Small Spacecraft Systems Engineering & Integration

Dr. Butler Hine NASA Ames Research Center

Small Spacecraft

Key Features

- Low mission costs (\$50-100M), short schedule <24 months
- Low mass < 300kg, low cost launch vehicles

Benefits

- Lower cost enables increased number of missions
- Faster learning cycle, leads to lower costs
- Demonstrate new technology sooner, lowers cost of large missions
- Lower overall program risk by providing several flight opportunities for critical experiments
- Smaller teams, fewer interfaces, improved collaboration

Drawbacks

- Size, mass eliminate some missions for small spacecraft
- Higher individual risk of missions compared with \$1B spacecraft
 Use of "yet to be proven" launch vehicles, or fly as a secondary payload

Mission Requirements

Mission Requirements

- Spacecraft to be compatible with either Falcon-1 or Minotaur V launch vehicle
 - Critical mass and volume constraints derived from Falcon-1 LV
- Mission durations:
 - Orbiters: 1 Year in Earth or lunar orbit
 - Landers: operational during one lunar day (14 earth days)
- Spacecraft design to be *modular* to support multiple configurations

Mission Requirements

• Lander specific requirements:

- Designed for either equatorial or polar landings
- Descent landing requirements
 - Lander slope requirements up to 15 degrees
 - Based on lunar surveyor landing data
 - Lander Horizontal velocity requirements < 1 m/sec (TBR)
 - Trade between GNC performance and lander stability
 - Lander vertical velocity requirements up to 3-4 meters for engine cutoff (TBR)
 - Lander obstacles 10 cm min, up to 25 cm desired(TBR)
 - Lander accuracy 1 km, 1s baseline, precision landing (TBR)

Orbiter Configuration

Bus Module

Payload Module

Extension Module

Propulsion Module

Laser Communications Orbiter

Laser Communication

Data rate: 100 Mbps down 10Mbps up Mass: 30 lbs (~13.6 kg) Power: 30 W Aperture: 3.5 cm Pointing required: 1-10 arc sec

UHF Selectable Radio

Data rate: 4 Mbps up/down Mass: 3 kg Power: 60 W Input, 10W output

Mission Phases

- Launch TLI, early orbit check out
- Cruise
- Lunar orbit
- Lunar relay

Launch Vehicle

- Minotaur V Launch System
- Wallops island (WFF) launch Site
- 30 Day launch processing schedule
- 2009 launch

Space Segment Comm data from Cis lunar

space

Ground System GGAO

Cmd/Tlm

MOC - ARC

AUNCH SEGMEN

Command and telemetry, payload data

Spacecraft

- Derivative of existing spacecraft
- Single string
- Spaceframe structure
- Zero momentum-biased control design
- Stellar-based attitude determination
- Body-fixed GaAs solar arrays
- cPCI-based C&DH design
- SGLS SOH/Cmd , 1 Mbps downlink,

Mission Operations

- Mission scenarios, timelines, & CONOPS
- Space vehicle flight Ops at ARC
- Payload data processing at GSFC
- Supports continuous operations of payloads
- SV Mission operations from MOC
- Data routed to external users
- Uplink/downlink communications
 encrypted

a Other User: Lunar Relay Surface Mission?

GSFC

Small Lander Configuration

Bus Module

Payload Module

Extension Module

Propulsion Module

• Legs

Baseline/Sm all Lander

NASA

Lunar Lander Missions

Objective:

 Initiate a series of small Lunar lander missions beginning by 2008 with a budget of \$100M per mission including launch vehicle.

Goals:

- Achieve a robust robotic precursor program
- Help sustain the vision
- Enable training of our systems engineers
- Reduce costs to program
- Answer critical questions for Constellation

Current capabilities support two nearly identical designs:

- 130 Kg Lander (four tanks) on a Minotaur V
 - 40 Kg science payload to surface, 200 Watts
- 103 Kg Lander (two tanks) on a Minotaur V
 - 15 Kg science payload to surface, 100 Watts
- 55Kg Lander (two tanks) on a Falcon 1

NASA

Lunar Lander Missions

Approach

- Short schedule, incremental development, aggressive Testing
- Heavily leverages DoD investments in propulsion, avionics, and flight software techniques
- Potential missions
 - Equatorial mission minimal cost
 - Payloads of 1-5 kg with high priority goals
 - Polar mission maximize launch vehicle capability
 - 40 kg of payload (multiple instruments up to 25 Kg each)

Nominal Cost and Schedule

		ĺ	2007												2008											2009													
					М	Α	М	J	J	А	S	0	Ν	D	J	F	M	1 A	4 1	M	J	J	А	S	0	Ν	D	J	F	Μ	Α	М	J	J	Α	S	0	Ν	D
				1	2	3	4	5	6	7	8	9	10	11	1:	2 13	3 1.	4 1	15 ′	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	33	34	37	38	39
Config Devel Req Definition																																							
Design And Development						L																			_														
Subsystem Fab & Test						ן 🗖 פחב)							-		-							Lá	auno	h_														
Integration Testing & Validation												` 					-	-	_	_]														
Operations																																							
Estimate				0.8	1.0	1.0	1.0	2.0	4.0	5.0	4.0	4.0	4.0	4.0	4.1	0 4.0) 4.1	0 4.	.0 4	.0 5	5.0 5	5.0 8	6.0	6.0	1.0	1.0	0.5	0.5	0.5	0.5	0.5	0.5	0.2	0.2	0.2	0.2	20.2	0.2	0.2
_		2007										2008											2009																
	и	D	J	F	М	А	Μ	J	J	А	S	0	Ν	D	J	F	M	1 A	4 1	N	J	J	А	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	4 1:	5 1	6 1	17 ′	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	37	38	39
Config Devel Req Definition																																						Ι.	
Design And Development																																							
Subsystem Fab & Test	system Fab & Test										יו פ																												
Integration Testing & Validation										`																						-	-	2					
Operations																																							
Estimate		0.5	0.5	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0	0 3.0) 4.1	0 4.	.0 4	.0 4	1.0 5	5.0 (5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.0	2.0	1.0	0.5	0.5	0.5	0.5
		2007												2008											2009														
-		-	F	м	٨	м	1	1	٨	C	Δ	M		\vdash	F	Тм			1	1	īT	٨	0		N			F	М	٨	М			٨	C		M		
	+			1	IVI	^	IVI	1	2	2	1	5	14	7) 10		n n 1 1	0 1	12 -	1/	<u>^</u> 15	16	17	10	10	20	1 01	22	22	24	25	0 26	27	10	20	20	21
Config Devel Reg Definition	-	-									4		0								15	14	10	10		10	19	20	21	22	25	24	20	20	21	20	29	50	51
Design And Development					_	_					_					٨	-	+	_		_	_	_	_	_		_							-	I	I		, <u> </u>	
Subsystem Eab & Test	-	-		_	_	_	_	_	_						F		-	+	-	4		┮		-			=					╘					tı,	i aunc	' — h
Integration Testing & Validation					_	_		_	_						F	PDR	-	+	-+ cr		٦+				-	-	=					╘					<u> </u>		<u> </u>
Operations	_	_					_	_						-	+	-	+	+	+	_	+	_	+	-	\rightarrow	_	_	-1		-	-			-	-	F			
	-	_	_		_		_	~ _	0.7		4.0	4.0	4.0	4.0	4.0			+									4.0	- 0	<i>L</i> 0	<u>г о</u>	<u>л о</u>	L 0	Г. 0	<u>г о</u>	L 0	Г. 0	<u>г о</u>	Г 0	1.0
Estimate		ļ						U.5	0.5	0.8	1.0	1.0	1.0	1.0	1.0	Л1 .C	µ1. (Л <u>2</u> .	0[2.	.0[2	2 01	:0 3	3.04	4.U •	4.U ·	4.U •	4.U	5.0	5.0	5.0	5.0	[5.0	[5.0	5.0	[5.0	5.0	[5.0	[5.0	4.0

Areas of Interest

- Tools to enable a geographically distributed, concurrent design of spacecraft systems.
- Database of COTS components and subsystems suitable for small spacecraft, along with methods to keep the database current.
- Modular and scalable subsystem designs for spacecraft.
- Consolidation of spacecraft functions to reduce mass, power, volume and interfaces (i.e., multi-functionality).
- Cross-functional spacecraft-to-payload capabilities in the areas of attitude determination, navigation, telecommunications and other mission level functions.
- Automated test equipment / automated Breakout boxes
- Testing of subsystems in geographically distributed locations
- Standardized interfaces with launch vehicles with frequent launch opportunities

Questions?

ASA