

From Value to Architecture:

The Exploration System of Systems

MIT Dec. 1, 2004

Sustainability

- Our goal is to help NASA identify sustainable system of system architectures for exploration
- Sustainability requires value delivery, affordability, risk management and policy robustness
- Our approach is to:
 - Define measures of sustainability for design
 - Comprehensively search the architectural space(s)
 - Identify key policy, technology and operational decision branches
 - For each decision branch, optimize the system
 - Project the resulting functionality onto the CEV, to determine the robustness of its requirements to further downstream decisions
 - Identify the benefit of certain decision branches

A Holistic View: the Sustainable System

The sustainable system is this ...

Not this

 A <u>Holistic</u> view of the ground and flight elements, their development, operation and human capital, and the extended enterprise is necessary to ensure sustainability

NASA Concept Exploration and Refinement Study

From Sustainability to Requirements

Value Enables Sustainability

- A sustainable exploration system must produce outputs that are valued by stakeholders
- Approach: analyze and develop metrics to quantify the flow of benefits from exploration activities to stakeholders
- Analysis of value objectives helps assess approaches for delivering value to the stakeholders:
 - Through the technical architecture
 - Delivered by the enterprise architecture
 - Robust to policy fluctuations

Deliberate focus on stakeholder value enables the proper design of technical system, organization, and policy to increase value delivered by the system over its decades-long lifecycle

Stakeholder Value Analysis Process

- Stakeholder needs defined (~90)
- Exploration objectives (24)
- Technical architecture proximate measures (~18)
- Indicator metrics (~40)

Exploration System Stakeholders

- Addresses direct and indirect beneficiaries of space exploration activities
- Categorized into stakeholder super groups that correspond with general areas of societal impact

Stakeholders Addressed						
Exploration	Science	Economic	Security	Public		
Explorers, Engineers, NASA	Scientists, NASA, Other US agencies	Commercial enterprises, Other US agencies, engineers	DoD and Intelligence, International Partners	Media, Educators, Executive Branch, Congress, NASA		

NASA Concept Exploration and Refinement Study

Scientific Needs Diagram

Value, Metrics and Proximate Measures

- Value is subjective in the eyes of the beneficiary, is hard to measure, and is often only present once the mission is completed - e.g influence on scientific thought
- Value can be characterized by indicative metrics, but these too may require mission completion - e.g publications and citation
- In order to be useful for ranking of candidate architectures, metrics must be related to proximate measures that are trajectory measures toward value - e.g. area explored, etc.

Example: Explorer Value Flow to Architecture Metrics

Mars Exploratio	n Readiness L	evel 'ERL'								
oraxeficider	Employment	To uplights Mars eveloped	to pursue sustained exploration by locating and exploring in situ resources		 .	-				
Engineering community Engineers Explorers Crew	Employment Empowerment to explore	To validate Mars exploration relates technologies BY testing On the ear vicinity including Earth, LEO and th e TO increase mission participation E	d To prepare for the exploration of the next the destination by increasing operations, e Moon resources and infrastructure knowledge by	Master record captures individual						
Explorers Crew	2	sustainably using exploration system 23 TO increase mars operations know	m ledge							
Explorers Scientists	Training	TO increase science skills of explo training explorers	rers BY		stakoholdor noods objectives and flow					
Engineer Mintine Blanner	constitute knowledge	sustainability of exploration system	ladas		Slane		cus, objectives, and now			
Engineers Mission Architects	technology readiness	BY performing lunar operations TO increase ability to architect miss BY increasing awareness of techno	alions Ilogy		10.00	ave a ste d	abiantives and measures			
NASA	Improved Workforce	readness TO improve workforce quality BY re The top scientists and engineers	scrutting		to ag	gregated	objectives and measures			
Science objectiv stateholder	Need	OPM objectives					-			
				\mathbf{N}	Archi	tactura n	rovimate measures and			
Scientific community Scientis	ts Understanding of Universe	TO Increase Understanding of the BY studying Results of exploration data, images, samples)	Universe To increase knowledge about the (video, evolution of the solar system			ieciure p	i unitale measures and			
	SCIENCE OBJECTIVES DETAILED ELSEWHERE	3			india	store mot	riae cummariza common			
NASA	Scientific Exploration	TO Increase Knowledge gained fro exploration BY conduction experim	m		Indica	alors met	nus summanze common			
HVE succesful	events (Inspira	tion)								
Stakeholder	Need	OPM objectives			needs	s within a	ind across stakeholder			
ongress	Stewardship of public interest ; common good	TO show effective stewardship pub interest BY reviewing in Congressio hearings: NASA operation and ext	lic To increase and maintain high public interest and awareness foring							
d ogress	More effective	performance, space budget execut constituency satisfaction TO provide effective constituency	ion and		N cated	ories				
	Constituency representation	representation BY budgeting space program dollars to home districts	2							
Comercial Industry Space To sm Extudive; President	Profitability Show Progress on space	TO increase profits BY increasing o for space tourism e TO maintain progress in executing vision BY stabilities and motifying	space							
Exec ve; President	Favorable press	funding and US space policy and regulation, respectively TO increase favorable press covers	age BY							
Comr toial Industry	ooverage workforce competence	Increasing positive angle of high vis events TO increase workforce competence	a and To increase and maintain high workforce							
organit ions	inspire youth into science	motivational events with humans in e TO promote work interest for soler	space			•				
Other Agencies National Anarlem & Sciences / NSF	C+	ako	Nood	Objective	Aggrogatod	Provimato	Indicator Motric			
Public	31	ane	Neeu	Objective	Ayyreyaleu	FIUXIMALE				
Public	ho	Idor			Objective	Measure				
Public Public		luei			-					
Educators PL c Outreach Institutions (m eums)	Explo	orers	Scientific	TO Increase	To increase	Quality of Data	Recon and survey			
Educators All	Scier	ntists	Exploration	Knowledge	knowledge		Spatial area of a given site that can be reached			
Executive; Present	Oului				chout the		Diversity of sites			
NASA				gained from	about the		Ability to temporally re-plan within mission (week to			
Safety an Hea				exploration BY	solar system		month)			
Stakeholder				conducting			Ability to temporally re-plan and adapt in campaign			
DoD				experiments						
DoE Other Governme						Amount of	Exploration powload delivered to Micurface			
Agencies Other Government Agencies						data	Charmetian days for erow or surface			
nrtă						uala	Observation days for crew on surface			
Explorers Crew							Observation days for robots on surface			
Explorers Crew	Salety	providing sufficient habitable volum crew number	e and		•					
Other Government Agencies	Air and space safety	maintaining health explorers TO increase Air and space safety E	IV							
FAA		promoting Development of safety s and commercial access to space	ystems,							
NASĂ	Crew Health & Safety	TO Improve Probability of Crew sur implementing Safety Efforts	vival BY							

Ranking the Objectives for Trade Studies

- Traces value from stakeholders to relative performance of individual architectures
- Multiple ranking methods produce consistent high-level ranking of objectives
- Ranking highlights:
 - Enterprise architecture
 - Policy robustness
 - High BW comm
 - Knowledge

- Background study on the policy robustness of major multi-year DoD programs, and the factors that make programs robust to the 1, 2 and 4 year policy cycles
- Initial metrics and guidelines are:
 - Better to satisfy all stakeholders a minimum amount than to satisfy a few stakeholders a great deal
 - Cost must be "flat" across the program
 - Steady cadence of successes, i.e., High Visibility Events

Sustainability: Risk

- Our preliminary approach to risk is <u>Hazard-based</u> and includes the following steps:
 - Identify high-level hazards for each mission phase and start tracking process
 - Assign a severity index to each hazard based on the potential losses to Human, Mission, Equipment, and Environment
 - Evaluate the hazard *mitigation* effect of architectural options and identify additional mitigation strategies/options
 - Compute a relative hazard level based on the mitigation potential of the combined architectural decisions
 - As needed, combine the relative hazard levels into a single risk/safety metric for each category (Human, Mission,...)
- Particularly well suited to unprecedented and integrated hardware/software systems

Sustainability: Affordability

 Developed a set of proximate metrics and indicators for affordability that allow relative ranking between architectures

Development and operational cost

- Hardware and transportation systems: dry mass of unique elements, wet mass, number of unique major individual elements in program
- Communications and navigation system: precision, response time, gaps, availability, data volume, mass of elements
- Software/Autonomy: precedentedness, criticality/reliability, complexity, timing requirements and constraints, level of ground support required
- Use of moon as development for Mars (commonality)
 - Development demonstrated on moon
- Programmatic risk
 - Decoupling of major program elements
 - New technology developed
 - Political risk of technology development (e.g. nuclear)

Mars: 60 vs 635 Surface Day Missions

SEC

StakeHolders/Sustainability

PUB

COM

Left: 60 Days

POL

AFF

Right: 635 Days

Metrics Describe Overall Exploration Sustainability

1.2

1

0.8

0.6

0.4

0.2

n

EXP

- Metrics Categories
 - Explorers
 - Science
 - Commercial
 - Security
 - Public
 - Affordability
 - Policy Robustness
 - Risk
- Outcome
 - Metrics help define relative exploration system sustainability during trade studies
 - Trades among categories are subjective and ultimately up to the "decision maker"

SCI

RIS

NASA Concept Exploration and Refinement Study

From Requirements to Surface Operations

- Ultimate goal is sustainable human and robotic exploration of Mars
- Approach:
 - Define candidate Mars missions that produce high value
 - Derive lunar missions to increase Mars Exploration Readiness Level
 - Secondary objective maximizes lunar science and exploration goals
 - Develop architectures in support of Mars and moon missions
 - Refine architectures to deliver maximum value

- During Spiral B, two candidate Mars missions were studied:
 - Short stay (~60 Surface Day Mission, ~535 day total)
 - Long stay (~600 Surface Day Mission, ~930 day total)
- Main exploration activities will be:
 - Sample collection, searching for water and life by surface sample collection and meter depth drilling
 - Interacting with the robots that will have been exploring the area before the arrival of humans

• Examine architecture for:

- Surface mobility
- Habitation
- Power
- Deferred: ISRU, exploration measurement, consumables, robotic exploration

Surface Mobility - Mars

- Martian topography is made up of diverse terrain including: polar caps, massive volcanoes, ice rich plains, gullies, channels, and mesas, at large length scales
- Examine 6 mobility architectures, each with tolerance for total failure of primary system
 - The pressurized rovers are sized for a traverse duration of 3 Earth days
- Pressurized rovers give range needed for exploration of diverse features, and loiter time far from base

Mars - Apollinaris Patera

Surface Mobility - Mars Back to Moon

- The moon may be considered to consist of four major units: mare, highlands, craters, and shadowed regions that may contain ice
- An area of primary lunar science interest is the poles
- MERL considerations:
 - Crater slopes on moon and Mars have comparable inclinations
 - Open rovers will give range to several craters of eternal darkness
 - Pressurized rovers can be added later to explore nearby basins
- Pressurized rover will needed for Mars, and can be tested on moon
- Open rovers will be useful at both moon and Mars

Lunar South pole 😒

Habitation - Mars/Moon Thermal

- Mars reference architecture is habitat near Martian equator, for up to 600 days: large diurnal temperature range (100K), but small seasonal temperature changes
- MERL considerations two Lunar environments considered:
 - Lunar pole (within the 1.5° of axis tilt): no diurnal temperature changes, but large seasonal changes
 - Lunar equator: huge diurnal temperature range (300 K), but virtually no seasonal change
- During summer of up to 150 Earth days, lunar poles have temp within about 50 K, and range is about 100 K below that of Mars
- Run up to 150 day missions at lunar poles, and design for slightly harsher thermal conditions

Power - Mars/Moon Insolation

- Mars reference architecture is solar power near equator, reduced flux, Martian day cycle from day to night
- MERL considerations two Lunar environments considered
 - Lunar equator: 14 earth day lunar night probably precludes solar as primary option
 - Lunar pole: high topography is permanently illuminated
 - >630 m at pole, but must also consider local topography.
 - >1700 m at 89°
 - South pole has about 28 km² which pass this test (shown above in red)
 - North polar topography is everywhere too low to be illuminated in winter
- Use solar power plant in regions of eternal sunlight for lunar base

- Primary objective of increasing Mars Exploration Readiness Level achieved by Lunar testing of Martian exploration techniques, procedures and equipment
- Poles operationally advantageous for long stays
 - Areas 1.5 degrees from the poles are permanently illuminated during the 6-month lunar summers
 - Sun angle is low; surface temperatures are moderated
 - Topographically high areas are permanently lit at South Pole
- Secondary objective of maximizing lunar exploration/science benefit achieved
 - "Craters of eternal darkness" permit the investigation of "excess" hydrogen
 - Geology and Aitken basin near South Pole provide numerous scientifically interesting exploration destinations

Lunar Campaign - Accrete Assets

The objective of the lunar campaign is to increase the MERL Land on Equator for first mission, but quickly move on to polar region in order to start accretion of assets for long term stays

Mission Description	Capability Acquired	Asset Accretion	Risk Retired
Equatorial landing No Hab, No Rovers	Manned landing	Navigation, science, communication equipment	Precision manned landing
Polar landing No Hab, 1 Open Rover	Operations on poles	1 Open Rover, other equipment	Polar survivability/operations
Polar landing Hab, 1 Open Rover	Medium term stay, larger traversable area	1 Additional Rover, Hab	Surviving lunar day/night
Polar landing Pressurized rover, more crew (?)	Over-night excursions, larger crew support on base	Pressurized rover, additional infrastructure	Over-night stays away from base
Polar landing Power plant	Long term stay, power generation	Power plant	Power generation on surface, long duration stay on surface
Polar landing ISRU equipment	In-Situ resource utilization	Heavy machinery, ISRU plant	Surface resources utilization, operation of heavy equipment

NASA Concept Exploration and Refinement Study

From Requirements to Transportation

Transportation Architecture Generator

- Systematically and comprehensively explore the space of transportation itineraries from LEO to M surface
- Created a discrete event simulator (OPN) which includes all possible operational sequences and associated hardware elements
- Simplified version produces over 600 itineraries for one M mission

Transportation Architecture Generator

See associated ".mov" file

QuickTime™ and a Animation decompressor are needed to see this picture.

Technology/Policy/Operational Branches

- Technology
 - ISRU
 - Aerocapture
 - Nuclear Thermal Rockets
 - Solar/Nuclear Electric Propulsion
 - Nuclear surface power
 - Level of autonomy
 - Highly Elliptical Orbital Rendezvous
 - Rendezvous in transit
 - Artificial gravity
 - High-closure ECLSS (H₂0, O₂)
 - Low boil-off propellant storage
 - In-space propellant transfer

- Policy/operational
 - HLLV (yes/no, size)
 - Level of abort options
 - Nuclear (yes/no)
 - Free-return trajectory (yes/no)
 - Initial Mars mission duration (short/long)
 - De-investing in the moon
 - Level of international involvement
 - Level of commercial involvement

For each itinerary, there are technical level trades, and technology/policy/operational decision branches that are set

Architecture Screening

- For over 600 itineraries, and fixed technology/operational decisions, optimization determines best mix of sub-system technologies
- Automated evaluation and visualization tools developed to screen and analyze results, ranked by IMLEO as primary metric for cost

Mars Trade Baseline Examples

NASA Concept Exploration and Refinement Study

Technology/Transit/Insertion Operational Options

To keep IMLEO below 1000t requires:

Aerocapture, which supports both abort to orbit and free return, or Rendezvous in a Highly Elliptical Mars Orbit (HEMO), which supports abort to orbit, but not free return

Short vs. Long Mars Mission Metrics

Mars 60 Day

- Higher value for Public Stakeholder due to occurrence of high visibility event
- Lower Policy Robustness metric due to low benefit to Scientific stakeholder
- Mars 635 Day
 - Longer surface stay results in significantly higher benefits to Explorer and Scientific stakeholders
 - Higher Affordability metric due to significantly less mass in LEO

Commonality and Modularity of Propulsion Systems

2 Approaches:

1. Design for Mars, reuse hardware for lunar missions

• Pros:

- Mars requirements are accommodated exactly
- Design of hardware elements spread out over longer time
- Cons:
 - Necessitates design of more hardware elements

 Design for moon and Mars, modularize propellant tanks, structure and engines on the subsystem level

- Pros:
 - Necessitates less hardware design
 - Economies of scale
- Cons:
 - Higher development risk (complex modular propulsion stage)

Mass overhead due to commonality / modularization (preliminary)

Long Mars Mission Hardware (Architecture 3)

Lunar variant (180 day surface stay)

Notional Hardware Development Roadmap

Long Mars Mission (Architecture 3)

Lunar Variant (180 Day Surface Stay)

Notional Hardware Development Roadmap

Approach 2

1 December 2004

Requirements Flow-Down to CEV

Baseline CEV Concept

Crew Exploration Vehicle Details			
Nominal Crew	4		
Endurance	14 days x 4 crew		
Pressurized Volume	60 m ³		
Habitable Volume	20-30 m ³		
Power (average)	5 kW		
L/D (bi-conic)	0.6		
Total (dry)	7,500 kg		
Propellant	600 kg		
Total (wet)	8,100 kg		

NASA Concept Exploration and Refinement Study

From Requirements to Information System

Information Architecture and Management

Nav/Comm Metrics

Used three different indicator metrics to rank candidate nav/comm architectures:

- Navigation Mean Response Time (MRT): Average time user must wait to obtain good position estimate (defined by DOP < 5). DOP is the quality of usersatellites geometry
- Communication Comm Metric (CM) is the weighed sum of availability, gap time between contacts, and data volume/time/Watt
- Mass Total Mass of satellites in orbit

Analysis of Representative Architectures (Mars)

Name	Class	# Sats
Mars1	Onboard	-
Mars2a		1 (+1L4)
Mars2b	Circular	2 (+1L4)
Mars2c		4 (+1L4)
Mars3a	Elliptic	2
Mars3b	Linplic	4
Mars4	Stationary	1
Mars5		2C+2E
Mars6	Hybrid	3E+1S
Mars7		3C+1S

	Circular	Elliptic	Stat.	Hybrid
Equatorial	Mars2b	Mars3b	Mars4	Mars6
Nav				
Comm				
Mass				
Mid-latitud	de			
Nav				
Comm				
Mass				

Nav	MRT=0 (Realtime)	MRT<~1min (but no realtime)	1min <mrt<1 h</mrt<1 	MRT>1h
Comm	CM 5	4≤CM≤5	3≤CM≤4	CM≤2
Mass	M<150kg	150 <m<300< th=""><th>300<m<400< th=""><th>M>400</th></m<400<></th></m<300<>	300 <m<400< th=""><th>M>400</th></m<400<>	M>400

Name	Class	# sats
Moon1	Onboard	-
Moon2a	Circular	1
Moon2b	Oncular	4
Moon3a	Elliptic	4
Moon3b		6
Moon4a		1
Moon4b	L1	4
Moon4c		6
Moon5	Hybrid	3C+3E
Moon6	пурпа	4E+2L1

5000

South	Circular	Elliptic	L1	Hybrid	
Pole	Moon2b	Moon3a	Moon4b	Moon6	
Nav					
Comm					
Mass					

- Elliptic orbits provide the best combined performance.
- Allows testing of elliptic component of Mars nav/comm architecture during lunar operations.

Software Tools and Metrics

Summary

- A sustainable exploration program must focus on delivering value throughout its lifetime to all stakeholders
 - We must deliver value, and make all the stakeholders aware that we are delivering value
- A Mars-back focus should be maintained throughout the architecture and mission development process
 - Increasing credible evidence that design of the system for Mars, and progressive development and deployment on the moon, will only cause minor to modest "suboptimality" for the moon

- Crew must arrive on Mars the first time with a wide variety of assets fully operational: landers, rovers, habitats, power, etc.
- Using moon as development test bed has many systematic advantages:
 - Moon exploration will provide value to many external stakeholders, including scientific, security, commercial and public
 - Can progressively deploy hardware classes to the moon, compatible with available funding, supporting affordability
 - The long preparation time for Mars direct will not yield a string of high visibility events - not policy robust
 - In the event of significant malfunction, crew can be returned from the moon on flexible schedule and quickly, with significant impact on risk

Future Efforts

- Exhaustively examine architectures for surface operations, transportation and information/SW systems, and identify likely system of systems
- Identify key technology/policy/operational decision points, and quantify the impact of the decision on sustainability
- Project requirements from diverse architectures onto CEV to determine requirement robustness
- Systematically examine value delivery system, enterprise architecture based on lean models, and policy robustness of exploration

We want to work with you!

