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Abstract

Ionization cooling is the best-known cooling mechanism for the envisioned muon
colliders and neutrino factories. In this paper, using the moment-equation approach,
we present a linear theory of ionization cooling dynamics in 6D phase-space in a
quadrupole focusing channel. A simple set of differential equations that governs
the evolution of both the transverse and longitudinal emittances is derived, and
closed-form solutions are given. Two new significant heating processes have been
identified. This theory is analogous to the standard linear theory in electron storage
rings. Multiple scattering integrals and energy straggling integrals, quantities like
the synchrotron radiation integrals, are introduced to specify the cooling process
and the equilibrium emittances in a periodic cooling channel.
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1 Introduction

Ionization cooling channels are being developed to reduce the transverse and
longitudinal emittances of a muon beam for envisioned neutrino factories and
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muon colliders [1–4]. Ionization cooling is achieved by reducing the muons’
momenta through ionization energy loss in absorbers and replenishing the
momentum loss only in the longitudinal direction through rf cavities. This
mechanism can effectively reduce the transverse emittance of a muon beam
in the same way as radiation damping does to an electron beam. To obtain
longitudinal cooling, dispersion is introduced to spatially separate muons of
different longitudinal momenta, and a wedged absorber is used to reduce the
momentum spread. Such a longitudinal cooling scheme is called “emittance
exchange” because the longitudinal cooling is achieved at the expense of trans-
verse heating or a reduced transverse cooling rate.

Ionization cooling in a quadrupole channel has been discussed extensively by
many authors, especially D. Neuffer [4,5], for both transverse cooling and lon-
gitudinal cooling through emittance exchange. Although the basic physics is
well understood, a consistent 6D theory analogous to electron ring theory has
been lacking. In this paper, we present such a linear theory for 6D ionization
cooling of a matched beam using the moment-equation approach. We adopt
this approach because (a) the second moments of beam phase-space distribu-
tion contain most of the important beam properties such as rms beam size and
angular divergence, (b) the evolution equations of the second moments close
on themselves for linear dynamics that often dominate beam evolution, and
(c) it is equivalent to solving the linearized Fokker-Planck equation. There are
21 independent second moments for 6D phase space. In general, it is nontrivial
to analytically solve such a large number of moment equations. Nonetheless,
analytical solutions for a quadrupole ionization cooling channel can be worked
out in analogy to the standard theory for electron storage rings. In fact, to a
large extend, we adapted the electron radiation damping theory for the muon
ionization cooling.

This paper is the result of our effort to address longitudinal ionization cooling
theory by generalizing our successful treatment of solenoidal transverse ion-
ization cooling channels [6]. Because the dynamics in a solenoidal channel is
complicated by the Larmor rotation, we choose quadrupole channels, which
are the simplest, for investigating the emittance exchange scheme. This ex-
ercise illuminates the beam dynamics of longitudinal ionization cooling. Two
new significant heating processes have been found, which are important for
longitudinal cooling channel designs.

2 Single-particle dynamics

The dominant forces on the muons are from the electromagnetic field of the
focusing channel, i.e., the focusing quadrupoles, bending dipoles, and the lon-
gitudinal focusing from rf cavities. This Hamiltonian part of the muon beam
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dynamics is exactly the same as the quadrupole channels in storage rings
and is well described by the Courant-Snyder theory [7]. We consider an ideal-
ized uncoupled quadrupole channel with quadrupole strength K(s), horizontal
bending radius ρ(s), and rf focusing strength V (s). Using the standard Frenet-
Serret coordinates {x, y, s}, the linear Hamiltonian can be written as

H =
1

2

{
P 2

x +

[
K(s) +

1

ρ2

]
x2

}
+

1

2

[
P 2

y −K(s)y2
]
− xδ

ρ(s)
+

1

2

[
1

γ2
0

δ2 + V (s)z2

]
,(1)

where {x, Px}, {y, Py} are the horizontal and vertical canonical variables, and
{z, δ} are the longitudinal canonical variables representing the relative longi-
tudinal position and momentum deviation δ = (P −P0)/P0 from the nominal
momentum P0. We assume a constant nominal momentum, i.e., there is no net
acceleration for the reference particle in the cooling channel. γ0 is the Lorentz
factor of the reference particle. The 1/ρ2 term arises from the sector-bend
focusing.

The primary dissipative and diffusive forces that give the cooling and heating
effects are due to the muons’ interaction with the material, i.e., inelastic and
elastic scattering from the absorber atoms. Both processes are stochastic in
nature and cannot be treated with ordinary equations of motion. Similar to
radiation damping, the ionization energy loss during inelastic scattering results
in an average damping force on a muon that is in opposite direction and
proportional to the muon momentum. The elastic scattering does not produce
an average force. Both processes yield diffusive (heating) effects known as
energy straggling and multiple scattering. All these effects can be treated
with stochastic differential equations. The single-particle equations of motion
are

dx

ds
= Px,

dPx

ds
=−Kx(s) x +

δ

ρ(s)
− η(s)Px +

√
χ(x, s) ξMS

x (s),

dy

ds
= Py,

dPy

ds
=−Ky(s) y − η(s)Py +

√
χ(x, s) ξMS

y (s), (2)

dz

ds
=

δ

γ2
0

− x

ρ(s)
,

dδ

ds
=−V(s)z − (∂xη)x +

√
χδ(x, s) ξES

z (s).

Here Kx = K + 1/ρ2 and Ky = −K are the magnetic focusing strengths,
η(s) = 1

pv
dE
ds

is a positive quantity characterizing the cooling force from energy
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loss, χ(x, s) =
(

13.6MeV
pv

)2
1

Lrad
is the projected mean-square angular deviation

per unit length due to multiple scattering and Lrad is the radiation length
of absorbers, χδ is the mean-square relative energy deviation per unit length
due to energy straggling, and ξMS

x (s), ξMS
y (s) and ξES

z (s) are uncorrelated unit
stochastic quantities describing the fluctuating forces due to multiple scat-
tering and energy straggling, respectively. We assume that these stochastic
quantities are dominated by Gaussian white noise that satisfy the properties
〈ξi(s)〉 = 0 and 〈ξi(s)ξj(s̄)〉 = δijδ(s − s̄) for the ensemble average 〈· · ·〉. The
x dependence of the diffusion terms and the ∂xη term is due to the wedged
absorber in the horizontal direction for emittance exchange. For simplicity, we
treat a uniform density wedged absorber as a uniform thickness absorber with
increasing density. χ and χδ depend on x through this density variation. Here
we also neglect the weak momentum dependence of ionization energy loss.
Without the material terms containing η’s and χ’s, the equations of motion
are a direct result of the Hamiltonian Eq. (1).

3 Beam-moment equations

Fokker-Planck equations are often derived from stochastic differential equa-
tions to solve for average phase-space distribution. When the forces are linear,
the Fokker-Plank equation results in closed-form second-order moment equa-
tions for the phase-space distribution. Since our interest here is linear cooling
dynamics, we derive the moment equations directly from the equations of
motion in Eq. (2), by using Eq. (2.42) of Ref. [8] or by straightforward differ-
entiation.

Because the two transverse planes are decoupled and the dynamics of the
vertical plane is the same as the dynamics of the horizontal plane if we set the
bending radius to infinity and dispersion to zero, it is sufficient to treat only
the x-z phase-space dynamics. After some algebra, we obtained the following
equations for the ten second-order beam moments in 4D phase space:

〈x2〉′ = 2〈xPx〉,

〈xPx〉′ = 〈P 2
x 〉 −Kx(s)〈x2〉+

1

ρ(s)
〈xδ〉− η(s)〈xPx〉,

〈P 2
x 〉′ =−2Kx(s)〈xPx〉+

2

ρ(s)
〈Pxδ〉− 2η(s)〈P 2

x 〉+ 〈χ(x, s)〉,

〈z2〉′ = 2

γ2
0

〈zδ〉 − 2

ρ(s)
〈xz〉,

〈zδ〉′ = 1

γ2
0

〈δ2〉 − V (s)〈z2〉 − 1

ρ(s)
〈xδ〉− (∂xη)〈xz〉, (3)
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〈δ2〉′ =−2V (s)〈zδ〉− 2(∂xη)〈xδ〉+ 〈χδ(x, s)〉,

〈xz〉′ = 1

γ2
0

〈xδ〉+ 〈zPx〉 −
1

ρ(s)
〈x2〉,

〈xδ〉′ = 〈Pxδ〉 − V (s)〈xz〉− (∂xη)〈x2〉,

〈zPx〉′ =
1

γ2
0

〈Pxδ〉 −Kx(s)〈xz〉 − 1

ρ(s)
〈xPx〉+

1

ρ(s)
〈zδ〉− η(s)〈zPx〉,

〈Pxδ〉′ =−Kx(s)〈xδ〉 − V (s)〈zPx〉+
1

ρ(s)
〈δ2〉− η(s)〈Pxδ〉 − (∂xη)〈xPx〉.

Hereafter 〈· · ·〉 denotes phase-space averaging and a prime denotes differenti-
ation with respect to s. Note that, although the stochastic terms depend on
x, there is no ∂xχ in the moment equations because the stochastic terms in
the equations of motion do not have an x component. Furthermore, assuming
that the absorber wedges are linear and cover the whole beam,

〈χ(x, s)〉 = χ|x=0 + (∂xχ)〈x〉+
1

2
(∂2

xχ)〈x2〉+ · · · = χ(s). (4)

Thus 〈χ(x, s)〉 and 〈χδ(x, s)〉 in Eq. (3) can be replaced with their on-axis
values χ(s) and χδ(s).

The above moment equations are fully coupled and look formidable. However,
it is well-known that the Hamiltonian part of the transverse and longitudinal
dynamics can be decoupled by employing the dispersion function Dx given by
the equation [8]

D′′
x + Kx(s)Dx =

1

ρ(s)
. (5)

Using the dispersion function and assuming the rf cavities are in dispersion-
free regions, the transformation

x = x̂β + Dx(s)δ, Px = P̂xβ
+ D′

x(s)δ, z = ẑ −D′
xx̂β + DxP̂xβ

, δ = δ̂ (6)

will decouple the betatron motion {x̂β, P̂xβ
} and the synchrotron motion {ẑ, δ̂}.

In the following we may drop the ˆ or the subscript β to simplify the notation.

Using the moment equations Eq. (3), the transformation Eq. (6), the dispersion
equation Eq. (5), and the dispersion-free condition that the rf cavities locate
at zero-dispersion regions, after some tedious but straightforward algebra, the
moment equations in terms of the betatron and synchrotron variables become

〈x̂2〉′ = 2〈x̂P̂x〉+ 2(∂xη)Dx 〈x̂2〉+ 2(∂xη)D2
x 〈x̂δ〉+ D2

x χδ(s),
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〈x̂P̂x〉′ = 〈P̂ 2
x 〉 −K1 〈x̂2〉− η− 〈x̂P̂x〉 − η− D′

x 〈x̂δ〉+ (∂xη)D2
x 〈P̂xδ〉+ DxD

′
x χδ(s),

〈P̂ 2
x 〉′ =−2K1 〈x̂P̂x〉− 2η 〈P̂ 2

x 〉 − 2η− D′
x 〈P̂xδ〉+ χ(s) + (D′

x)
2 χδ(s),

〈ẑ2〉′ = 2I1 〈ẑδ〉+ 2ηDx 〈P̂xẑ〉+ D2
x χ(s),

〈ẑδ〉′ = I1 〈δ2〉 − V 〈ẑ2〉− (∂xη)Dx 〈ẑδ〉 − (∂xη)〈x̂ẑ〉+ ηDx〈P̂xδ〉, (7)

〈δ2〉′ =−2V 〈ẑδ〉− 2(∂xη)Dx 〈δ2〉 − 2(∂xη) 〈x̂δ〉+ χδ(s),

〈x̂ẑ〉′ = 〈ẑP̂x〉+ I1 〈x̂δ〉+ (∂xη)Dx 〈x̂ẑ〉+ (∂xη)D2
x 〈ẑδ〉+ ηDx 〈x̂P̂x〉,

〈x̂δ〉′ = 〈P̂xδ〉 − V 〈x̂ẑ〉− (∂xη) 〈x̂2〉+ (∂xη)D2
x 〈δ2〉−Dx χδ(s),

〈ẑP̂x〉′ = I1 〈P̂xδ〉 −K1 〈x̂ẑ〉− η 〈ẑP̂x〉 − η− D′
x 〈ẑδ〉+ ηDx 〈P̂ 2

x 〉−Dx χ(s),

〈P̂xδ〉′ =−K1 〈x̂δ〉 − V 〈ẑP̂x〉− η+〈P̂xδ〉 − (∂xη)〈x̂P̂x〉 − η− D′
x 〈δ2〉−D′

x χδ(s) .

Here K1 ≡ Kx− (∂xη)D′
x, I1 ≡ 1/γ2

0 −Dx/ρ+ ηDxD
′
x, and η± ≡ η± (∂xη)Dx.

Despite the appearance, these equations are simpler than Eq. (3) since the
transverse and longitudinal parts are decoupled if we neglect the material
terms containing η’s and χ’s. These terms are small and can be treated as
perturbation, as has been shown in solenoidal transverse cooling channels [6].

4 Beam-envelope equations

We now introduce beam emittances and envelope functions, which characterize
the density and shape of beam phase-space distribution. For a matched beam,
the envelope functions are determined by the lattice functions characterizing
the focusing channel. Similar to the electron ring theory, we introduce the
transverse and longitudinal envelope functions as 〈x2

β〉 〈xβPxβ
〉

〈xβPxβ
〉 〈P 2

xβ
〉

 ≡ εx

 βx −αx

−αx γx

 , (8)

and  〈ẑ2〉 〈ẑδ〉

〈ẑδ〉 〈δ2〉

 ≡ εz

 βz −αz

−αz γz

 . (9)

We also introduce a new emittance εc for the cross-space between the trans-
verse and longitudinal phase space as 〈xβ ẑ〉 〈xβδ〉

〈ẑPxβ
〉 〈Pxβ

δ〉

 ≡ εc


 βc −αc

−αc γc

 cos φ +

 0 1

−1 0

 sin φ

 . (10)
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In all three cases, we require that the emittance square is equal to the deter-
minant of the corresponding moment blocks and βγ − α2 = 1. Inserting these
envelope functions into the moment equations, one could obtain a set of differ-
ential equations for the emittances and envelope functions that is equivalent
to the set of moment equations. However, the exact envelope equations are
too complicated and not very useful. Instead we will focus on a much simpler
but sufficiently good approximation similar to the analysis of the transverse
solenoidal cooling channel. The key is that the muons’ interaction with mate-
rial is weak and only the first-order material terms need to be retained [6].

As a zero-order approximation, we consider the case without dissipative and
diffusive forces from the material. Dropping the material terms from the mo-
ment equations, it can be shown that

ε′x = ε′z = ε′c = 0, (11)

β′x = −2 αx,

α′x = Kxβx − γx,

β′z = −2Iαz,

α′z = V βz − Iγz,

β′c = −(1 + I) αc + ( βcφ
′ − 1 + I) tanφ,

α′c =
1

2
(Kx + V ) βc −

1

2
(1 + I) γc + αc tanφφ ′,

φ ′ =
1

2
[(Kx − V ) βc + (1− I) γc] .

Here I = 1/γ2
0 −Dx/ρ is negative of the usual slip factor. All three emittances

are conserved as expected. However, unlike εx and εz that can have any values,
for a matched beam εc = 0. This is important and is the main motivation to
introduce εc. The envelope functions βc, αc, and φ are not of much interest
here since we assume a matched beam.

Even considering the material effects, the lattice functions determined by
Eq. (11) still provide a good approximation of the beam-envelope functions of
the phase-space distribution. However, the beam emittances will be changed
considerably by the cooling in the material. To examine the cooling process,
we study the first-order perturbation of material effects on the emittances.
The calculation of the emittance change rate can be considerably simplified
by a simple but important observation:

ε′ =
∑

{material term containing η or χ } × { ε } × { β, α, etc. if any} .(12)

Thus, to the first-order material effects, only zero-order emittances and enve-
lope functions are required for calculating the emittance change rate. There-
fore, it is sufficient to use Eq. (11) to determine the envelope functions. Using
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the moment equations in Eq. (7) to compute γx〈x̂2〉′ + 2αx〈x̂P̂x〉′ + βx〈P̂ 2
x 〉′

and γz〈ẑ2〉′ + 2αz〈ẑδ〉′ + βz〈δ2〉′ yield ε′x and ε′z as

ε′x =−[ η − (∂xη)Dx]εx +
1

2
βxχ +

1

2
Hx χδ and (13)

ε′z =−[ ∂δη + (∂xη)Dx]εz +
1

2
βz χδ +

1

2
γzD

2
x χ, (14)

where Hx ≡ γxD
2
x + 2αxDxD

′
x + βxD

′2
x . Here, for completeness, we added the

usually weak term ∂δη due to the momentum dependence of ionization energy
loss. This term is obvious and has been consistently treated in moment equa-
tions although it has not been presented in our previous equations. The change
rate for εc is complicated but it has the form ε′c = {· · ·} sin φ+{· · ·} cos φ. Thus
averaging over φ leads to ε′c ' 0.

5 Emittance evolution and equilibrium emittances

Equations (13) and (14) are the key equations governing the emittance evo-
lution in the ionization cooling process. They are simple and not coupled at
all. In case the dispersion is zero, these equations reduce to the well-known
equations for a straight transverse quadrupole cooling channel [5]. The emit-
tance exchange is achieved by the term (∂xη)Dx. It increases the longitudinal
cooling rate and reduces the transverse cooling rate by the same amount, a
reflection of Robinson’s theorem of radiation damping. The two indispens-
able ingredients for emittance exchange, dispersion Dx and wedged absorber
represented by ∂xη, show up here in a simple product. The third term in the
transverse equation is the well-known heating term due to multiple scattering.
The βzχδ term to the longitudinal emittance is the βxχ term to the transverse
emittance. The last terms in both equations have not been addressed in the
literature. Both are extra heating terms and need to be carefully controlled
in cooling channel design. The Hx is a familiar term in radiation damping
theory. It characterizes the heating due to energy straggling. The γzD

2
x term

is similar to the multiple scattering term except that the beam size is due to
the spatial spread from the energy fluctuation (note that γzD

2
xεz = D2

xσ
2
δ ).

Although the coefficients of the four heating terms look different, they are easy
to understand from a common feature: each term is a noise contribution to
the invariant 〈γq2 +2αqp+βp2〉 of the phase space (q,p). For example, energy
straggling results in energy fluctuation σ2

δ ∝ χδ, which leads to fluctuations
in both position and momentum of the transverse phase space through the
dispersion Dx and D′

x. Thus it contributes the term Hxχδ to the transverse
invariant. Therefore the Hx is just a reflection of the invariant structure. Sim-
ilarly, the multiple scattering results in a momentum fluctuation σ2

Px
∝ χ,
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which leads to longitudinal position (but no energy) fluctuation through Dx.
Thus it contributes the term γzD

2
x χ to the longitudinal invariant.

Since the two emittance equations are not coupled and both are first-order
inhomogeneous differential equations, they can be integrated to a closed form

ε(s) = ε(0) e−
∫ s

0
Λ(s̄)ds̄ + e−

∫ s

0
Λ(s̄)ds̄

s∫
0

ds̄ e
∫ s̄

0
Λ(s̃)ds̃ Ξ(s̄). (15)

For transverse emittance, the cooling and heating rates are

Λ(s) = η − (∂xη)Dx , Ξ(s) =
1

2
βxχ +

1

2
Hx χδ. (16)

For longitudinal emittance,

Λ(s) = ∂δη + (∂xη)Dx , Ξ(s) =
1

2
βzχδ +

1

2
γzD

2
x χ. (17)

All these cooling and heating rates can be calculated with given lattice func-
tions and absorber properties, thus the emittance evolution of a matched beam
in a quadrupole channel can be computed using the closed-form solutions. For
a sufficiently long cooling channel, the beam emittances approach certain equi-
librium values given by the second term of Eq. (15).

In case of periodic cooling channels, the emittance evolution can be charac-
terized by integrals over one period. Let λ be the period length, then Eq. (15)
can be written as

ε(mλ) = e−mΓ(λ)ε(0) +
{
e−(m−1)Γ(λ) + e−(m−2)Γ(λ) + · · ·+ 1

}
W(λ) (18)

= e−mΓ(λ)ε(0) +
1− e−mΓ(λ)

1− e−Γ(λ)
W(λ),

where

Γ(s) =

s∫
0

Λ(s̄) ds̄ and W(s) = e−Γ(s)

s∫
0

eΓ(s̄) Ξ(s̄) ds̄. (19)

From Eq. (18), the cooling process is clear. The initial emittance ε(0) is ex-
ponentially damped while extra emittance W(λ) is generated in each period
and then damped by a factor e−Γ(λ) in each of the succeeding periods. As
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m → ∞, assuming a positive damping rate, an equilibrium will be reached
with equilibrium emittance given by

ε(∞) =
W(λ)

1− e−Γ(λ)
' W(λ)

Γ(λ)
. (20)

Similar to synchrotron radiation integrals, we introduce a set of integrals to
specify the ionization cooling process:

ζ1 =

λ∫
0

ds η(s) (21)

ζ3 =

λ∫
0

ds ∂xηDx (22)

ζ4 =

λ∫
0

ds ∂δη (23)

W1 =
1

2
e−

∫ λ

0
[η−(∂xη)Dx]ds̄

λ∫
0

ds e
∫ s

0
[η−(∂xη)Dx]ds̄βxχ '

1

2

λ∫
0

ds βxχ (24)

W2 =
1

2
e−

∫ λ

0
[∂δη+(∂xη)Dx]ds̄

λ∫
0

ds e
∫ s

0
[∂δη+(∂xη)Dx]ds̄βzχδ '

1

2

λ∫
0

ds βzχδ (25)

W3 =
1

2
e−

∫ λ

0
[η−(∂xη)Dx]ds̄

λ∫
0

ds e
∫ s

0
[η−(∂xη)Dx]ds̄Hxχδ '

1

2

λ∫
0

dsHxχδ (26)

W4 =
1

2
e−

∫ λ

0
[∂δη+(∂xη)Dx]ds̄

λ∫
0

ds e
∫ s

0
[∂δη+(∂xη)Dx]ds̄γzD

2
xχ '

1

2

λ∫
0

ds γzD
2
xχ (27)

To avoid confusion with radiation integrals and be consistent with our no-
tations for solenoidal cooling channls, we used ζ and W instead I for these
integrals. The ionization integrals ζ’s characterize the cooling rates. ζ1 and ζ2

have been used for solenoidal channels [6]. W ’s give the emittance generated
in one period by the four different heating mechanisms. Multiple scattering
integrals W1 and W4 give multiple scattering heating to the transverse and
longitudinal emittances, respectively. Similarly W2 and W3 may be referred
to as energy straggling integrals.

In terms of these integrals, the equilibrium emittances can be expressed as

ε∞x ' W1 +W3

ζ1 − ζ3

and ε∞z ' W2 +W4

ζ3 + ζ4

. (28)
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Evolution towards this equilibrium is described by Eq. (18). The damping
times τx and τz simply read

1

τx

=
vu

λ
( ζ1 − ζ3) and

1

τz

=
vu

λ
( ζ3 + ζ4), (29)

where vu is the muon’s velocity.

To get a sense of the importance of the new heating terms W3 and W4, let us
compare them with the more familiar termsW1 andW2. Roughly speaking, the
parameters considered in current cooling channel designs are around χ/χδ '
5 ∼ 10, βx ' 0.25 m, Dx ' 0.5 m, Hx ' 1, βz ∼ 0.5 m, and γz ∼ 2. Thus
W3 will probably be comparable but smaller than the well-known transverse
heating term W1. However, longitudinal heating due to multiple scattering W4

can be larger than the energy straggling term W2, especially if longitudinal
focusing is strong. Since the two new heating terms depend quadratically on
the dispersion, they could get much worse if the dispersion becomes too large.
On the other hand, efficient longitudinal cooling requires a large dispersion.
Therefore dispersion needs to be carefully optimized for longitudinal cooling.

6 Conclusion and discussions

We have developed a linear theory for transverse and longitudinal ioniza-
tion cooling of a matched beam in a quadrupole channel. Simple emittance
evolution equations are obtained. Various cooling and heating effects are sys-
tematically deduced and new heating terms are identified. Multiple-scattering
and energy-straggling integrals are introduced to characterize these effects.
Although quadrupole channels may not be the best choice for muon cooling,
this simple theory illustrates many common features of ionization cooling and
should be useful for theoretical understanding of ionization cooling dynamics.

A general theory on beam equilibrium emittances in electron rings was derived
by Ruggiero, Picasso, and Radicati based on the linearized Fokker-Planck
equation [9]. Applied to our ionization cooling problem, the dissipation matrix
A and noise matrix B in that paper are, respectively,

A =



0 0 0 0

0 η 0 0

0 0 0 0

∂xη 0 0 ∂δη


and B =



0 0 0 0

0 χ 0 0

0 0 0 0

0 0 0 χδ


. (30)
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We then confirmed the equilibrium emittances in Eq. (28).
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