

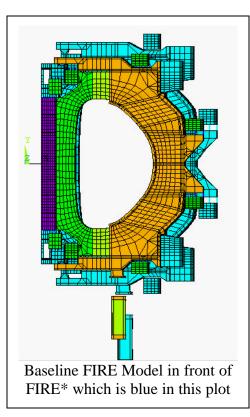
FIRE Fusion Ignition Research Experiment

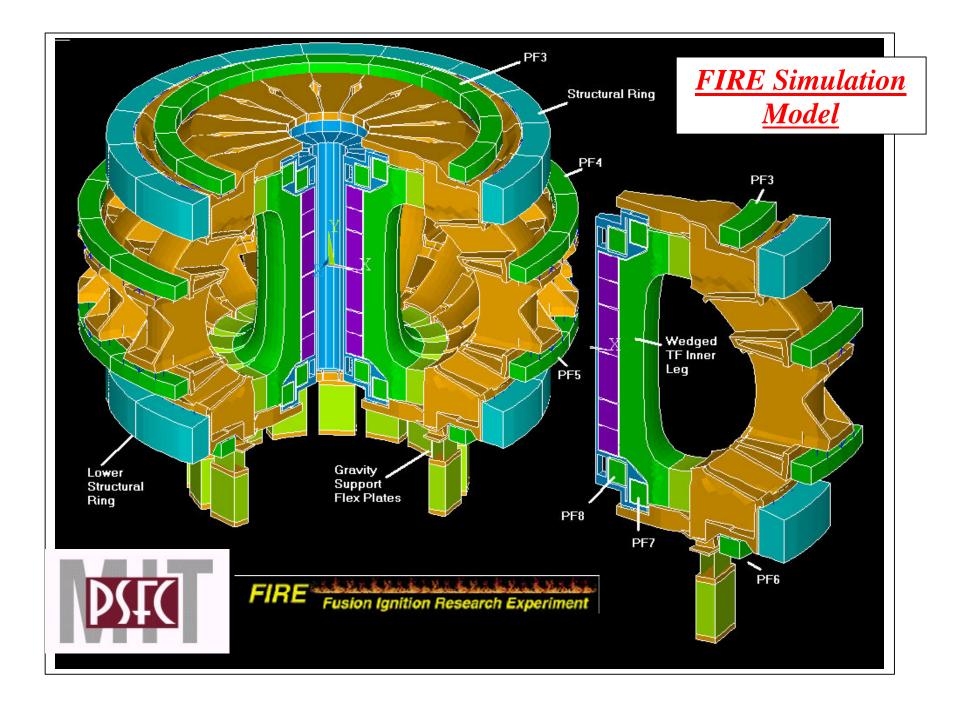
Stone & Webster

A SHAW GROUP COMPANY

FIRE Design Review

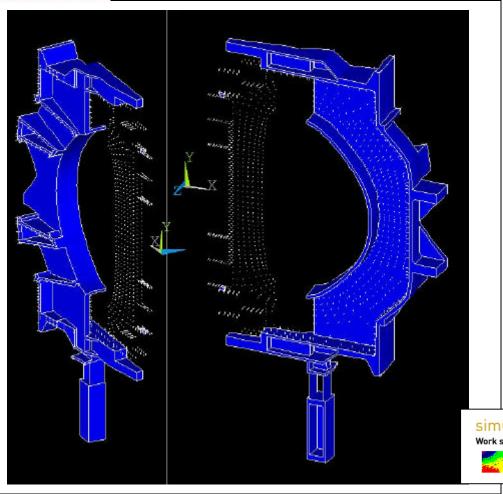
Magnet System Structural Analyses Princeton Plasma Physics Laboratory June 5-7 2001


Peter H. Titus MIT Plasma Science and Fusion Center, Cambridge MA under contract from Stone & Webster Engineering Corporation


Mission: Qualify All FIRE Baseline and Variant Designs:

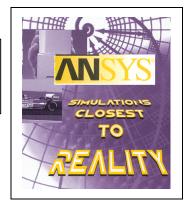
	FIRE	FIRE	FI	RE*
	Baseline	BW	W	BW
	Design W	(bucked and	(wedged	(bucked and
	(wedged TF)	wedged TF)	TF) ¹	wedged TF) ¹
TF Inner Leg Mat	BeCu	OFHC	BeCu	OFHC
R (m), a (m)	2.0, 0.525	2.0, 0.525	2.14, 0.595	2.14, 0.595
$B_{t(Ro)}$ (T), baseline	10(12)	10(12)	10 (12)	10(12)
(upgrade)				
flattop time (s)	~20(12)*	31(23)	~20(12)	~31(23)
TF Allowable(MPa)	700	300	700	300
TF Von Mises Stress	466(666)	230(326)	529 (762)	230(326)
Min. TF stress Factor	1.5 (1.05)	1.3 (.92)	1.3 (.92)	1.3 (.92)
of Safety (FS)				
(allowable/actual) ¹				
Wmag TF (GJ)	3.7(5.328)	3.7(5.328)	5.08(7.32)	5.08(7.32)
I _p (MA)	6.44(7.7)	6.44(7.7)	7.7 (8.25)	7.7 (8.25)
CS Peak Stress at PRE	294(354)	(228^{1})	322(322)	(228^{1})
CS Temp at PRE	83(85)	83(85)	88?(88)	88(88)
CS allowable at Pre ¹	345(347)	345(347)	344(344)	344(344)
CS F.S at Pre	1.15(.98)	2.1(1.5)	1.07(1.07)	2.1(1.5)
CS Peak Stress at EOB	182(332)	(30)	190(279)	(30)
CS Peak Temp (EOB)	159 (176)	159 (176)	177(227)	177(227)
CS Allowable (EOB)	313(305)	313(305)	304(280)	304(280)
CS F.S at EOB	1.7(.92)	>10(10)	1.6(1.0)	>9(9)
CS flattop time (s)	21(15)	21(15)	17.5(32??)	17.5(32??)
Fusion Power (MW)	~ 200	~ 200	150	150

FIRE Fusion Ignition Research Experiment

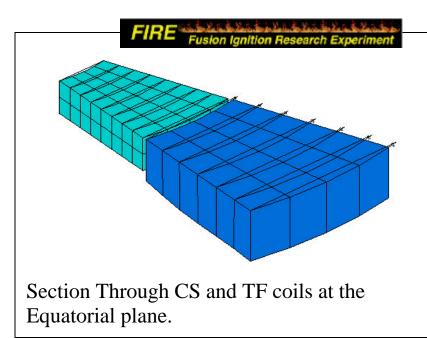


TF Model build						
FIRE FIRE*						
.820	.910153m					
1.308	1.3996m					
3.4375	3.6926					
4.0388	4.3379					
	FIRE .820 1.308 3.4375					

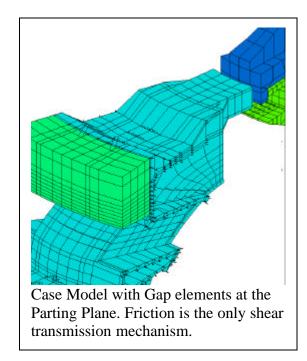
FIRE


FIRE Simulation Model

- Material and Geometric Non-Linearities
- Path Dependent Coulomb Friction
- Electromagnetic/Thermal Current Diffusion


Gap Locations •TF Coil to Case •RF Wedge Face •Case-to-Case Wedge Face •CS Segment-to Segment •PF-Case Interface •TF/CS Bucked Interface (If

Applicable)



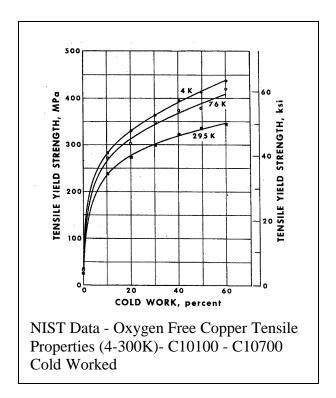
Inner Legs are not Bonded, Only Friction Supports Shear.

Cyclic Symmetry is Obtained by Coupling the Gaps across to the Opposite Face, in a Cylindrical Coordinate System Gaps Model Path Dependent Coulomb Friction, De-Wedging, and Separation, as in Initial Ring Preload

In the Non-Linear Model, Gaps are used at the Wedged Face.

Summary of Available FIRE Scenarios

	S	Re	Originato	Date	Ro	Ip	Bt	δ	EOB-	Comments
	#	f	r						SOD	
									(Sec)	
*	15		Titus		2.14	8.25?	12?		?	Ave of #12 and #13
	14		Kessel	12/19/00	2.14	7.7	10		27	
	13		Kessel	12/17/00	2.14	7.7	10		27	
*	12		Kessel	12/02/00	2.14	7.7	10		27	
*	11		Kessel		2.0	7.6	11.5	.8	28	B&W
	10		Kessel	10/19/00	2.0	7.25	11.5	.7	28	B&W
*	9		Titus		2.0	7.7	12		19	
	8		Kessel	06/22/00	2.0	7.7	12		19	
	7		Kessel	06/21/00	2.0	7.7	12		19	
	6		Kessel		2.0	2.0	4		250	
*	5		Kessel	06/09/99	2.0	6.44	10		27	
	4		Kessel	06/08/99	2.0	6.44	10		27	
	3		Kessel		2.0	6.44	10		17	
	2		Kessel	06/03/99	2.0	6.44	10		17	
	1		Kessel		2.0	6.44	10			


* Current Baseline Scenario for the Configuration it Represents

FIRE Fusion lanition Research Experiment

Copper Properties Used For the TF and CS

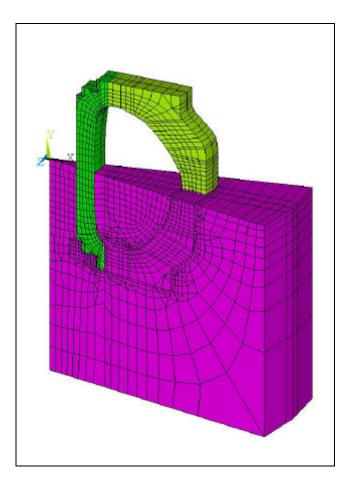
	CS	TF
FIRE	OFHC	68%BeCu
Wedged		
FIRE B&W	OFHC	OFHC
•	•	• • • • • • • • • • • • • • • • • • •

Properties of Copper Beryllium Alloy C17510 [6]

	Yield, Mpa at RT	Ult. Str. MPa at RT	Elec. Cond. % IACS at RT	% elong. At RT
Hycon 3 HP TM 68105	724	800	68	14

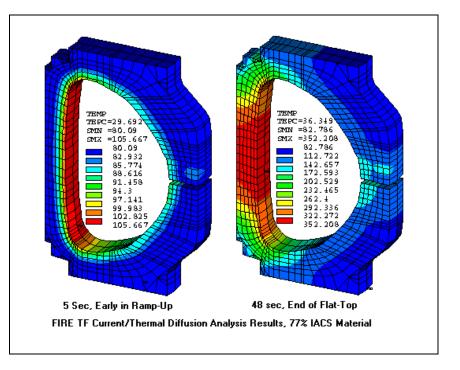
Hycon 3HP is a trademark of Brush-Wellman, Inc.

Tensile Properties for Magnet Structural Materials


Material	Yield 4 deg K (MPA)	Ultimate 4 deg K, (Mpa)	Yield, 80 deg. K (MPa)	Ultimate, 80 deg. K (MPa)	Yield, 292 deg K (MPa)	Ultimate, 292 deg K (MPa)
316 LN SST	992[29]	1379[29]	((-)		275.8[29]	613[29]
316 LN SST Weld	724[29]	1110[29]			324[29]	482[29]
304 SST 50% CW	1613	1896	1344	1669	1089	1241
304 Stainless Steel (Bar,annealed)	404	1721	282	1522	234	640

Primary Stress Allowables for Materials used in FIRE

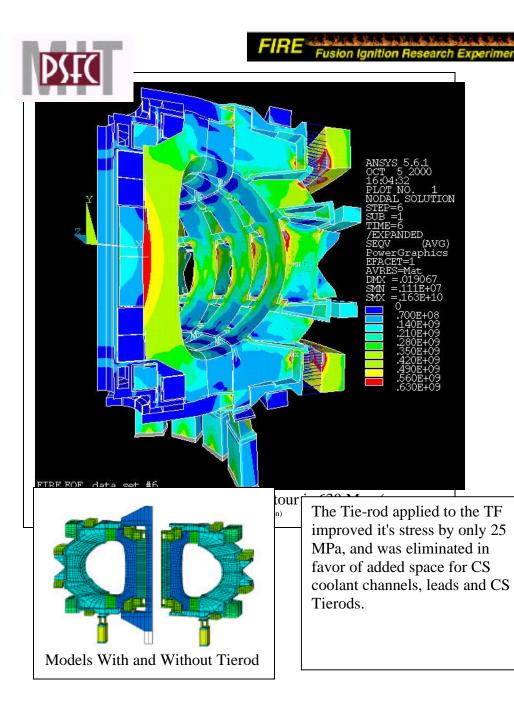
68% IACS BeCu Cond	60% CW OFHC Cond	Cast 304SST	50%CW 304 SST
Sm=483 Mpa at RT	Sm=200 Mpa at RT	Sm=154 Mpa at RT	Sm=620Mpa at RT
Sm=497 Mpa at 77K	Sm=233 Mpa at 77K	Sm=188 Mpa at 77K	Sm=834Mpa at 80K

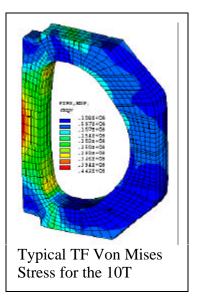


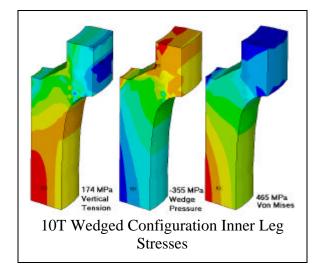
TF Electromagnetic-Thermal Current Diffusion Analysis

•ANSYS Coupled electromagnetic/ thermal analysis is used to solve the current diffusion problem.

•Model at left is shown with the upper half of air elements removed •One-D Code is also used for pulse length studies

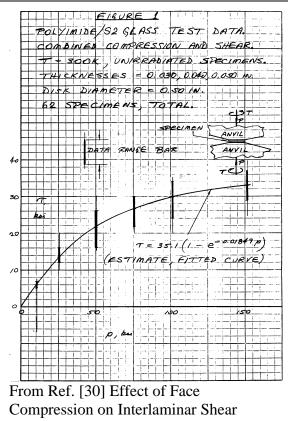

Zero-D Code Flat-Top Times


FIRE Flat Top Times (Feb 3 Dimensions, TF Central Column OR=1.308,IR=.820) Simplified Calculations using Packing Fraction=.9 Nonuniformity=1.0, 80° Start, 370°K Temp Limit


Config	FIRE All	FIRE	FIRE Baseline,	FIRE	FIRE	FIRE 68%IACS	FIRE 68%IACS
	Copper,	All	Advanced	68%IACS	68%IACS	BeCu TF	BeCu TF
	Buck	Copper,	Physics	BeCu TF	BeCu TF		
	⋀	Buck					
		&Wedg					
		e					
TF Field	12T	12T	4T	10T	10T	12T	12T
IACS	100%	100%	77%	68%	68%	68%	68%
Nuc	11	0.0	0.0	11	0.0	11	0.0
Heat	MW/m^3			MW/m^3		MW/m^3	
Time	23 sec	40 sec	243 sec	18.5 sec	26 sec	12 sec	15 sec

FIRE OPTIONS TF Flat Top Times 68% IACS BeCu TF (Feb 3 Dimensions, TF Central Column OR=1.308,IR=.820),Simplified Calculations using Packing Fraction=.9 Nonuniformity=1.0, 80° Start, 370°K Temp Limit

		U	<u> </u>				1
TF	4T	8T	8T	10T	10T	12T	12T
Field							
Nuc	0.0	7.5	0.0	11 MW/m^3	0.0	11 MW/m^3	0.0
Heat		MW/m^3					
Time	214	31 sec	46sec	18.5 sec	26 sec	12 sec	15 sec



The Wedged Version of FIRE is Characterized by Very Large Wedge Compressions

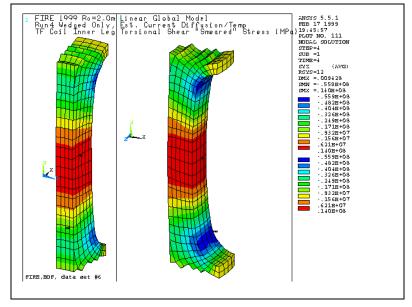
FIRE Fusion Ignition Research Experiment

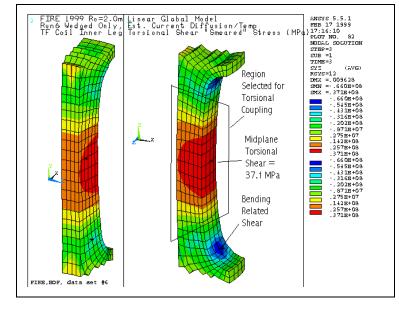
	Insulator Dose	Compressive stress	Von Mises	RT and 80°K Required Compressive Strength based on 2/3 Criteria
Plasma side 10T operation 2.0m machine	1.27e10 RAD	240 MPa	300 MPa	450 MPa
CS side 10T operation 2.0m machine	1.58e8 RAD	360 MPa	469 MPa	704 MPa
Plasma side 12T operation 2.0m machine	1.27e10 RAD	346 MPa	440 MPa	660 MPa
CS side 12T operation 2.0m machine	1.58e8 RAD	520 MPa	689 MPa	1033 MPa

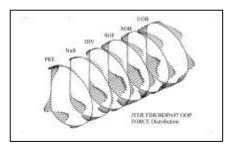
Compression on Interlaminar Shear Strength of Polyimide/S2 Glass Laminate Insulators - Preliminary Report" H.Becker, T. Cookson (GDC) June 24 1985.

Insulating Material and Non-Metalic Strengths

	MPa @4°K	MPa @77°K	MPa @292°K
Comp.Strength Normal to Fiber			
G-10CR	749(Ref 27)	693(Ref 27)	420 (Ref 27)
G-11CR	776(Ref 27)	799(Ref 27)	461 (Ref 27)
		900(Ref 29)	
CTD 101K AR irradiated	1260 (ave) (Ref 28)		
CTD-112P irradiated	1200 (ave) (Ref28)	1150(Ref 30 p	
		47)	
Polyimide/S2 Glass Laminate			1033 MPa, Ref [30]
Tensile Strength (Warp)			
G-10CR	862 (Ref 27)	825(Ref 27)	415 (Ref 27)
G-11CR	872(Ref 27)	827(Ref 27)	469 (Ref 27)
Tensile Strength (Fill)			
G-10CR	496(Ref 27)	459(Ref 27)	257 (Ref 27)
G-11CR	553(Ref 27)	580(Ref 27)	329(Ref 27)


The TF insulation needs to be thin. For FIRE's TF inner leg, 90% average packing fraction is assumed.


See The Separate Friction Handout for More Information on Low Friction Materials



FIRE

Some Basics:

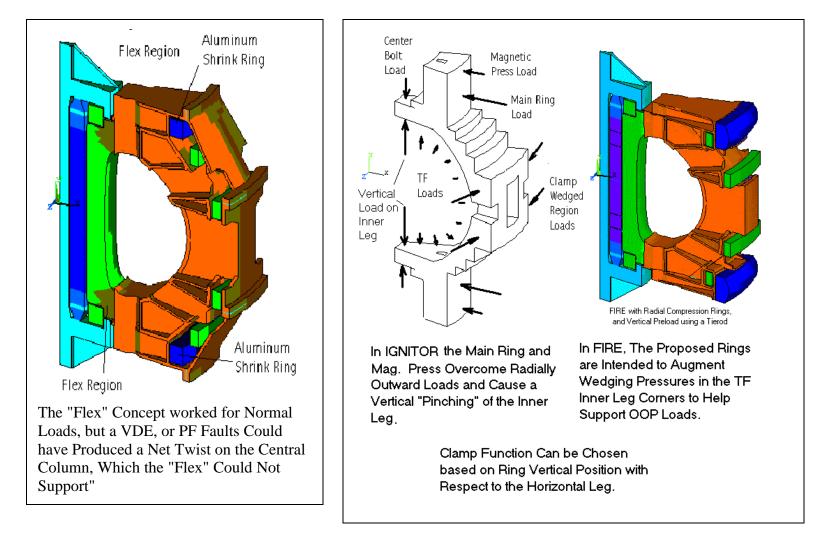
EOF TF Equatorial Plane Torsional Shear Stress - Comparison of Reactors

FIRE 10T, Wedged Inner Leg Torsional ly Coupled R#4	FIRE 12T, Wedge d Inner Leg Torsion ally Couple d R#42	FIRE 10T Wedged, Only Mid- Plane Torsional Coupling	BPXAT Rigid OOP Structure , Run#13	C-Mod Run #193	IGNITOR Run#4
14.0	19.9	37.1	35.9 35.5 (H.M.Fan)	22.8	33.3

• Inner Leg Torsional Shear Distribution is a Function of Relative Stiffnesses of the TF and Outer Structures.

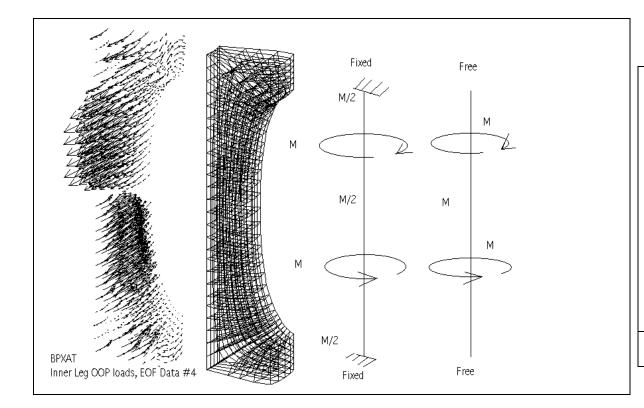
• OOP Forces are Worse with Segmented Solenoids and Highly Shaped Plasma's

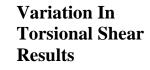
• Friction at Wedge Faces Supports Torsional Shear. - Insulation Bond Does Not.


• Inner Leg Insulation System Does Not Need Bond Strength, Only Compression Related Shear Capacity -Important for Irradiated Insulation

• The Corners of the TF De-Wedge

• Corners Can Be Designed Not Support Torsion By Slipping, or Flexing - Slipping causes insulation Fretting. Flexing Makes the Inner Leg Sensitive to Net Torques during Faults.


FIRE Structural Ring Solves "De-Wedging" and TF Inner Corner Slippage.


OOP (Out-of-Plane) Analysis

End Fixity of the TF Central Column Effects the Distribution of Inner Leg Shear

The structural ring concept is intended to "force" the "fixed ended" shear distribution.
Solutions which use the "free ended" shear distribution could be supported by mid plane wedge pressure, but the possibility of net torques and fretting failures at de-wedged ends argued for the "fixed ended" solution

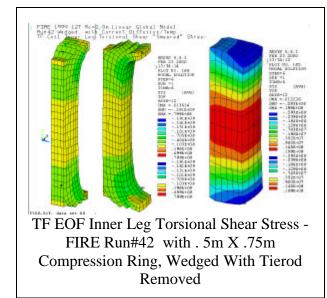
Representative Distributions of Inner Leg Torsional Shear:

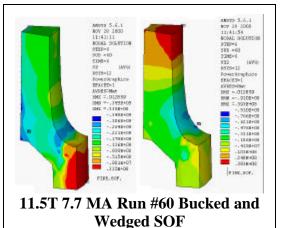
10 T Options ~30 Mid plane and ~50 ends

12 T Options ~40 Mid Plane and ~65 ends

There are many results for the torsional shear, There are over eleven scenarios Magnitudes are effected by Ip, TF field, bias, shaping, thermal distribution, external Structure Stiffness

Torsional Shear and Shear Capacity (related to wedge pressure) scale as ~Bt^2. Shear Margin is About the same for 10 and 12T Options.

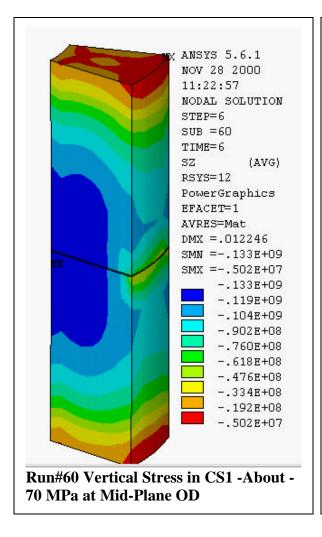

Ring size and load can be adjusted to frictionally hold the corner. With the corner not slipping, and a friction coefficient which is the same as the Shear/Compression factor, The insulation is OK even if it doesn't have a bond strength.


There are many runs with different friction coefficients, so there are many shear margin results. If there isn't enough corner compression, and the coil slips, The surface shear drops and the bending related shear goes up. If the wedge face insulation can take some fretting without failure, and the bending shear satisfies our allowable of $S_S = [2/3 \tau_0] + [c_{2X}]$

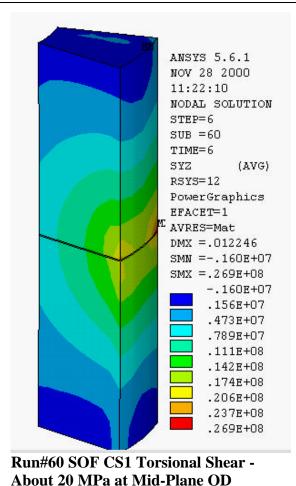
Sc(n)], then this would also be OK too.

The ring gives a lot of freedom in selecting insulation and surface friction for the corner of the TF.

The Bucked &Wedged arrangement trades wedge pressure sufficient wedge pressure to sustain shear.



Torsional Shear Stress,Mu=.3 Toroidal Compression and Torsional Shear. Minimum Shear (Max Amplitude) occurs where there is about 200 MPa Compression



CS Torsional Shear

Fusion Ignition Research Experiment

FIRE

The Bucked and Wedged Solution Imposes Torsional Shear on the CS as well as the TF.

There is Adequate Vertical Compression to Support the Torsional Shear Imposed by the TF

$$S_{s} = [2/3 \tau_{0}] + [c_{2x} S_{c(n)}]$$

With 70 MPa compression, and **C2=.3**, **To** could be zero

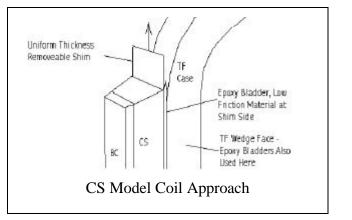
Bucked & Wedged -The Concept: What is the Advantage?

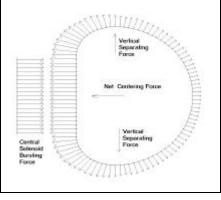
Ro=2.0 machines made of 68% BeCu

Structural	Bo	TF	Factor of Safety
Concept		stress	BeCu, Allowable
		(MPa)	=700 MPa
Wedged	12	700	1.0
Bucked and	12	326	2.14
Wedged			

Fit-Up approaches, all will work:

CNC machine all mating surfaces to high tolerances, Face off Wedge face and Case with G-10 machining allowance layer in AES proposed fixture.Turn the CS to a known OD. Assemble TF array, put Ring preload on. Then machine the TF bore in place to CS OD, loosen ring, back off TF's slightly, insert CS and re-tighten TF's


Use epoxy bladder to fill CS/TF space at assembly (Use

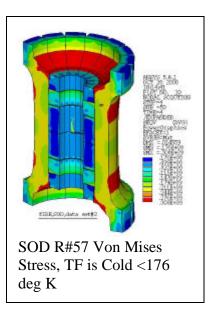

CS Model coil type shim to release CS for disassembly) Use Epoxy shims at TF wedge face

Hire many 60 year old mechanics with blueing and scrapers to fit up the interfaces.

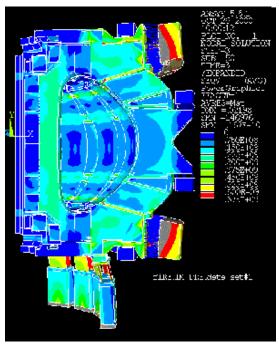
DSFC

Bucked: TF Bears Against the Central Solenoid (JET, ITER FDR) Wedged: (TF Inner Legs Support Centering Force as a "Vault", or "Wedged". - CS is Free-Standing, (BPX, C-Mod) Bucked and Wedged: TF Bears Against the CS and is Wedged. Two Load Paths Effective for TF Centering Force (IGNITOR)

FIRE Eusion Ignition Research

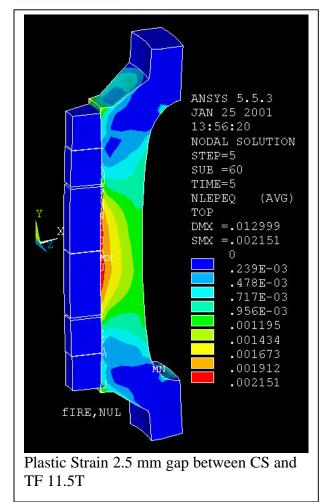

FIRE Fusion Ignition Research Experiment

FIRE Bucked and Wedged Ro=2.0 11.5T TF, 7.25 Ip , OFHC Copper Coils

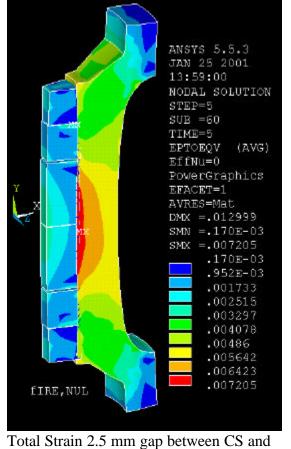

- From Elastic Analysis, Major Stresses In CS and TF Remain below 1.5 Sm for ranges in fit-up, Friction behavior, and preload. The Elastic-Plastic Analyses show the Limit Load to be Above 16T TF Twice Operating Loads
- TF must bear on full height of CS.
- CS1 Heat-up causes bending in inner leg. Solution is to "preheat" CS2
- Bucking Cylinder is Needed to Demonstrate 16 Tesla Limit Load. 14cm thick Cylinder is Modeled, Lead Cut-Outs and Coolant Passages will require added build.

OFHC 60%CW 1.5Sm (Based on lesser of 2/3 Sy or 1/2 Su)

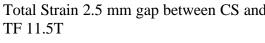
Temp=85	Temp=176	Temp=292
1.5Sm=347	1.5Sm=305	1.5Sm=262



Bucked and Wedged Model, Four Sector Symmetry Expansion, - Von Mises, Stress Contours " Notice Low Stress in CS and TF



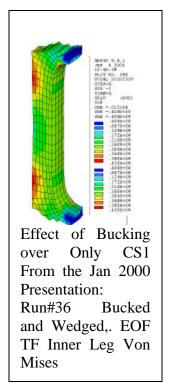
FIRE Bucked and Wedged Out-of-Tolerance Assembly, Run #68 2.5mm Gap Between TF and CS, 11.5T


FIRE

Fusion Ignition Research

FIRE "Worst Case B&W Fit-Up, 11.5 T, 2.5mm Gap" Insulation Stress= .007205*30 Gpa =216 MPa (Conservatively Assumes all Conductor Plastic Strain is in the Insulation Plane.)

The Consequences of a Large Gap at Assembly are Benign.


FIRE

FIRE Bucked and Wedged Analysis Run Summary With Variations in Friction Coefficient CS/TF Gap, and Ring Load

Copper IACS=100%, Packing Fraction=.85 Sliding Gaps Everywhere, Mu as Noted, betaN = 2.0, TF End Temperature

Ru	Bt	Ір	Flat-	CS/	Mu	CS2/CS3	CS1	Ring	TF E	CS E
n		-r	top	TF		Tstart	Peak	Load	Limit	Limit
			••P	Gap			Тетр	2000	MPa	MPa
				mm			- •p			
74	16	7.6	21	.3	.3	120	275	1.0	270	216
73	15	7.6	21	.5	.3	120	275	1.0	270	216
72	14.0	7.6	21	.5	.5	120	275	1.0	270	216
70	11.5	7.6	21	-1.25	.3	120	275	1.0	270	216
69	11.5	7.6	21	1.25	.3	120	275	1.0	270	216
68	11.5	7.6	21	2.5	.3	120	275	1.0	270	216
65	12.0	7.6	21	.5	.3	120	275	1.0	270	216
64	11.5	7.6	21	.5	.3	120	275	1/4	270	216
63	11.5	7.6	21	.5	.25	120	275	1.0	270	216
62	11.5	7.6	21	.5	.3	120	275	1/2	270	216
61	11.5	7.6	21	.5	.2	120	275	1.0	270	216
60	11.5	7.6	21	.5	.3	120	275	1.0	270	216
57	11.5	7.25	21	.5	.3	100		1.0	270	No E-P
56	12	7.7	15	.5	.3	100		1.0	270	No E-P
49	11.5	7.7	15	.5		100		1.0	No E-P	No E-P
D	#57 DI		f.	T Z		Flue Chift	- 1 5V D	1	E	0 <i>5</i> (fl-/

is 337K,δ=.8 (δ=.7R#57)

Run #56 PF coil currents from Kessel PF Flux Shifted 5V Packing Fraction=.85 (pfk7.inp) Run #57 PF coil currents from Kessel, 10-19-2000 Elastic-Plastic TF and CS

TF End Temperature is 337K

Run #60 PF coil currents from Kessel, 11-7-2000, Packing Fraction=.85 (pfk9.inp)

A NUL time point has been added. Stress levels are about the same as reported in the Oct. phone call. Peak TF Von Mises is 330 MPa, and TF plastic strains are below .4% Nul CS von Mises is 210 MPa and this is the worst through-out the shot including SOF in which the CS1 currents are -14.84 MA, up from -13.08 MA

FIRE Fusion Ignition Research Experiment

CS/TF Insulation/Low Friction Material Bucking Pressure Evaluation. (See Also Separate Friction Hand-out)

Structural Concept	Ru n#	Во	Ro	TF/CS Buck Pressure (MPa)	Factor of Safety ITER Qualification at -90 MPa	Factor of Safety CIT Qualification at -253 MPa Cyclic 400 MPa Static
					Vacuum/4°K	N2Gas/80°K
Bucked and Wedged	74	16	2.0	-350	.257(dynamic)	1.14(Static), .7 (dynamic)
Bucked and Wedged	65	12	2.0	-141	.638	1.79
Bucked and Wedged 1.25mm stand-off	69	11.5	2.0	-80	1.125	3.16
Bucked and Wedged 1.25mm interference	70	11.5	2.0	-145	.62	1.74
Bucked and Wedged		10	2.0	-79.9	1.12	3.17

FIRE Fusion Ignition Research Experiment

Bucked & Wedged: Effect of Gap or Interference at the CS/TF Interface

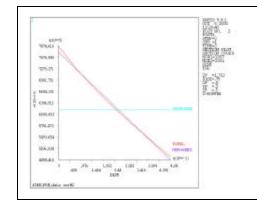
11.5T Bucked and Wedged Elastic-Plastic Results, NUL TF Inner Leg EQ. Plane(+/-.5m)

Run #	TF/CS Gap	Max VM	Max Tresca	SZ Wedge	SX Radial	SY Max	SY at Nose	Epvm	Epx (rad)	Epy (vert)	Epz (theta)
70	-1.25	255	290	-174	-154	175	45.3	0	0	0	0
61	.5	282	333	-252	-116	154	70.1	.00159	0	0	0
69	1.25			-279	-106	146	67.4	.00168	0.11e-3	.987e-3	912e-3
68	2.5			-303	-97.7	144	63.7	.003	.03e-2	.18e-2	

Starting with an interference (Negative Gap of -1.25mm), the gap between the CS and TF was varied up to 2.5mm.

Run #	TF/CS Gap	Max VM	~Ave VM	Max Tresca	SX Radial	SY Max	SY at Nose	Epvm	Epx (rad)	Epy (vert)	Epz (theta)
70	-1.25	259						0	0	0	0
61	.5	225	166					.219e-3			
69	1.25										
68	2.5										

11.5T Bucked and Wedged Elastic-Plastic Results, NUL CS EQ. Plane(+/-.5m)



Satisfying the Primary Membrane Stress Criteria For the Ro=2.0m Wedged Configuration:

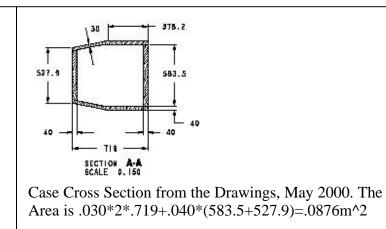
- What is the Primary Load Path for the Centering Load? ---Only Wedging.
- What is the Primary Load Path for the Vertical Load? Both Inner and Outer Legs? Just the Outer Structure?
- Qualification Approach: Use Hand Calculations Backed-Up by FEM Analysis Show that the Outboard Structures Can Take the Vertical Load, and Inner Leg Takes the Centering Load by Wedging. Criteria Document I-3.1.1

Inner Leg Stress Summary

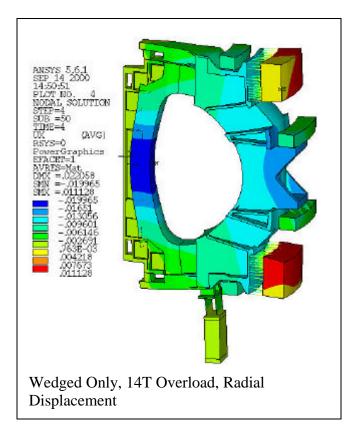
Stress Component	10T	12T
Primary Membrane Allowable	480MPa	480MPa
Primary Stress With Vertical (Hand Calculations)	400MPa	576MPa
Primary Stress Without Vertical	249MPa	358MPa
Equatorial Plane average Wedge Pressure at Precharge - FE results, run#52		397 MPa
Equatorial Plane average Wedge Pressure at EOF - FE results, run#52		400 MPa

Results of Linearizing the TF Inner Leg Stress (ANSYS PLSECT command) applied to a path across the radial build of the inner leg of the TF - Vertical loading included. -ANSYS Results With Vertical Stress

Loading	Load	Equiv Stress	Peak	Membrane	Membrane
6	Step	Туре			+bend
Allowable Stress				480	728
Precharge	2	Tresca	787.4	618.8	769.6
Precharge	2	VonMises	689.4	540.2	671.8
EOF	6	Tresca	698.5	577.9	680.3
EOF	6	VonMises	627.0	505.0	604.0


The Difference between EOF and PRE is the Result of a Thermal Component.

For the Inner Leg Primary Stress to be Only the Wedge Stress, The Outer Leg and Case Must Take All the Vertical Load


Outer Leg Conductor Stress Summary						
Stress Component	10T	12T				
Allowable	233MPa	233 MPa				
Primary Stress With 100%	207MPa	298 MPa				
Vertical						
Primary Stress With 200	155MPa	223MPa				
MPa (at 10T) Contribution		(But this requires				
from the Case		300 MPa Sm for				
		the case				

See:

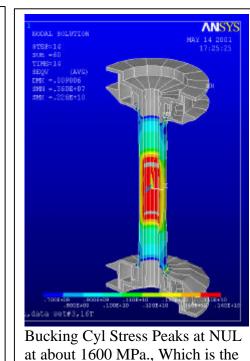
"FUSION IGNITION RESEARCH EXPERIMENT (FIRE) MAGNET SYSTEM STRUCTURAL ANALYSES", ANS Topical On the Technology of Fusion Energy for a Complete Discussion of the Primary Stress Evaluation for the Wedged 12 T BeCu Configuration

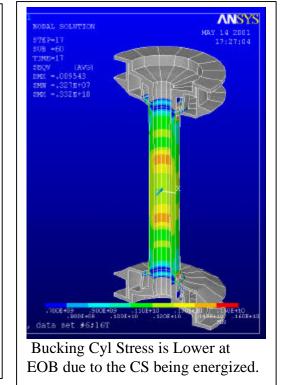
Wedged TF Coil Elastic - Plastic Analysis to Demonstrate "Adequate Ductility"

Design Criteria Document Requires "Adequate Ductility" How do we Define and Evaluate This?

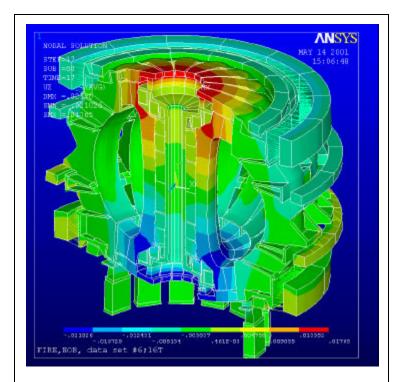
At 14T over-load, the Wedged Concept has only 1.8% Total Strain, Well Below the 14% Elongation for the 68% IACS BeCu

Radial displacements of the Inner Leg of the Wedged Machine with a 14 T TF loading is 1.9cm including the thermal contraction. The 12T elastic result is 5 mm.


FIRE Magnet	TF	Total Elastic	Location	Insulation
Concept	Material	+Plastic VM		Stress at
-	Elastic	Strain		Eins=30 Gpa
	Limit			
Wedged	600 Mpa	.0067	Mid-Plane	197 MPa
Only/BeCu 13T				
Wedged	600 MPa	1.83%	Mid Plane	549 MPa*
Only/BeCu 14T				


Satisfying the Primary Membrane Stress Criteria For the Ro=2.0m Bucked and Wedged Configuration:

- What is the Primary load for the Inner Leg? Centering Load or Vertical Load? Both?
- What is the Primary Load Path for the Centering Load? Bucking? Or Wedging?
- What is the Primary Load Path for the Vertical Load? Both Inner and Outer Legs? Just the Outer Structure?
- Qualification Approach: Use Elastic-Plastic Analysis or Limit Analysis at Twice the Normal Load. Criteria Document I-3.1.1 - To Qualify the Design for 11.5T TF Field, Analyze to 16.3T



Ultimate for 50% CW 304 SST

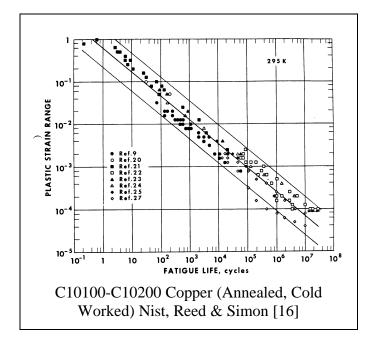
Bucked & Wedged 16T TF Elastic-Plastic Limit Load Analysis

Bucked and Wedged 16T Limit Analysis, EOB Vertical Displacements, Including Cool-down

Solution is Bounded, Stable and Converged Throughout Two Shots. The Bucked and Wedged Configuration Could Survive a 16T Loading

Bo	11.5	14	15	16
Run			73	74
BC VM			1270	1600
BC Hoop			-836	-1130
BC vert			639	
TF VM				
TF εp VM			.008	.0142
TF Hoop			-325	
TF Vert			+277	+346
				(plasma side)
CS Von Mises			284	320
CS Hoop			-300	-307
CS ɛp VM			.006	.02
Case VM				
Case UY Max			+.0002	.007
Case UY Min			013	016

Further Discussion of the Bucked and Wedged Limit Load Analysis in On the Web including an Animation that shows the Global Displacements of the Machine Along with the Central Column Plastic Strain


Total	Pre-load	EOF	Hot-No-Load	Cold No Load
Principa				
1 Strain				
Com-				
ponent				
EPTO1	.0016	.003	.004	.003
EPTO2	~0	001	001	~0
EPTO3	0035	007	00733	0051
	•		•	

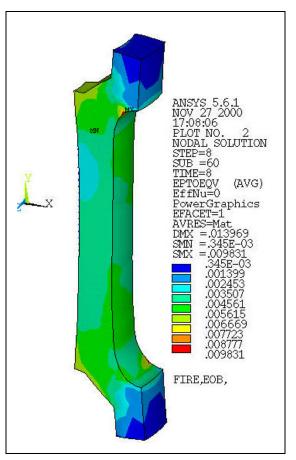
TF Arch Region Stresses (Both Wedged and Bucked and Wedged)

Strain Controlled Low Cycle Fatigue in the "Arch" Region

12 T strain Results. - Look at Cyclic Principal Total (Elastic+Plastic) Strains

The Strain Range is about .4%, which give you about 20,000 cycles , or about 1000 cycles with a factor of 20 on life

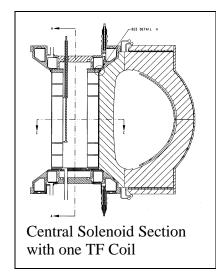
Insulation Strains and Stresses Imposed by Total or Elastic + Plastic Strains Bucked and Wedged vs. Wedged


TF Coil Plastic Strain and Insulation Stresses

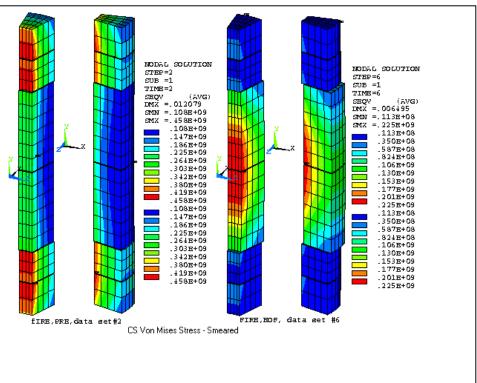
(Conservatively Assumes all Conductor Plastic Strain is in the Insulation Plane.)

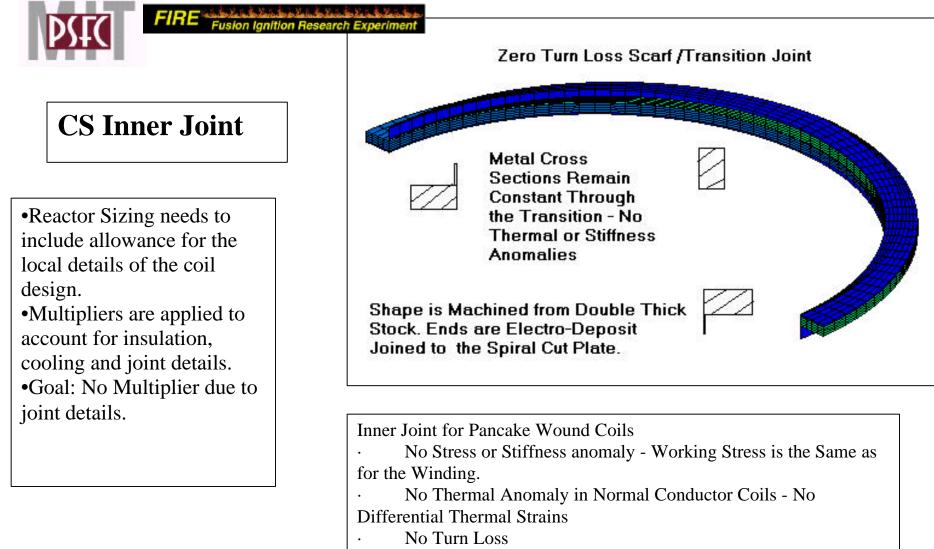
FIRE Magnet	Peak Field	TF Material	Total	Location	Insulation
Concept		Yield	Elastic		Stress at
			+Plastic		Eins=30
			VM		Gpa
			Strain		-
Bucked and	12 T	350 MPa	.0098	Arch	294 MPa
Wedged /OFHC					
Wedged Only	13 T	600 MPa	.00657	Mid Plane	197 MPa
/BeCu					
Wedged	14 T	600 MPa	.0183	Mid Plane	549MPa*
Only/BeCu					

*449 MPa if Only In-Plane Strains are Considered


Insulating Material Strengths, MPa					
	@4	@77	@292		
Comp.Strength Normal to Fiber G-10CR	749	693	420		
Comp.Strength Normal to Fiber G-11CR	776	799	461		
Tensile Strength (Warp) G-10CR	862	825	415		
Tensile Strength (Warp) G-11CR	872	827	469		
Tensile Strength (Fill)G-10CR	496	459	257		
Tensile Strength (Fill) G-11CR	553	580	329		

FIRE Fusion Ignition Research Experiment


Basic Characteristics of the FIRE CS and PF Coil System



•OFHC Copper Segmented Solenoid and PF coils

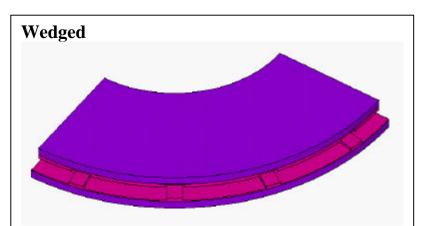
•Base design is free standing, Bucked and wedged is carried as an option •Solenoid uses water-jet plate double pancake winding. Uses a constant cross section, zero turn loss inner joint.

•PF coils are Strip wound Plate

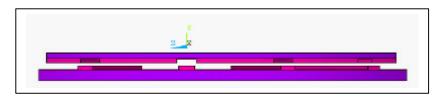
• No Projection into the Bore

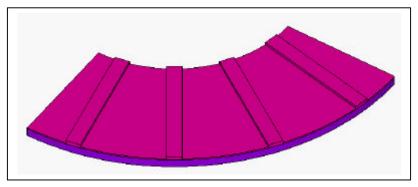
Used with more Conventional Outer Joint for Ease of Insulation and Assembly of Double Pancakes

Maintenance of Concentricity In the Segmented CS

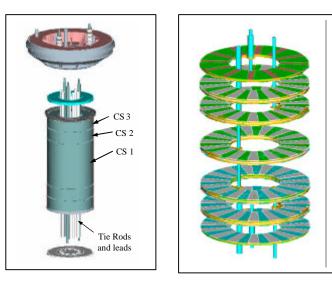

Bucked And Wedged

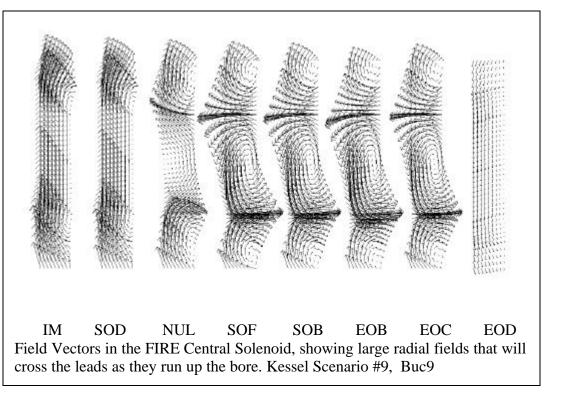
Radial Groove Detail May Not Be Needed, Or At Least Radial Motion Will Not Occur Under Load

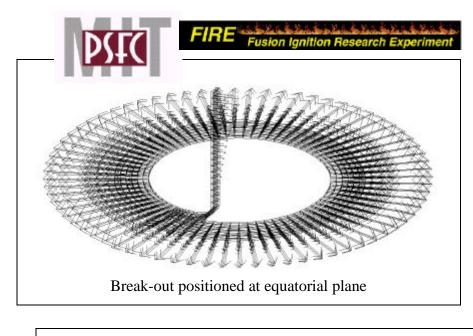

CS is Clamped Between TF and Bucking Cylinder.

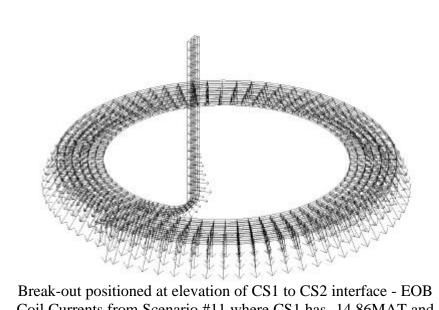

Differential Radial Motion Only Occurs When TF is Turned Off.

Lead Support Motion Does Not Occur Under Load

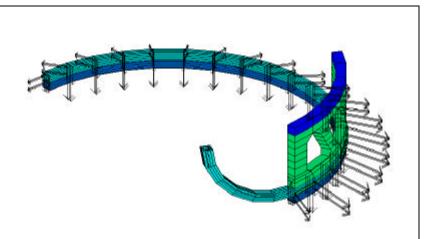

Low Friction Surface, Radial Grooved Plates Between CS Segments - Allow Differential Radial Motion due to Thermal and Lorentz Force Differences. Lead Support Must Allow Radial Motion Under Load as Well.

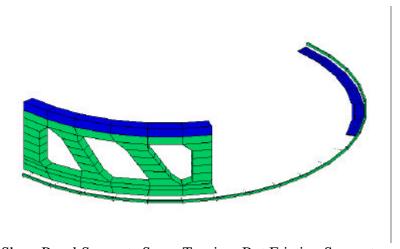



CS Inner Leads



Max Fields in the CS Bore, Kessel Scenario #11,						
Buc9 fields,						
Time	Br max	Bvert max	Btot max			
Point						
IM	2.550120	18.20790	18.21001			
SOD	2.314950	16.50390	16.50589			
NUL	4.955180	12.26410	12.27314			
SOF	9.462240	10.33470	15.66222			
SOB	8.258770	9.144980	14.15456			
EOB	8.311100	6.767660	16.42905			
EOC	7.541010	8.863180	11.96668			
EOD	0.5575220	0.000E+000	4.126797			


Inner Leads Have No Multiplier As Well - It will be Tough Because of the Radial Field in the Bore



Coil Currents from Scenario #11 where CS1 to CS2 Interface - EOB CS2 has +3.960MAT. In just the "Up-Turn" + Vertical Run, the net Vertical Force is 83130N or 18,700 Lbs, downward. One Possible Solution: Use CS Model Coil Lead Concept, That was Mostly Restrained By Friction.

CS Model Coil Lead FE Model updated with better modeling of the shear panel, and smaller extent of de-bond

Shear Panel Supports Some Tension, But Friction Support Most of the Hoop Tension.

30

719

SECTION A-A SCALE 0.150

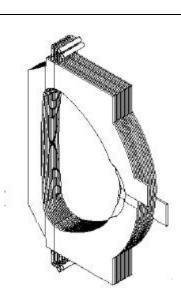
Drawings, May 2000. The Nominal Outboard Leg Conduction Area is

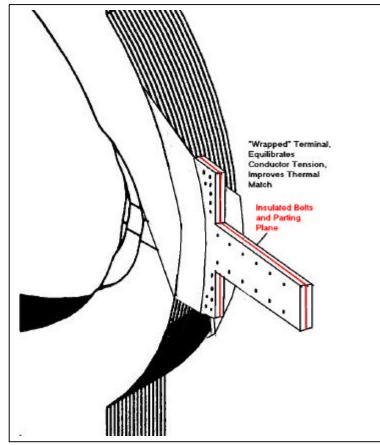
Case Cross Section from the

.719+.583.5=.419m^2

527.9

40 -

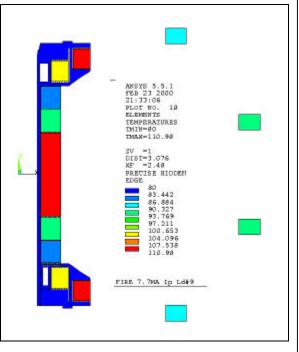

TF Leads


 Present Terminal Configuration:
 "Cut-Out" Increases Temperature from 160°K to 300 °K
 Tension inTF Turn Is Not Reacted Proposed "Wrapped" Configuration:

40

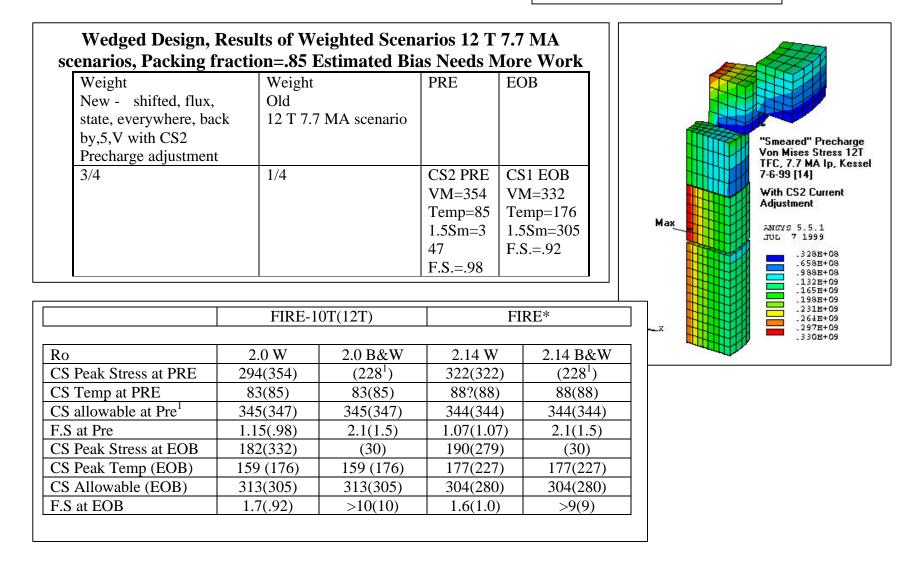
40

- Conduction Cross Section Matches Interior Turns
- TF Tension is Equilibrated

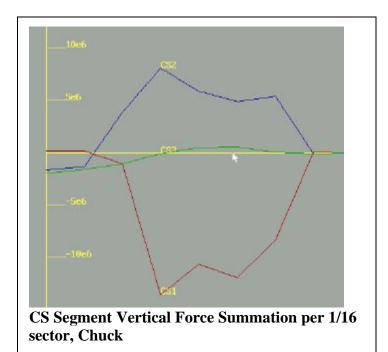


FIRE Fusion Ignition Research Experiment

CS/PF Temperature Summary


FIRE* CS and PF coil Temperatures, 15 second 10T TF, 7.7 MA							
Copper IACS=100%, Packing Fraction=.85 (pft1.inp)							
Time	CS1	CS2	CS3	PF1	PF2	PF3	PF4
(sec)							
5	84.4862	84.5903	82.3161	84.5120	84.5120	80.0266	80.0115
5.01	84.5092	84.6139	82.3280	84.5351	84.5351	80.0268	80.0116
12	89.7898	93.0775	88.0673	98.9259	98.9259	80.3592	84.1035
14.5	94.6423	94.0828	89.0958	106.397	106.397	81.1031	88.1192
32	133.203	96.0205	91.1334	190.949	190.949	89.4062	116.937
35	140.532	96.7718	91.9346	204.018	204.018	89.9582	121.641
39	143.667	97.2025	92.4003	206.680	206.528	89.9943	123.210

Temperatures based on PF coil currents from Kessel, 10-19-2000, for the Bt=11.5 T case. Parameters to note...--> Ip = 7.25 MA---> betaN = 2.0---> flattop time = 21 s Copper IACS=100% Packing Fraction= 85 (pfk8 inp)


IACS-100%, Facking Plaction65 (pike.inp)							
Time	CS1	CS2	CS3	PF1	PF2	PF3	PF4
(sec)							
0	80	80	80	80	80		
0.01	80.0125	100.022	100.01	80.0188	80.035	80.02	80.02
7.0	96.6269	128.899	107.01	88.26	101.37	80.35	80.07
9.5	99.002	135.874	109.693	93.079	108.305	80.705	82.039
28.0	165.101	159.766	127.93	162.85	192.32	88.36	126.6
31.0	181.14	162.163	129.79	179.791	212.78	89.59	136.94
35.0	200.96	166.28	133.28	200.9	238.13	91.615	146.44

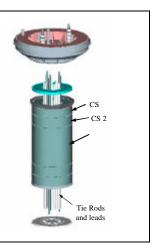
CS Stress Summary

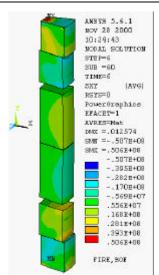
Restrains the CS2 Launching load

Recommendation: To minimize vertical slippage, and minimize fault load considerations, use a 15 cm thick Mandrel shell. If you rely on CS2/TF friction, A failure to heat CS2 might produce too little frictional constraint. You would be limited in running a lower TF field because the bucking pressure might be too low

CS Tierod or Inner Shell Vertical Loading

CS 3 contributes little to the launching load. CS2 develops about 8 MN vertical load

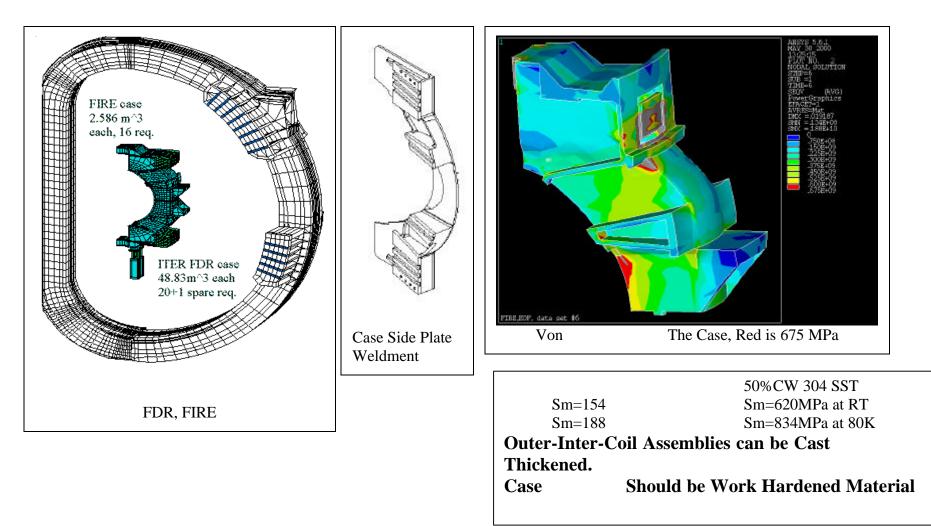

The area of 1/16 sector of the mandrel shell is 3.72e-3 m^2.


It is 5 cm thick

If the Mandrel Shell takes all the loading, the tensile stress 8e6/3.72e-3=2150 MPa

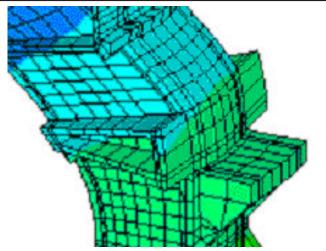
But the Model only shows about 700 MPa

Frictional Restraint at the CS/TF interface

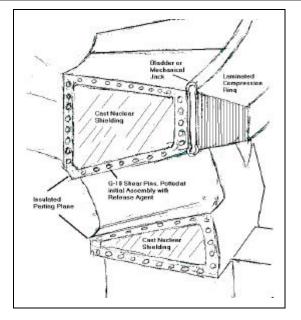


Radial - Vertical Shear Helps Restrain CS2 In B&W Concept.

Case Design and Stresses

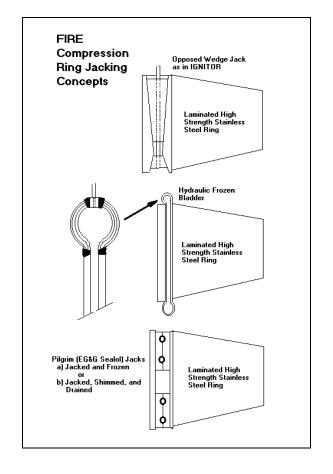

Case Slippage

Case Slippage There is slight evidence of slippage in the Outer-Inter-Coil Box Section

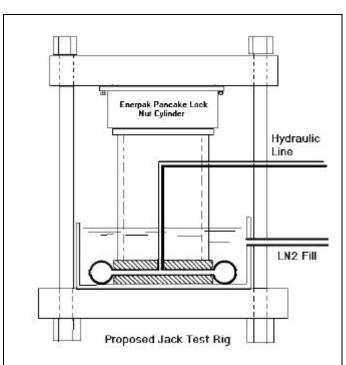

A friction coefficient of .3 was assumed at this interface, and it is recommended that :

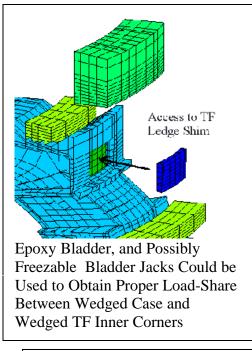
•Some mechanical shear connections be retained and,

Higher friction coefficient materials and/or surface preparations be found.
Shear Pins or Keys are recommended, Even Though Most of the Shear will be taken by Friction

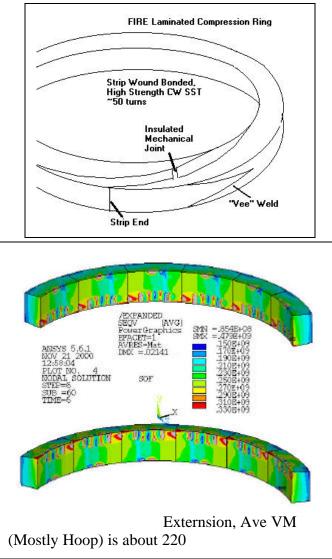

Even With Full Ring Load, Note Toroidal Discontinuity of Vert Disn

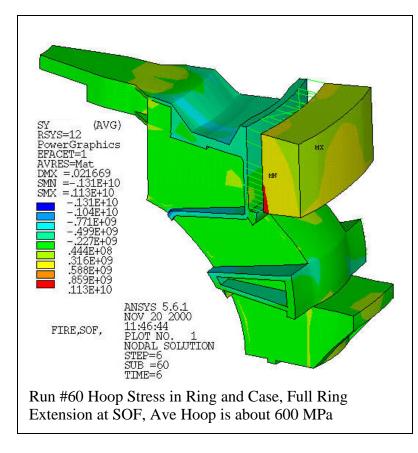
Ring Jacking Mechanism: A System Exists that Meets FIRE's Needs. Other Systems May Be Possible and Cost Effective.

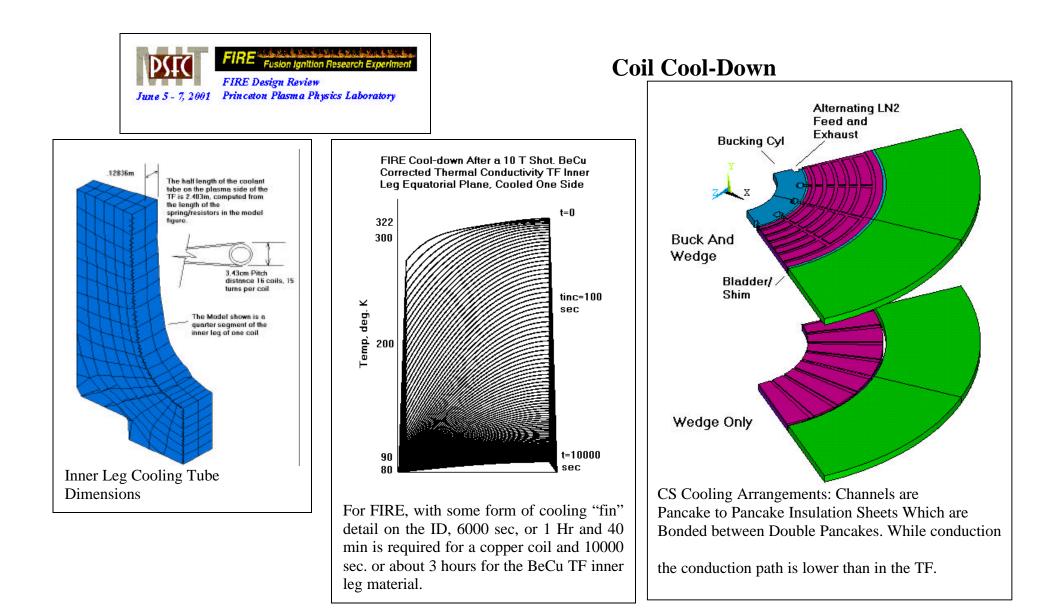


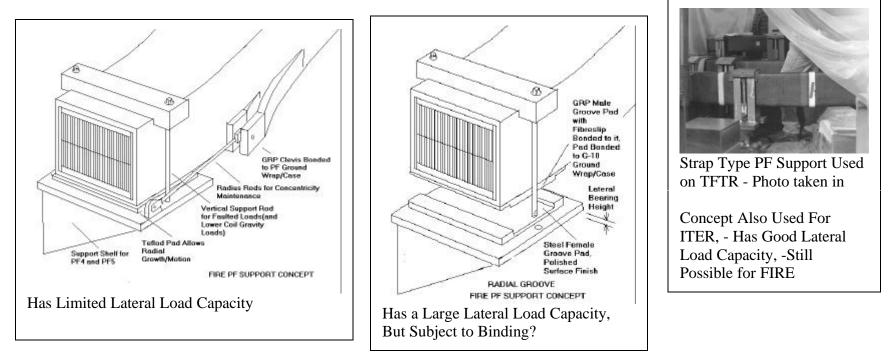

A steel flat jack used in the construction industry

To simulate the stroke, long tie rods with the correct compliance could be used. Alternatively, the bladder jack could work against a conventional hydraulic jack that would be backed off as the bladder jack was pressurized. After the bladder is tested, the jack could be frozen with it's hydraulic fluid, to evaluate it's feasibility for the ring loading application.


Proposed Fluid Jack and Bladder R&D



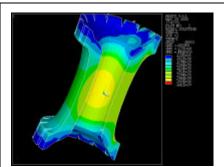

Ring Stresses



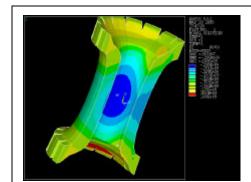
PF Coil Supports

Concentricity Maintenance

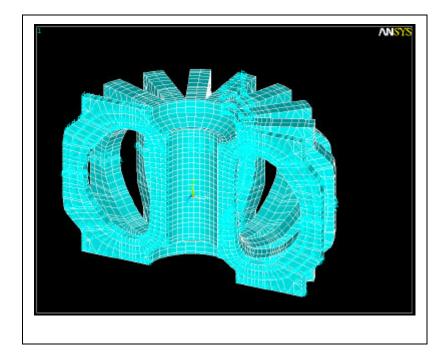
The radial grooves used in the CIT/BPX arrangement may be subject to binding and alignment problems. This was the motivation for considering the use a system of radius rods. This type of support was used for the GEM detector, and is used for support of large superconducting solenoids. In this concept there would be as a minimum, one unidirectional tangential radius rod in the shadow of each TF coil.

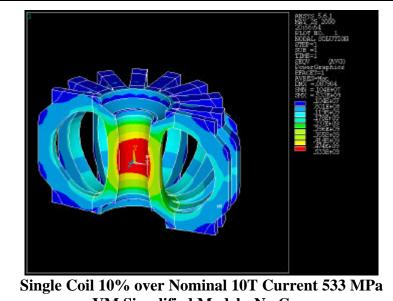


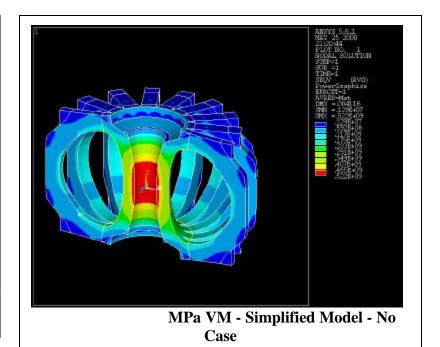
Fault Analysis

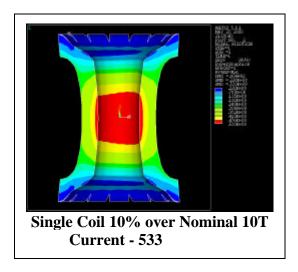

Survivability in Off-Normal or Faulted Loading Is Required by the FIRE Criteria Document.

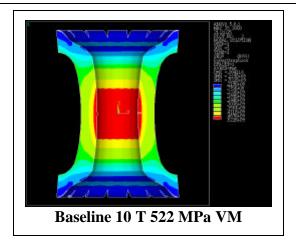
Where Faulted Loads, Produce No Permanent Damage, It is Also is a Measure of Design Margin.


Simplified Fault Analysis				
Model and Current/Loading	Peak TF Stress			
Nominal 10T No Tierod Detailed Model	469 MPa			
Fault Model Nominal 10T	522 MPa			
Fault Model Single Coil 10% Over	533 MPa			
Nominal				
Fault Model Single Coil 20% Over	441 MPa			
Nominal- the Rest 20% Under				


Fault Model Single Coil 20% Over Nominal- the Rest 20% Under - Von Mises Stresses


Fault Model Single Coil 20% Over Nominal- the Rest 20% Under - Wedge Stresses





VM Simplified Model - No Case

Conclusions:

The 12T Ro=2.0mWedged BeCu Design is At it's Design Allowable

The 11.5 T Ro=2.0m Bucked and Wedged OFHC Copper Design is At Its' Design Allowable

The II I for Linne Louis of the I to Designs Hute Seen Listinueur					
Parameter	2.0 Wedged 68%	Bucked&Wedged			
	BeCu	OFHC Copper			
TF Bo Limit Loads:	>~14T	~16T			
	(Higher if Collapse onto the				
	CS is Allowed)				

The TF Field Limit Loads of the Two Designs Have been Estimated:

FIRE* Variants May be Scaled from These Two Configurations.

Addition of the Structural Ring Provides Design Freedom in Supporting the OOP Loading in TF Inner Leg and in the Case Outer-Intercoil Structures.

Fit-Up Issues of Wedged and Bucked and Wedged are a "Wash" The High Performance Wedged Machine Must have Greater Precision of the Wedged Faces if The Full Strength of the BeCu is to be Used Due to Insulation Compression Limitations. The Bucked and Wedged OFHC Cu TF Operates at a Lower Wedge Pressure, and the Copper Yields to relieve High Spots. Radial Fields in the Bore of the Segmented Solenoid Will Necessitate Full Height Lateral Support of the Leads. Designs are required to Support the Vertical Loading Developed at the "Break-Out"

FIRE is Robust Against Presently Postulated Faults.

Addition of a Bucking Cylinder in the Bore of the CS is Required to Demonstrate a Limit Load Factor of 2.0 for the Bucked and Wedged Configuration, And Also Provides a Mechanism for Lateral Support of the Leads, and in Concert with the TF, Limits Differential Radial Motion of the CS Segments.