

Items to be covered.

- About Eltra
- The Danish action plan for renewable energy
- The Nordic electricity market
- Daily handling of wind power in the Eltra area
- Wind power integration using energy storage

Approx. 210 employees

Eltra

Since January 1, 1998

Independent System Operator in the Jutland/Funen area

Tasks:

- The transmission network
- System functioning
- Electricity market functioning
- Public Service Obligations

Eltra's tasks (1)

The transmission network

- Operation of transmission network (150 kV, 400 kV)
- Operation of HVDC-lines
- Settlement of transmission network
- Planning of transmission network

Eltra's tasks (2)

System functioning

- Overall responsibility for security of system
- Maintain overall balance in system

Eltra's tasks (3)

Electricity market functioning

- Balance exchange schedules from players
- Metering
- Settlement of balance
- Service messages for players

Eltra's tasks (4)

- Operation and settlement of local CHP and wind turbines ("environmentally-friendly production")
- R&D "in environmentally-friendly production"
- Protection of consumers (equal terms)
- Decrees from the authorities

Net payments (øre/kWh)

Items to be covered.

- About Eltra
- The Danish action plan for renewable energy
- The Nordic electricity market
- Daily handling of wind power in the Eltra area
- Offshore wind power integration using energy storage

"Energy 21" - Action Plan of The Danish Government from 1996 Overall aim for 2030:

 \sim To reduce CO₂ emissions by 50 %

To cover 35 % of Denmark's energy consumption by renewable energy

Potential means: Substantial expansion of wind capacity

Goals for electricity consumption in Denmark:

20 % will be covered by renewable energy in 2003

50 % will be covered by renewable energy in 2030

Action Plan for Offshore Wind Farms in Danish Waters June 1997

Five sites for offshore wind farms evaluated

The economy will be comparable to that of onshore wind turbines

A demonstration project is recommended on each site

Each project should be based on 60-80 wind turbines of an expected unit capacity of 1.5-2.0 MW

Action Plan for Offshore Wind Turbines

	Gedser 1	Rødsand 1	Omø 1	Læsø 1	Horns Rev 1	
Installed capacity	144	144	144	117	120	MW
Utilisation time (full-load hours)	3287	3330	3014	3380	3530	Hours/year
Investment per kW	1668	1547	1480	1574	1574	EUR
Capital costs per kWh	0.040	0.038	0.039	0.038	0.036	EUR
Operation and maintenance	0.010	0.010	0.010	0.010	0.010	EUR
Total costs per kWh	0.050	0.048	0.049	0.048	0.046	EUR

Key Figures for Offshore Wind Farms

Plan for Expansion of Wind Power in Energy 21

Year	Onshore		Offshore		
1997	800 MW	(1100 MW realised)	0 MW		
2000	1000 MW	(2200 MW realised)	0 MW	(40 MW realised)	
2005	1300 MW	(2500 MW expected)	200 MW	(640 MW expected)	
2030	1500 MW		4000 MW		

Development in Installed Wind Power

As at 2000-03-01: Installed capacity: 1882 MW Equal to approximately: • 160 % of min. load • 50 % of max. load

V

Wind Turbines

in

Denmark

Ref. www.emd.dk

Variation in Electricity Consumption Compared with the Installed Capacity of Wind Turbines

Consumption (MW) Compared with the Capacity of the Bound Production in Eltra's Area

Production Capacity in Eltra's Area

•	Central units approximately:	3330 MW
•	Local CHP plants:	1461 MW
•	Prioritised wind turbines:	1747 MW
•	Non- prioritised turbines:	135 MW
•	Total installed wind turbines:	1882 MW
•	Total installed capacity:	6673 MW

Offshore Demonstrations projects in Denmark

Items to be covered.

- About Eltra
- The Danish action plan for renewable energy
- The Nordic electricity market
- Daily handling of wind power in the Eltra area
- Wind power integration using energy storage

Nord Pool

The Electricity Market

- A spot market
- A financial market
- A bilateral market
- A balance market
 - Balance power
 - Regulating power

Players on the Danish Electricity Market

- Producers
- Transmission system operator
 - East Denmark : Elkraft system and West -: Eltra
- Locale grid companies
- Trading companies
- Supply-committed companies
- Other Players
 - brokers
 - traders
 - Oil companies (Shell, Statoil)

Time schedule

Real time market

Transmission System Operator in Jutland/Funen

- Responsible for:
 - Safe running and maintenance of the primary grid.
 - Physical balance in the system and create equal conditions for all balance responsible market players.
 - Co-operation between neighbouring System Operators.
 - Handling of priority production including prioritised wind turbines.
 - Making up and settling of market players.

The Free Electricity Market in Western Denmark

- Market players can trade in the following ways:
 - Bilaterally across the border between Germany and Eltra before 14:30 d. b.
 - Bilaterally between the market players within Eltra's area before 16:00 d. b.
 - On Nord Pool before 12:00 the d. b.

Items to be covered.

- About Eltra
- The Danish action plan for renewable energy
- The Nordic electricity market
- Daily handling of wind power in the Eltra area
- Wind power integration using energy storage

Consumption and Production in 2000

In	GWh:		In per cent of consumption:
•	Consumption:	20668 GWh	
•	Central units:	11340 GWh	
•	Wind power:	3384 GWh	• Wind power: 16.4 %
•	Local combined:	6243 GWh	Local combined: 30.2 %
•	Net export:	299 GWh	

Wind Power Production Year 2000

Wind Power Production Year 2000

Priority Production Year 2000

Wind Power Production a Week in Year 2000

Procedure for Daily Handling

- 3 months before delivery Eltra publishes a forecast of prioritised production, on monthly basis in per cent of load.
- The day before delivery, Eltra makes a forecast for the next day's prioritised production and consumption.
- Difference between forecast made 3 months before delivery and forecast made the day before delivery is traded at Nord Pool before 12:00.
- Up to and in the operation period forecasts are continuously updated.

Forecast Made 3 Months Before Delivery

Forecast the Day Before Delivery

Forecast Day Before Delivery and Nord Pool

Continuous Updating of Forecast

Forecast and Measured Output

Measured Production

Deviation between Forecast and Measurement

Deviation as Hourly Energy

Three Typical Cases Year 2000

WMPP average quater-hour power output 25 October 2000 Forecast calculated 24 October at 11:00

WMPP average quater-hour power output 11 December 2000 Forecast calculated 10 December at 11:00

Deviation = (Forecast calculated 5 November at 11:00) - (Measurement)

Deviation = (Forecast calculated 10 December at 11:00) - (Measurement)

The Good Case

WMPP average quater-hour power output 6 November 2000 Forecast calculated 5 November at 11:00

The Bad Case

WMPP average quater-hour power output 25 October 2000 Forecast calculated 24 October at 11:00

The Ugly Case

WMPP average quater-hour power output 11 December 2000 Forecast calculated 10 December at 11:00

Why Ugly ?

WMPP average quater-hour power output 11 December 2000 Forecast calculated 10 December at 11:00 and 11 December at 10:00

Forecast Statistics Year 2000

•	Energy	
	Total produced Wind Power	3.4 TWh
	Total numerical deviation (d.	b) 1.3 TWh
•	Power	
	Average output	385 MW
	Average error (d.b.)	148 MW
•	Error i per-cent	approximately 38 %

Forecast Wind Power Year 2000

WMP Production Gradient

System Limits !?

At any given time:

- Installed WMP Cap. <= Total load + export capacity ?
 - How to control Load
 - Capacity to Neighbouring Systems
 - Spinning reserve
 - Storage
 - Short Circuit Capacity

Items to be covered.

- About Eltra
- The Danish action plan for renewable energy
- The Nordic electricity market
- Daily handling of wind power in the Eltra area
- Wind power integration using energy storage

Offshore Wind Power Plant

- Power/frequency control
- Reactive power / voltage control
- Good transient capability
- Good output power quality

Integration of Wind Power using Energy Storage

- Regulating power
- "Spinning reserve"
- Start of black network
- Power / frequency control
- Reactiv power / voltage control
- Providing short circuit power
- Network stabilisation
- System damping
- System support at contengencies

Læsø Syd Offshore Site

Dok. nr.:85792

Læsø Syd, HVDC-VSC and Energy Storage

Operation of storage Real-time imbalance prices: 1999-2000 Storage capacity: 1000 MWh; Charge capacity: 50 MW

E

System value of electricity storage in the real-time imbalance market Real-time imbalance power prices (1999-2000) Odense

Operation of storage Spot market prices: Odense 1999-2000

Storage capacity: 1000 MWh; Charge capacity: 50 MW

eltra

System value (upper limit) of electricity storage in spot market Spot market prices: Odense, 1999-2000

Comparison of electricity storage value in the spot market and real-time imbalance market, respectively (400 and 1,000 MWh) Spot and real-time imbalance power prices (1999-2000), Odense

Feasibility study

- Technical description
- Economy
- Environmental issue
- Practical Experiences from Existing Plants
- Potential for Technical Improvements
- Technical System Services
- Modelling and System Studies
- System Value of Energy Storage
- Planning of Demonstration Plant

Key figures for a Demonstration Plant

- Power and Storage Capacity MW / MWh
- Turnaround efficiency Loss at charge and recharge
- Availability
- Power Density
- Environmental Issues
- Economy
 - Installation costs
 - Maintenance costs
 - Operational costs
 - Market value and value of system services

Summary

- The wind power capacity today is 1882 MW (160 % of min. Load)
- Expected wind power capacity year 2004 is 2542 MW
- Today the daily handling of wind power is extremely difficulty
- Average need for regulating power is 148 MW
- Strong connections to neighbouring countries is a necessity
- The need for a big energy storage plant is obviously
- A feasibility study will be accomplished this year
- A 10 MW/200 MWh energy storage plant is considered

