Small, Flexible, Low-Cost Earth Science Missions

June 30, 2006 NASA GSFC

Overview Launch Vehicles **ALI - Lightweighted Spacecraft Comparisons MR2** Spacecraft **Spacecraft Quad Charts Summary**

Four Principal Elements for Low-Cost, Earth Science Missions

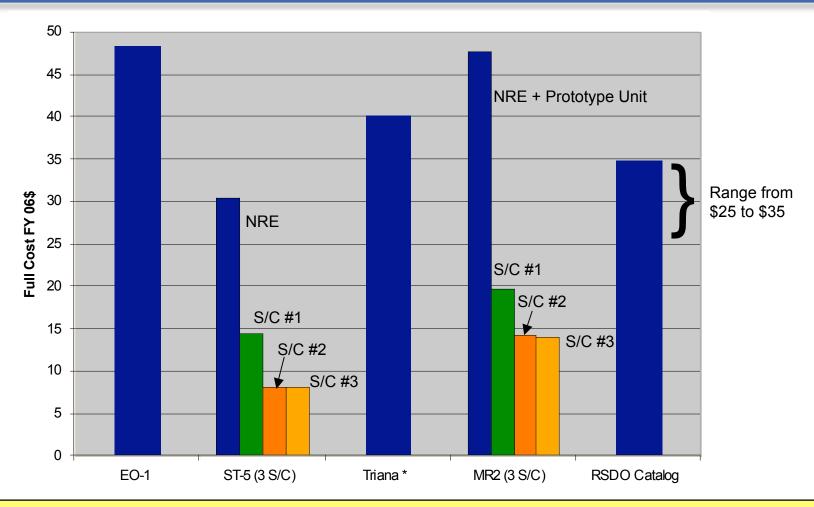
Small, highly capable, low-cost missions can be developed by:

1. Substantially reducing the cost of launch and launch services by use of Taurus/Minotaur/Falcon-class launch vehicles.

- 2. Leveraging NASA & DOD's latest lightweight technology (>TRL6) -- maximizes the payload to orbit.
 - I.e., incorporate mature technologies into an operational system
 - Allows for investing in specific technologies for specific applications

E Selecting a spacecraft architecture

- RSDO catalog
- Design a "one-of" Science observatory
- Modular, Reconfigurable, and Rapid (MR2) Spacecraft based on heritage augmented with new technology and with Plug-and-play interface technology
- 4. Correlating the science measurements from multiple missions flying in formation



- Low cost Earth Science Missions with significant performance capability
- Short development phase (3-5years) = frequent launches
- Incorporates existing or emerging NASA and DOD technologies (TRL 6 or above) at low cost.
 - Maximizes payload to orbit using small ELV's
 - Provides a low cost platform for technology.
- The Agency benefits: Using NASA technologies retains core competencies, and trains our younger personnel.

This is a viable approach to enable high performance, rapid missions at a low cost.

<\$25M Spacecraft are Achievable

Our recent experience with small, highly capable spacecraft indicates that this approach is achievable.

* ST-5 successful, Triana: fully qualified, SMEX-Lite spacecraft, awaiting launch opportunity

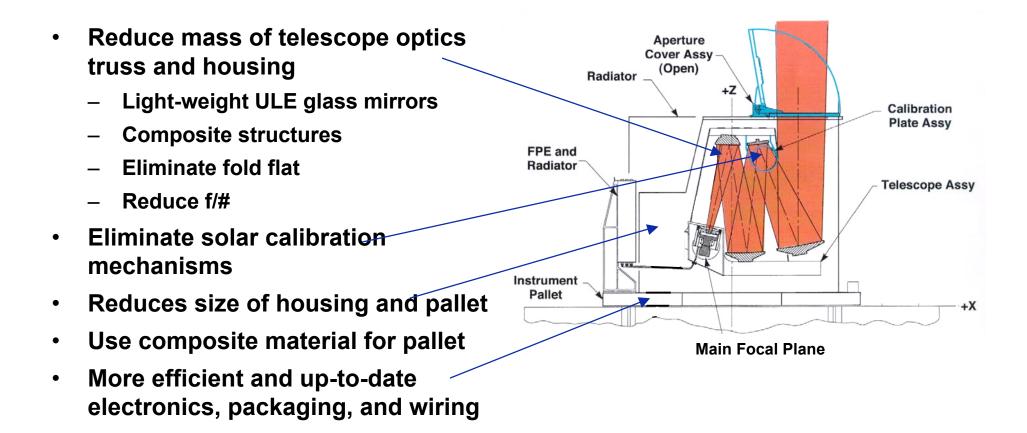
Small Expendable Launch Vehicles

Existing & Near-Term Small Launch Vehicle Options

 Existing & under-development small ELV providers can provide Sun Synchronous/LEO responsive launch opportunities for moderate costs.

Vehicle	Estimated SS/LEO Payload (Kg)	ROM Recurring Price
Pegasus	220	\$30M+
Taurus	900-1500	\$40M+
Minotaur I	340	\$18M
Minotaur IV	1100	\$22M
Falcon 1	420	\$7M (TBR)

- Other longer-term or less mature options include:
 - Minotaur V
 - Taurus 3113
 - SpaceX Falcon 5 and 9
 - AirLaunch QuickReach


Proprietary Data – Government Use Only

LDCM Follow-on Mission's Lightweight Advanced Land Imager (LALI)

Potential Areas for Mass Reduction

Actual ALI and Estimated LALI Mass Distributions (kg)

	<u>ALI</u>	<u>LALI</u>
 Telescope (truss, diffuser, wiring) 	34.5	14.0
 Housing (structure, mechanisms, wiring) 	13.6	6.0
 Pallet (structure, wiring) 	18.3	9.1
 Focal plane radiator (structure, wiring) 	7.3	6.4
 Focal plane electronics (structure, wiring) 	7.7	7.7
 ALICE (including filter box) 	8.6	6.8
Total	90.0	50.0

- 1. Develop on-board computational capability to reduce downlink rate and storage requirements
- 2. Cabling:
 - 1. Digitize signal on the chip and use fiber-optic cable for data transfer to on-board storage.
 - 2. Replace wiring harness with other technologies (i.e., "blue-tooth")
- 3. Combine and miniaturize electronic functions
- 4. Reduce radiator size with improved coatings and lightweight structure
- 5. Build-up bread-board model of new ALI optical configuration
- 6. Qualify focal plane detectors (commercial devices currently available)

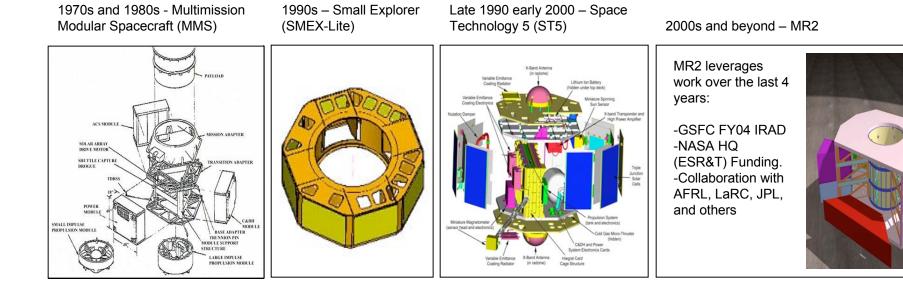
Spacecraft Options

The difference between RSDO, SMEX-Lite, and MR2 class spacecraft can be highlighted in terms of mission/application flexibility.

RSDO	SMEX-Lite	MR2
Missions:	Missions:	Missions:
Excellent for single	Excellent for single	 Ideal for multi-missions with
missions	missions	maximum flexibility in
Ideal for multi-missions	Ideal for multi-missions	applications (orbit, number of
that fit current design,	that use legacy interface	instruments, etc)
without major	technologies	Attributes:
modifications		• Modularity at the card, box,
	<u>Attributes:</u>	subsystem, and system levels,
Attributes:	 Modularity at the box / 	according to needs
System-level	subsystem level	Scalable, modular structure
modularity (complete	Monolithic Structure	 Plug-and-play interface
spacecraft)	Legacy interface	standards, with self-discovery
Accepts performance	standards	and cross-system recognition/
"option" changes	Flexible enough to re-use	compatibility
	modules	Rapid integration and test
option changes	J	

Increased Flexibility

	Spacecraft Mass (Kg)		
<u>EO-1</u>	<u>RSDO</u>	SMEX-Lite	<u>MR-2</u>
462	160-400	180	100-130

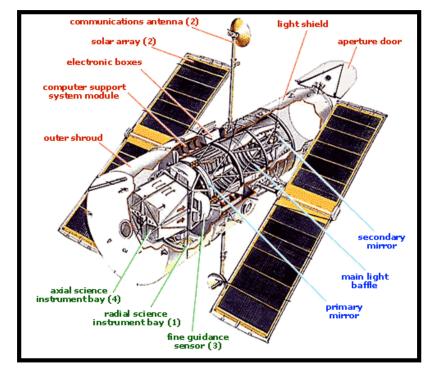

Lowest S/C Mass = Lowest S/C Cost

Lower Mass = Smaller Launch Vehicle = Lower Transportation Cost

MR2 provides the best combination of low mass, low cost and the flexibility for a wide range of science programs

Modular, Reconfigurable, Rapid (MR2) Flight Systems Evolution

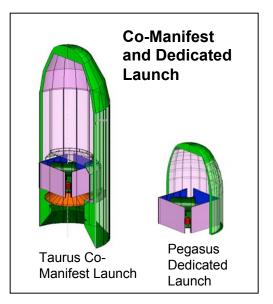
- Past NASA concepts provide the evolutionary background for Modular, Reconfigurable, Rapid Flight Systems:
 - These have resulted in successful spacecraft implementations.
 - Lessons-learned are readily applicable.
 - The MR2 architecture represents the best sum-value of each experience.
 - Concept was originally developed using ESR&T and GSFC IRAD funds.

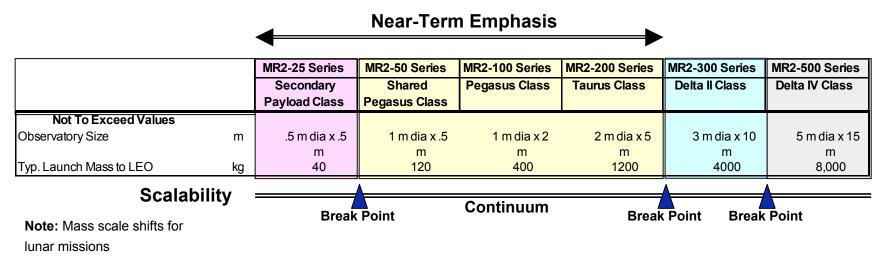


Given this successful experience, we have high confidence that the MR2 approach is achievable.

Modularity Enables System Evolution with Changing Technology

• The Hubble Space Telescope represents an early implementation example of this architecture, enabling serviceable spacecraft.


 Interface standards accept new technologies as they become available.



MR2 Taxonomy and Scalability

- Spacecraft *scalability* is valid for a defined performance envelope.
- Mission size classes lead to broad mission application range.
 - Six mission size classes identified (IMDC 2003) to cover those most commonly used in aerospace business today, with allocations for spacecraft mass, volume, and power.
 - Scalability may jump across launch vehicles.
 - It is realistically constrained to a set of mission size classes defined by major launch vehicle class differences.
 - Work continues to identify the "break-points" in scalability.

MR2 Spacecraft

Solar Array plugs into Power system module Propulsion Module			 Spacecraft design features Mission flexibility: Interchangeable science instruments and orbits Interchangeable, modular components that are reconfigurable, and rapid I&T (standard Plug- and-Play interfaces) Re-sizable spacecraft/structure for various applications Electrical, mechanical, software Plug-and-Play interface standards (not technologies) Simple assembly and disassembly for efficient trouble-shooting during I&T
Performance Data (representative sample only: s) General Performance Parameters Payload Envelope (m*3) Payload Mass (kg) Average Payload Power (w) Solar Array Payload Thermal Restrictions Launch Vehicle (can change) Command & Data Handling Architecture Heritage Processor Telemetry & Command Storage (Gbits) Data Bus Downlink Rate (Mbps, X-Band / Ka-Band) Software System Heritage Telecommunications Protocol Autonomy Guidance, Navigation and Timing to 1 usec Independent Safehold Processor Structure Modular, Re-Sizable Structure Independent Interface Mass Total (w/cont.) - typical for type mission Payload - LALI (kg) Bus Dry Mass (kg) Propellant (Hydrazine) - 1 year mission (kg) Total Spacecraft (observatory) mass (kg)	stem is reconfigurable) >1 >1 >50 >100 GaAs None Pegasus, Taurus/Minotaur MMS, SMEX, ST5 PPC RAD 750 / SpaceCube >50 Ethernet, Spacewire >150 SD0/LR0 CCSDS/IP Enabled 3-Axis Stabilized GPS Compatible Implemented Aluminum (may change) +Z Deck -Z Deck 50 130 7 187	Table represents a <u>sample</u> of system capabilities <u>only</u> . The architecture allows for flexible accommodation of mission requirements / application.	 <u>Technology Development Needs</u> Further the modularity concept Demonstrate the flight system plug and play technology (has been incorporated mission operations center) Mechanical and Thermal design Incorporate low weight ACS sensors/mechanisms and I/F Further lightweight power and communication systems

ST-5 Spacecraft

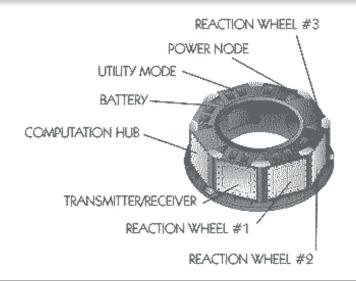
ST5 spacecraft (x3) in deployment cradle

Spacecraft design features

- Light-weight highly integrated system
 architecture
- High-density, small package design optimizes
 performance for class of spacecraft
- Advanced technologies include low-power electronics, miniature x-band transceiver, cold gas thrusters
- Production-line principles and experience in manufacture of three identical spacecraft
- Deploys the constellation from its own cradle

Seneral Performance Parameters	
Payload Envelope (m^3)	None
Payload Mass (kg)	Tech Val
Average Spacecraft Power (w)	<9
Solar Array	GaAs
Payload Thermal Restrictions	None
Launch Vehicle	Pegasus
Command & Data Handling	
Architecture Heritage	Original
Processor	Mongoose V
Telemetry & Command Storage (Mbits)	2
Data Bus	RS-422
Downlink Rate (Kbps, X-Band)	100
Software System Heritage	MAP
Telecommunications Protocol	CCSDS
Autonomy	Enabled
Guidance, Navigation & Attitude Control	
Control Strategy Inertial and Nadir Pointing	Spin Stabilized
On-Board Navigation and Timing to 1 usec	USO
Independent Safehold Processor	none
Structure	
Integrated structure with electronics card-cage	Aluminum
Instrument Interface	None
Launch Vehicle Interface	None
Mass Total (w/cont.) - typical for type mission	
Payload - LALI (kg)	n/a
Bus Dry Mass (kg)	24.33
Propellant (GN2) - 3 month mission (kg)	0.39
Total Spacecraft (observatory) mass (kg)	24.72

Technology development needs


- Change the structural and thermal design
- Modify from spin to three-axis stabilization
- Increase power output, from body-mounted arrays to deployable solar array wing (s)
- Increase power system for 100W instrument
- Replace X-band system to service 500 Mbps downlink capacity
- Replace on-board computer to service increased MIPS requirement

- -

_

SMEX-Lite Spacecraft

Spacecraft design features

- Lightweight. monolithic structure
- Modularity at the box / subsystem level
- Legacy interface standards: MIL-STD-1553, RS-422 for high-speed
- Interconnect along a central hub
- Instrument can become part of spacecraft structure to drive mass down, but I&T costs increase

General Performance Parameters	
Payload Envelope (m^3)	
Payload Mass (kg)	
Average Spacecraft Power (w)	25
Solar Array	
Payload Thermal Restrictions	
Launch Vehicle	
Command & Data Handling	
Architecture Heritage	
Processor	Loral RAD-6000
Telemetry & Command Storage (Mbits)	
Data Bus	MIL STD 1553, RS-422
Downlink Rate (Mbps, X-Band)	4
Software System Heritage	
Telecommunications Protocol	
Autonomy	
Guidance, Navigation & Attitude Control	
Control Strategy Inertial and Nadir Pointing	3-axis stabilized
On-Board Navigation and Timing to 1 usec	
Independent Safehold Processor	
Structure	
Monoilithic Structure	Aluminum
Instrument Interface	+Z Deck
Launch Vehicle Interface	- Z Deck
Mass Total (w/cont.) - typical for type mission	
Payload - LALI (kg)	50
Bus Dry Mass (kg)	
Propellant (GN2) - 3 month mission (kg)	
Total Spacecraft (observatory) mass (kg)	50

Technology development needs

- Lightweight structure
- Review electrical design for lightweighting the heritage designs
- Modify thermal design
- Replace X-band system to service 500 Mbps downlink capacity
- Replace on-board computer to service increased MIPS requirement
- Modify power subsystem and solar array

Summary

- Produce Strategic Technology Plan to refine the approach for low-cost, LDCM follow-on mission(s)
 - Plan includes process for selecting spacecraft architecture
 - Includes the mission level development needs, such as onboard computation, autonomous operations, and formation flying
 - Includes the development needs for further investment in reducing the ALI mass (LALI).
- If MR2 architecture selected, need to advance the architecture design

- Launching co-manifested or single missions on SELV's, results in the lowest cost missions
- Technology exists to produce a low-cost, light-weight, modular, reconfigurable (MR2) spacecraft
- Using this technology, co-manifest the LALI on a small launch vehicle for the lowest cost mission
- In addition, the MR2 spacecraft architecture provides SMD with a family of rapidly reconfigurable spacecraft to accommodate a wide range of Earth Science missions
- Using NASA technologies retains core competencies, and trains our younger personnel.

This is a viable approach to enable high performance, rapid missions at a low cost.