible, 
reliability of operation across devices and testing of animals within 
dose groups shall be balanced across devices.
    (B) Each animal shall be tested individually. The test session shall 
be long enough to demonstrate habituation of motor activity in control 
animals, i.e., to approach asymptotic levels by the last 20 percent of 
the session. Animals' activity counts shall be collected in equal time 
periods of no greater than 10 minutes duration. All sessions shall have 
the same duration. Treatment groups shall be counter-balanced across 
test times.
    (C) Efforts shall be made to ensure that variations in the test 
conditions are minimal and are not systematically related to treatment. 
Among the variables which can affect motor activity are sound level, 
size, and shape of the test cage, temperature, relative humidity, 
lighting conditions, odors, use of home cage or novel test cage, and 
environmental distractions.
    (D) Additional information on the conduct of a motor activity study 
may be obtained in the TSCA motor activity guideline, in Sec. 798.6200 
of this chapter.
    (iv) Auditory startle test. An auditory startle habituation test 
shall be performed on the offspring on days 22 and 60. Details on the 
conduct of this testing may be obtained in Adams et al. (1985) under 
paragraph (e)(1) of this section. In performing the auditory startle 
task, the mean response amplitude on each block of 10 trials (5 blocks 
of 10 trials per session on each day of testing) shall be made. While 
use of pre-pulse inhibition is not a requirement, it may be used at the 
discretion of the investigator. Details on the conduct of this testing 
may be obtained from Ison (1984) under paragraph (e)(7) of this section.
    (v) Active avoidance test. Active avoidance testing shall be 
conducted beginning at 60 to 61 days of age. Details on the apparatus 
may be obtained in Brush and Knaff (1959) and on the conduct of testing 
from Brush (1962), under paragraphs (e)(2) and (e)(4) of this section, 
respectively; reviews on active avoidance conditioning by Brush (1971) 
and McAllister and McAllister (1971) can be found under paragraphs 
(e)(3) and (e)(9) of this section, respectively. In performing the 
active avoidance task, the following measures should be made:
    (A) Mean number of shuttles during the adaptation period preceding 
each daily session.
    (B) Mean number and latency of avoidances per session, presented in 
blocks of 10 trials (2 blocks of 10 trials per session across 5 
sessions).
    (C) Mean number and latency of escapes per session, presented in 
blocks of 10 trials as above.
    (D) Mean duration of shocks per session, presented in blocks of 10 
trials as above.
    (E) Mean number of shuttles during the inter-trial intervals.
    (8) Post-mortem evaluation--(i) Age of animals. One male and one 
female per litter shall be sacrificed at weaning and the remainder 
following the last behavioral measures. Neuropathology and brain weight 
determinations shall be made on animals sacrificed at weaning and after 
the last behavioral measures.
    (ii) Neuropathology. Details for the conduct of neuropathology 
evaluation may be obtained in the TSCA neuropathology guideline, in 
Sec. 798.6400 of this chapter. At least 6 offspring per dose group shall 
be randomly selected from each sacrificed group (weaning and adulthood) 
for neuropathologic evaluation. These animals shall be balanced across 
litters, and equal numbers of males and females shall be used. The 
remaining sacrificed animals shall be used to determine brain weight. 
Animals shall be perfused in situ by a generally recognized technique. 
After perfusion, the brain and spinal cord shall be removed and gross 
abnormalities noted. Cross-sections of the following areas shall be 
examined: The forebrain, the center of the cerebrum and midbrain, the 
cerebellum and pons, and the medulla oblongata; the spinal cord at 
cervical and lumbar swelling; Gasserian ganglia, dorsal root ganglia,

[[Page 78]]

dorsal and ventral root fibers, proximal sciatic nerve (mid-thigh and 
sciatic notch), sural nerve (at knee), and tibial nerve (at knee). 
Tissue samples from both the central and peripheral nervous system shall 
be further immersion-fixed and stored in appropriate fixative for 
further examination. After dehydration, tissue specimens shall be 
cleared with xylene and embedded in paraffin or paraplast except for the 
sural nerve which should be embedded in plastic. A method for plastic 
embedding is described by Spencer et al. under paragraph (e)(12) of this 
section. Tissue sections shall be prepared from the tissue blocks. The 
following general testing sequence is recommended for gathering 
histopathological data:
    (A) General staining. A general staining procedure shall be 
performed on all tissue specimens in the highest treatment group. 
Hematoxylin and eosin (H&E) shall be used for this purpose. The staining 
shall be differentiated properly to achieve bluish nuclei with pinkish 
background.
    (B) Special stains. Based on the results of the general staining, 
selected sites and cellular components shall be further evaluated by use 
of specific techniques. If H&E screening does not provide such 
information, a battery of stains shall be used to assess the following 
components in all appropriate required samples: Neuronal body (e.g., 
Einarson's gallocyanin), axon (e.g., Kluver's Luxol Fast Blue), and 
neurofibrils (e.g., Bielchosky). In addition, nerve fiber teasing shall 
be used. A section of normal tissue shall be included in each staining 
to assure that adequate staining has occurred. Any changes shall be 
noted and representative photographs shall be taken. If lesions are 
observed, the special techniques shall be repeated in the next lower 
treatment group until no further lesions are detectable.
    (C) Alternative technique. If the anatomical locus of expected 
neuropathology is well-defined, epoxy-embedded sections stained with 
toluidine blue may be used for small sized tissue samples. This 
technique obviates the need for special stains.
    (iii) Brain weight. At least 10 animals that are not sacrificed for 
histopathology shall be used to determine brain weight. The animals 
shall be decapitated and the brains carefully removed, blotted, chilled, 
and weighed. The following dissection shall be performed on an ice-
cooled glass plate: First, the rhombencephalon is separated by a 
transverse section from the rest of the brain and dissected into the 
cerebellum and the medulla oblongata/pons. A transverse section is made 
at the level of the ``optic chiasma'' which delimits the anterior part 
of the hypothalamus and passes through the anterior commissure. The 
cortex is peeled from the posterior section and added to the anterior 
section. This divides the brain into four sections, the telencephalon, 
the diencephalon/mid-brain, the medulla oblongata/pons, and the 
cerebellum. Sections shall be weighed as soon as possible after 
dissection to avoid drying. Detailed methodology is available in 
Glowinski and Iversen (1966) under paragraph (e)(6) of this section.
    (d) Data reporting and evaluation. In addition to the reporting 
requirements specified in part 792, subpart J of this chapter, the final 
test report shall include the following information.
    (1) Description of system and test methods. (i) A detailed 
description of the procedures used to standardize observation and 
operational definitions for scoring observations.
    (ii) Positive control data from the laboratory performing the test 
that demonstrate the sensitivity of the procedures being used. These 
data do not have to be from studies using prenatal exposures. However, 
the laboratory must demonstrate competence in testing neonatal animals 
perinatally exposed to chemicals and establish test norms for the 
appropriate age group.
    (iii) Procedures for calibrating and assuring the equivalence of 
devices and balancing treatment groups.
    (iv) A short justification explaining any decisions where 
professional judgement is involved such as fixation technique and choice 
of stains.
    (2) Results. The following information shall be arranged by test 
group dose level.
    (i) In tabular form, data for each animal shall be provided showing:
    (A) Its identification number and litter from which it came.

[[Page 79]]

    (B) Its body weight and score on each developmental landmark at each 
observation time; total session activity counts and intrasession 
subtotals on each day measured; auditory startle response magnitude 
session counts and intrasession subtotals on each day measured; 
avoidance session counts and intrasession counts on each day measured; 
time and cause of death (if appropriate); locations, nature or 
frequency, and severity of the lesions; total brain weight; absolute 
weight of each of the four sections; and weight of each section as a 
percentage of total brain weight. A commonly used scale such as 1+, 2+, 
3+, and 4+ for degree of severity of lesions ranging from very slight to 
extensive may be used for morphologic evaluation. Any diagnoses derived 
from neurologic signs and lesions, including naturally occurring 
diseases or conditions, shall also be recorded.
    (ii) Summary data for each group shall include:
    (A) The number of animals at the start of the test.
    (B) Body weights of the dams during gestation and lactation.
    (C) Litter size and mean weight at birth.
    (D) The number of animals showing each observation score at each 
observation time.
    (E) The percentage of animals showing each abnormal sign at each 
observation time.
    (F) The mean and standard deviation for each continuous end point at 
each observation time. These will include body weight, motor activity 
counts, acoustic startle responses, performance in active avoidance 
tests, and brain weights (both absolute and relative).
    (G) The number of animals in which any lesion was found.
    (H) The number of animals affected by each different type of lesion, 
the average grade of each type of lesion, and the frequency of each 
different type and/or location of lesions.
    (3) Evaluation of data. An evaluation of the test results shall be 
made. The evaluation shall include the relationship between the doses of 
the test substance and the presence or absence, incidence, and severity 
of any neurotoxic effect. The evaluation shall include appropriate 
statistical analyses. The choice of analyses shall consider tests 
appropriate to the experimental design and needed adjustments for 
multiple comparisons.
    (e) References. For additional background information on this test 
guideline, the following references should be consulted:
    (1) Adams, J., Buelke-Sam, J., Kimmel, C.A., Nelson, C.J., Reiter, 
L.W., Sobotka, T.J., Tilson, H.A., and Nelson, B.K. ``Collaborative 
behavioral teratology study: Protocol design and testing procedure.'' 
Neurobehavioral Toxicology and Teratology. 7: 579-586. (1985).
    (2) Brush, F.R. ``The effects of inter-trial interval on avoidance 
learning in the rat.'' Journal of Comparative Physiology and Psychology. 
55: 888-892. (1962).
    (3) Brush, F.R. ``Retention of aversively motivated behavior.'' In: 
``Adverse Conditioning and Learning.'' Brush, F.R., ed., New York: 
Academic Press. (1971).
    (4) Brush, F.R. and Knaff, P.R. ``A device for detecting and 
controlling automatic programming of avoidance-conditioning in a 
shuttle-box.'' American Journal of Psychology. 72: 275-278 (1959).
    (5) Dixon, W.J. and Massey, E.J. ``Introduction to Statistical 
Analysis.'' 2nd ed. New York: McGraw-Hill. (1957).
    (6) Glowinski, J. and Iversen, L.L. ``Regional studies of 
catecholamines in the rat brain-I.'' Journal of Neurochemistry. 13: 655-
669. (1966).
    (7) Ison, J.R. ``Reflex modification as an objective test for 
sensory processing following toxicant exposure.'' Neurobehavioral 
Toxicology and Teratology. 6: 437-445. (1984).
    (8) Jensen, D.R. ``Some simultaneous multivariate procedures using 
Hotelling's T2 Statistics.'' Biometrics. 28: 39-53. (1972).
    (9) McAllister, W.R. and McAllister, D.E. ``Behavioral measurement 
of conditioned fear.'' In: ``Adverse Conditioning and Learning.'' Brush, 
F.R., ed., New York: Academic Press (1971).
    (10) Neter, J. and Wasserman, W. ``Applied Linear Statistical 
Models.'' Homewood: Richard D. Irwin, Inc. (1974).
    (11) Sokal, R.P. and Rohlf, E.J. ``Biometry.'' San Francisco: W.H. 
Freeman and Co. (1969).
    (12) Spencer, P.S., Bischoff, M.C., and Schaumburg, H.H., 
``Neuropathological methods for the detection of neurotoxic disease.'' 
In: ``Experimental and Clinical Neurotoxicology.'' Spencer, P.S. and 
Schaumburg, H.H., eds., Baltimore, MD: Williams & Wilkins, pp. 743-757. 
(1980).

[53 FR 5957, Feb. 26, 1988]

[[Page 80]]