ISO TC184/SC4/� SUBJECT * MERGEFORMAT �WG10 N85�

Date:	� TIME \@ "d MMMM, yyyy" �11 December, 1996�	Supersedes SC4/WG10 	N71

PRODUCT DATA REPRESENTATION AND EXCHANGE

Part: �
n/a�
Title:�
� TITLE * MERGEFORMAT � Integration of Industrial Data for Exchange, Access and Sharing (IIDEAS)��
�
Purpose of this document as it relates to the target document is:�
�
�
Primary content�
�
Current status:�
�
�
�
Issue discussion�
x�
Version�
2.0�
�
�
Alternate proposal�
�
�
�
�
�
Partial content�
�
�
�
�
ABSTRACT:�
�
� COMMENTS * MERGEFORMAT �This paper identifies requirements for integration and sharing of industrial data, and discusses a number of issues that are key to satisfying the requirements.��
�
KEYWORDS�
Document status/dates (dd/mm/yy)�
�
�
Part Documents�
Other SC4 Documents�
�
�
�
Working draft�
9/12/96�
Working�
�
�
�
Project draft�
�
Released�
�
�
�
Released draft�
�
Confirmed�
�
�
�
Technically complete�
�
Released�
�
�
�
Editorially complete�
�
�
�
�
�
ISO Committee Draft�
�
�
�
�
�
�
�
�
�
Project leader:�
�
Editor:�
Matthew West - ISCL/4�
�
Address:�
�
Address:�
Shell International Ltd�
�
�
�
�
Shell Centre�
�
�
�
�
London SE1 7NA�
�
�
�
�
United Kingdom�
�
Telephone:�
�
Telephone:�
+44 171 934 4490�
�
Fax:�
�
Fax:�
+44 171 934 6649�
�
E-mail:�
�
E-mail:�
100070.670@compuserve.com�
�
Comments to Reader:�
�
Comments and questions on this document are welcomed. Please direct them to the editor, or the WG10 exploder.�
�
�
Table of Contents� TOC \o "1-3" �

Introduction	� GOTOBUTTON _Toc374844845 � PAGEREF _Toc374844845 �3��

Problem Statement	� GOTOBUTTON _Toc374844846 � PAGEREF _Toc374844846 �4��

Requirements	� GOTOBUTTON _Toc374844847 � PAGEREF _Toc374844847 �5��

Discussion	� GOTOBUTTON _Toc374844848 � PAGEREF _Toc374844848 �5��

Data Integration	� GOTOBUTTON _Toc374844849 � PAGEREF _Toc374844849 �5��

Partial Integration	� GOTOBUTTON _Toc374844850 � PAGEREF _Toc374844850 �8��

Ontologies	� GOTOBUTTON _Toc374844851 � PAGEREF _Toc374844851 �8��

Formal mappings between data models	� GOTOBUTTON _Toc374844852 � PAGEREF _Toc374844852 �9��

Identification	� GOTOBUTTON _Toc374844853 � PAGEREF _Toc374844853 �13��

Internal Identification	� GOTOBUTTON _Toc374844854 � PAGEREF _Toc374844854 �14��

External Identification	� GOTOBUTTON _Toc374844855 � PAGEREF _Toc374844855 �14��

Record Identifiers	� GOTOBUTTON _Toc374844856 � PAGEREF _Toc374844856 �15��

Data Consolidation	� GOTOBUTTON _Toc374844857 � PAGEREF _Toc374844857 �15��

Implementation	� GOTOBUTTON _Toc374844858 � PAGEREF _Toc374844858 �16��

Types of Application	� GOTOBUTTON _Toc374844859 � PAGEREF _Toc374844859 �18��

Types of layer	� GOTOBUTTON _Toc374844860 � PAGEREF _Toc374844860 �18��

Types of Database	� GOTOBUTTON _Toc374844861 � PAGEREF _Toc374844861 �19��

Principles	� GOTOBUTTON _Toc374844862 � PAGEREF _Toc374844862 �20��

Relationship to other standards	� GOTOBUTTON _Toc374844863 � PAGEREF _Toc374844863 �20��

STEP	� GOTOBUTTON _Toc374844864 � PAGEREF _Toc374844864 �20��

Parts Library	� GOTOBUTTON _Toc374844865 � PAGEREF _Toc374844865 �20��

CDIF	� GOTOBUTTON _Toc374844866 � PAGEREF _Toc374844866 �20��

IRDS	� GOTOBUTTON _Toc374844867 � PAGEREF _Toc374844867 �20��

CSMF	� GOTOBUTTON _Toc374844868 � PAGEREF _Toc374844868 �20��

Basic Semantic Repository	� GOTOBUTTON _Toc374844869 � PAGEREF _Toc374844869 �20��

Examples of Use	� GOTOBUTTON _Toc374844870 � PAGEREF _Toc374844870 �20��

Example 1: Standardising the integration of several APs	� GOTOBUTTON _Toc374844871 � PAGEREF _Toc374844871 �21��

Example 2: Ensuring commonality between APs	� GOTOBUTTON _Toc374844872 � PAGEREF _Toc374844872 �21��

Example 3: Interoperability between S88 and STEP	� GOTOBUTTON _Toc374844873 � PAGEREF _Toc374844873 �21��

Alternative Approaches	� GOTOBUTTON _Toc374844874 � PAGEREF _Toc374844874 �21��

Improve STEP	� GOTOBUTTON _Toc374844875 � PAGEREF _Toc374844875 �21��

Introduce a Companion Standard to STEP	� GOTOBUTTON _Toc374844876 � PAGEREF _Toc374844876 �22��

Next Steps	� GOTOBUTTON _Toc374844877 � PAGEREF _Toc374844877 �22��

Annex A: An Ontologically driven data model	� GOTOBUTTON _Toc374844878 � PAGEREF _Toc374844878 �23��

Introduction	� GOTOBUTTON _Toc374844879 � PAGEREF _Toc374844879 �23��

EXPRESS G Diagrams	� GOTOBUTTON _Toc374844880 � PAGEREF _Toc374844880 �23��

EXPRESS	� GOTOBUTTON _Toc374844881 � PAGEREF _Toc374844881 �27��

Annex B: A Part 21 File.	� GOTOBUTTON _Toc374844882 � PAGEREF _Toc374844882 �36��

��

Introduction

This paper has been developed as part of WG10’s work to review and improve the architecture of the SC4 standards. It identifies requirements for standards to support industry for the integration and sharing of industrial data, within the SC4 standards, between the SC4 standards, and with other standards, and discusses key concepts relevant to the effective and efficient satisfaction of these requirements.

This work may result in specific proposals for improvement to existing SC4 standards and/or new standards.

Problem Statement

The current focus of STEP is the exchange of Product Data, ensuring that it is meaningful in a particular context to a receiving application. However, rather than being used directly by some receiving application, the data may be integrated with data from other sources, stored, and the whole, or some subset of it, may then be used by an application. This is illustrated below.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �1�: The Problem

�In addition, the data may not come from a STEP AP, but from some other standard such as PLib, EDIF, POSC, or something SGML based. It is also not necessarily product data, but about some other aspect of the business. Thus it is not possible even to assume that the data model is defined in EXPRESS.

Requirements

To solve the above problem in a standardised way, the following requirements need to be satisfied:

There is a requirement for a data model able to hold data from different sources independent of the usage of the data.

There is a requirement to be able to integrate product data with other industrial and business data.

In order to have the minimum number of data models for integrating data from different sources, these models are required to be extensible and modular.

There a requirement to create two way mappings between the application level data models and the integration level data models, for both the creation and exchange of data sets, and for being able to view and update the data directly.

There is a requirement to handle data models in languages other than EXPRESS.

There is a requirement to identify the commonality between different data models in a consistent and manageable manner.

There is a requirement to consolidate data sets that contain data about the same objects. In particular this means being able to define when you are satisfied two records are about the same object.

Discussion

This section discusses a number of key concepts that are relevant to satisfying the requirements stated above.

Data Integration

The primary requirement is to support the integration of industrial data from different data sets, according to different data models, into a single data set, and a single data model. The data in this model might then need to be viewed from a perspective defined by yet another data model.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �2�: The ANSII/SPARC Architecture

�ANSII/SPARC introduced the idea that a data model that could support the data for a number of data models was a conceptual data model, see figure 4.1 above. This term will be used here, but to describe the relationship between one data model and another. Thus one data model might be conceptual relative to two or more others, i.e. it can support all of their data requirements (but not necessarily constraints).

Whilst it is well understood how to develop a conceptual data model from some predefined set of external models, this could give rise to a large number of conceptual data models for the different combinations that arise. It would be desirable to have only one, or a few conceptual data models.

However, since all the data models that need to be integrated will not be known at the start of the process, it is important that any conceptual data model is extensible in the face of additional information requirements.

�

Figure � SEQ Figure * ARABIC �3�: Extending a Conceptual Data Model

This will be particularly important to be able to integrate product data models with data models of other parts of a business. Product data is a small, but important part of an enterprises data, and is part of the basis for the integration of an enterprises information, as shown below.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �4�: Enterprise Information Architecture.

Development of such an extensible conceptual data model is expected to be a technical objective. Such data models are called here Generic Data Models. Generic Data Models should:

meet the data requirement,

be clear and unambiguous to all (not just the authors),

be stable in the face of changing data requirements,

be flexible in the face of changing business practices,

be reusable by others,

be consistent with other generic data models covering the same scope, and

be able to integrate data from different data models.

Fortunately, principles exist which, if followed, allow these requirements to be met. They are:

Candidate attributes should be treated as representing relationships to other entity types.

Entities should have a local identifier within a database or exchange file. These should be artificial and managed to be unique. Relationships should not be used as part of the local identifier. (External, or global, identifiers are objects in their own right, see principle 1.)

Activities, associations and event-effects should be represented by entity types (not relationships or attributes).

Relationships (in the entity/relationship sense) should only be used to express the involvement of entity types with activities or associations.

Entity types should represent, and be named after, the underlying nature of an object, not the role it plays in a particular context.

Entity types should be part of a subtype/ super type hierarchy of generic entity types in order to define a universal context for the model.

Developing data models that follow these principles has been found to lead to data models that satisfy the above requirements.

Partial Integration

Another form of integration is partial integration of two data models where they overlap. Here a single data set is not achieved, but the overlap data is mapped/viewed in both data models. This might be appropriate when some data was only ever relevant in a particular environment. Full integration can always be achieved at a later date. This is equivalent to the qualified external resource approach proposed by Guy Pierra.

Ontologies

When you develop Generic Data Models, much of the semantic information is taken out of the data model. If this is not to be lost then it needs to be held somewhere else. An appropriate place to hold this information is in an ontology.

An ontology here is taken to be a classification scheme, and the relationships between classification schemes that represent our knowledge about some part of the universe. Two types of ontologies are recognised:

�

Figure � SEQ Figure * ARABIC �5�: An example of a Pure Ontology.

Pure ontologies, here the basis for classification is the same throughout the classification hierarchy. Such ontologies can be expected to be orthogonal. Here orthogonal means that membership of a class in one hierarchy is independent of membership of another hierarchy, and that classes at any level will be mutually exclusive. Figure 4.4 gives an example.

Mixed ontologies, these are the combinations of classes of thing we are interested in for a purpose. They are generally of more practical use, but can easily overlap with each other. The overlaps can be managed through the elements that make up the mixed ontologies coming from pure ontologies.

�

Figure � SEQ Figure * ARABIC �6�: A mixed ontology and its pure elements.

Pure ontologies tend to be concise, whereas the mixed ontologies that can be derived from them are relatively large. This means that pure ontologies can be a useful tool for managing the mapping between data models. An entity type in a data model can be positioned (or not) within each of the pure ontologies. Doing so defines very precisely the meaning of an entity type, in a way that is consistent. Thus if the pure ontologies are considered to be an adjunct to the generic data model, then a consistent and extensible basis exists for integrating data from different data models. Further, if a data model is developed that can be driven by ontologies, then the data model no longer needs to be extensible, only the ontologies (using the same principles). Thus extensibility becomes a matter of managing additions to data rather than data models.

Alternatively, the ontologies can be used to specialise the data model to make greater detail explicit, should this be required. It is important to understand that declaring something as a member of an entity type is semantically identical to classifying it as being a member of a class, where the definition of the class and the entity type are the same. They are just different representations/presentations of the same information.

A data model designed to be driven by ontologies and to hold any data about any thing, is given in Annex A.

Formal mappings between data models

Mapping involves two things:

it takes the (implicit) context of an external data model, and maps it to/from explicit elements in the conceptual data model,

it takes the explicit elements in the external data model and maps them to/from equivalent elements in the conceptual data model.

This gives the basis for mapping data elements according to the external data model to and from the conceptual data model.

This process can also be adopted privately for mapping application data structures to standardised data models.

Below is given an example of mapping two data models. The examples are for products taken from an oil industry context.

�

Figure � SEQ Figure * ARABIC �7�: A mapping example.

Figure 4.6 shows two data models that need to be mapped. First let me describe the two data models.

The top data model is one which is used in a particular context to identify the product type which represents the primary specification a batch of hydrocarbons is made to. The model is annotated with an example which is given in partial part 21 file format (the entity type names have been omitted because you can see them on the diagram). So product type #2, Kerosene, classifies batch #1. However, a batch can never have more than one product type, and must be classified by at least one product type if you are to record any information about it in this context.

The bottom data model is designed to be conceptual i.e. able to hold classification data by product type about batches in any context. The classification association indicates that a batch is classified as being of a product type. Batches do not have to be classified, and may be classified as many times as is desired. So, for example, classification #3, classifies batch #1 as product type #2, kerosene.

When we compare the two models we discover that batch means something different in the two data models. In the top data model it means batches that are classified, in the bottom data model it means any batch.

For the purposes of this example, the names of entity types will be changed to reflect the difference in semantics. However, this is not to suggest that this is necessary to map two data models. It is only necessary to discover and record the relationship between the two models. The result of this is shown in figure 4.7 below.

�

Figure � SEQ Figure * ARABIC �8�: Recognising different semantics.

If there is a difference in the batch entity types, perhaps there is also a difference in the product types. This is quite likely, since the batches in the top model can only have one product type so any others it might have are not relevant in this context. There is no evidence just from the model to guide us, so we will assume that in the top model it is the primary product type that is of interest (in real life don’t assume, ask!). This will also mean that batches that are classified, but not by a primary product type will not be of interest. If we incorporate this into the model then the result is shown in Figure 4.8 below.

�

Figure � SEQ Figure * ARABIC �9�: Recognising further semantics.

The problem now is that when I populate the top model from instances of the bottom model, I don’t know which of several classifications of a batch is the primary one. Thus we need to add something to the bottom data model to capture these semantics. Here we take a simple approach and add a further classification association, and introduce a class of product type entity type. This is illustrated in Figure 4.9 below. (Note: other approaches are possible.)

�

Figure � SEQ Figure * ARABIC �10�: Classifying product type.

Now we know which product types are primary, so we can pick up the relevant classification associations. If we assume that the primary product types are mutually exclusive, then there will only be one classification that is current. However, the primary product type may change over time, in this case there will be more than one classification association with a product type that has a classification association with the class of product type primary. So we need to know which one is current. One way to do this is to hold the date effectivity of the association. A simple way to do this is to have the start and end date of the association as attributes. Of course this also adds to the semantics of the top model, which becomes a currently classified batch. This is shown in Figure 4.10 below.

�

Figure � SEQ Figure * ARABIC �11�: Adding information to determine the current classification.

Whether this is the end, depends on the other models to be integrated and their context. Perhaps, for example, a different department has a different primary classification used in a different application model.

The key point here is that for a two way mapping, at least all the relative semantics must be discovered, and this assumes that the usage of the model conforms to the semantics. If not the semantics of the usage must be discovered too.

Identification

One of the biggest problems when combining data from different data sets is identifying which data is about the same thing, and needs to be consolidated.

This is not a matter of "yet another global identifier". There are enough of these already!

So how do we identify things in real life? Do we go around saying “Oh I can’t tell you which one this is, it doesn’t have a global unique identifier!” I think not. We habitually identify things by relationships they have to other things around it, and its characteristics. So if there are three chairs in the room (none of which has any identifier). One is in the corner, the other two are in the middle of the room. One is red, one is green, one is white. I can easily identify them by saying “the chair in the corner of the room”, or “the red chair in the room”. The key question is what constitutes sufficient relationships to other things to be confident we have identified what we are talking about. For example, for material objects, it is usually enough to identify where it was at a point in time (preferably now) to identify a particular object.

However, this is not to say that identifiers are not useful, because when a thing has an identifier, it is a very convenient and sure way to be sure what is being identified.

There are two levels at which identification of things is important:

internal, within a file or database, and

external, across a number of independently managed files, databases, or organisations.

Internal Identification

The purpose of an internal identifier is for the efficient and effective management of data about something by computer systems. Within a database or file it is important that each object represented has a surrogate, so that information about the object can be grouped together. In a database this might be provided by an attribute. In a STEP Part 21 file, this is provided automatically by the #Number.

Relationships should not be used as part of the internal identifier because this makes the existence of the object dependent on the relationship, and hence it makes existence of information about the object dependent on knowledge of information about the object it is related to. Even where there is real world dependence, it is unusual for it to translate into data dependence, e.g. because I must have two parents does not mean that you must know who my parents are to know me.

External Identification

The purpose of external identification is so that computer systems, people, and organisations can know what information is about in a broader context than the local computer system or organisation. This is particularly important for the integration of data from different systems. Take for example the unit of measure kg. If one system calls it "kg", and another "kilograms", then they will not be able to exchange data. A weight of 30 kg in the first system would be meaningless to the second system.

The first thing to understand about external identifiers is that there can be many of them. For example, I have an employee number, a driving license no, a National Insurance number, a National Health Number etc. The next thing is to understand that each of these identifiers is issued by an authority, which optionally manages them so that an identifier is only issued for one person, and that a person only has one identifier (at a time). Peoples names would be an example where identifiers are not managed to be unique. Passport numbers would be an example where they were managed to be unique.

The consequence of this is that external identification is best dealt with as part of the overall data model, since the identifier itself has relationships to, for example, the issuing authority and the identification scheme used. An outline data model for external identifiers is given below.

� EMBED PowerPoint.Slide.7 ���

Figure � SEQ Figure * ARABIC �12�: Outline identification scheme.

Record Identifiers

We sometimes forget that records are things too, which we may wish to manage, or authorise for a particular use. Some DBMS's give each record a record identifier, which is not seen by the user. This identifies a particular record (within the DBMS instance) and is not a surrogate for the object itself. Both are needed for proper management of data. In part 21 files, the object identifier doubles as a record identifier. This is because the membership of an object to any entity types it is a member of is constrained to be in one record.

Data Consolidation

Having developed the conceptual data model, and the mappings from (say) two external data models to the conceptual data model, it is now possible to migrate target data sets from the external models to the conceptual data model. The meaning of the data set 1 and 1’ is the same, but it is being said using a different data model. I can do the same with data set 2.

�

Figure � SEQ Figure * ARABIC �13�: Getting two overlapping data sets into the same data model.

However, just because the two data sets are data sets according to the same data model, does not mean that the data is integrated. It is necessary to go through a process of consolidation. In this step it is necessary to identify what data is about the same thing. External identifiers, and other relationships that can be used for identification will be helpful in this. However, it is possible that situations will arise when it is uncertain whether two pieces of data are about the same thing or not, because insufficient care has been taken. In this case human intervention is necessary. The result is shown below.

�

Figure � SEQ Figure * ARABIC �14�: Consolidation.

It should be noted, that in this process, the same object will probably have had different local object identifiers in the different data sets, and that the consolidation process is largely about ensuring that each object has only one internal identifier.

Implementation

The implementation requirements for IIDEAS are for a data access interface, and for an exchange file format. Whilst this can (and should) build on the work done in STEP, the requirements are more demanding.

The data access interface will need to support multi-user, multi-application access. In addition this may be accessed through one data model to data held in another. Data integration services will also need to be provided, as well as the usual access control services. This outline architecture is shown in Figure 4.14 below.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �15�: Outline Architecture to support IIDEAS.

The file exchange format may need to be more of a batch command interface, so that operations as well as data can be exchanged in a file. Source and destination information may also be necessary.

There is much existing work that may contribute to meeting these requirements, including CORBA and SQL3.

However, the main area of interest is the Data and Applications Architecture. This is illustrated below in Figure 4.15.

�

Figure � SEQ Figure * ARABIC �16�: Data and Applications Architecture.

Types of Application

Three types of application are recognised here:

Legacy applications. These are applications that have their own internal data structures developed to satisfy the requirements of the application without regard for data sharing. A legacy application can be fitted with a wrapper layer that redirects calls to its database.

Object based applications. These are applications that have been designed to be able to share data, and perhaps behaviour between applications within a domain through a domain model, e.g. design, maintenance. However, the same object might be viewed from more than one domain model, with different behaviour or attributes.

Generic applications. These are applications that are designed to work directly off a generic data model. Experience has shown that applications designed to work off a generic data model directly have better performance characteristics than traditional legacy or object based applications working off integrated data through a view or mapping. However, generic applications require a very different approach to application development.

Types of layer

There are four layers of different types of model, each of which will have an API and offer services. These are:

Business Object Layer. This layer presents to the user or user application the view of the world they wish to see, however specific or generic that may be. Behaviour may be included.

Data Integration Layer. This layer contains a data model designed to be able to integrate data from different sources, and services to integrate data from different sources. In principle, there is more than one data model that could be used as the data integration model. However, data will only be truly integrated if it is contained in a single data model.

Data Storage Layer. This layer provides a physical storage model. Experimental work has shown that it is possible to develop storage models that are independent of the data model that data is being stored against. This means that data and data models can be added without having to change the implemented data structures.

Meta Data Layer. This layer provides data models and services for managing the meta data. That is the data about data models, mappings, data model languages, mapping languages etc. and the services to support them.

Types of Database

Three types of database are shown:

Specific databases that directly implement the requirements of an application. Performance is good, but flexibility is poor.

Generic based databases that can store a wide range of data with good flexibility. Performance is sometimes poor when data has to be transformed into another format, but applications designed to work with a generic database perform well.

Flexible databases. These can hold the same data according to different data models to give the best of both the above types of database with the minimum of penalties.

You will notice that the data and applications architecture shown here (taken from the PIPPIN project) bears a striking, but unsurprising resemblance to the ANSI/SPARC architecture, where the Business Object Layer is equivalent to the external schema layer, the data integration layer is equivalent to the conceptual schema layer, and the data storage layer is equivalent to the physical storage schema layer. The difference is, that the layers here contain not only the schema, but also the services required to support calls to the layer through an API. Some of the services identified include:

data migration,

data merge and consolidation,

import/export,

context and view management,

version control,

work flow,

constraint management,

derivation and parametric services,

simulation services,

measurement data capture,

transaction services,

text based browsers and editors, e.g. hierarchy, form, report,

Graphical browsers and editors, e.g. 2D, schematic, 3D

meta data management tools for mappings and models etc.

Principles

The primary principle of the structure of this proposal is not to assume we know all the answers, but enable the standard to progress gracefully.

Management of data independent of application, rather than exchange of data between applications.

Data about a product needs to be managed and maintained throughout the life of the product.

Relationship to other standards

STEP

IIDEAS differs from STEP in having a broader scope than Product Data, and having an emphasis on sharing and integration, rather than exchange in the STEP sense. STEP is a potential source of data models that might require data from them integrating, and that might want to use ontologies standardised in IIDEAS.

IIDEAS would use much of what STEP has developed, including at least EXPRESS as a way of defining data models, and the proposed EXPRESS-X for defining mappings between data models.

Parts Library

Like STEP, Parts Library has a limited scope and intent. Thus IIDEAS would be able to support the data requirements of a Parts Library, and an IIDEAS implementation might choose to provide a Parts Library conformant implementation.

CDIF

CDIF provides a meta model for the exchange of meta data. This could be used, together with the EXPRESS meta-model as a basis for the data dictionary for this standard, although account would need to be taken of the need for history, configuration control, and version control. This standard treats meta data in the same way as other industrial data.

IRDS

This standard might identify some of the services required by an implementation.

CSMF

Theoretical but useful stuff to reference or build on.

Basic Semantic Repository

This seems to have some ideas similar to those presented here for ontologies. It would need investigating to see how it could contribute.

Examples of Use

Examples of the use of IIDEAS are given from the process industry. They are currently being pursued in industry.

Example 1: Standardising the integration of several APs

The design of a process plant involves a number of disciplines, and the hand over of the complete design data for a plant would involve the use of a number of APs. In particular: 221, 227, 231, 212, 225, 230. However, a plant owner does not want a number of separate files of data, which would have significant overlap in data content. What is desired is a single integrated database to act as a reference database to support operations and maintenance activities and data.

Using IIDEAS, a conceptual data model and set of ontologies can be developed from the APs involved. The APs can then be explicitly mapped to the conceptual model and ontologies. This then enables the batch implementation form to integrate the data into a single database. This can be accessed by operations and maintenance applications by the data access interface to provide the necessary reference data. The operations and maintenance applications could also store their data through the data access interface, using a suitable data model for their needs, integrated with the model for plant design.

Example 2: Ensuring commonality between APs

AP221 has developed a set of standard classes of equipment (about 2000 of them) that are commonly used in the process industry. AP227 wishes to use them in their AP as a way of achieving both utility and commonality. Rather than make a reference from one AP to another it is preferred to standardise the standard classes (an ontology) externally, and make reference to it from both APs, so that the content of the ontology can be managed independent of the data models that use it. IIDEAS provides a place to do this.

Example 3: Interoperability between S88 and STEP

S88 is a standard for the control of batch processes. It includes data models to support the information requirements of batch control which are already implemented. They would like S88 to be able to share/exchange data with STEP, in particular AP221 and AP231. In order to achieve this they wish to perform a mapping from their model (using OMT) to the STEP APs so that (parts of) their model can be a standardised view on the relevant STEP APs.

Alternative Approaches

In looking at how to satisfy the requirements identified above, there are basically two approaches that can be taken. The first is to change and improve what we have in STEP to satisfy the needs for data integration and sharing across an enterprises and between enterprises. The second is to establish a companion standard to STEP that provides the same capability. However, whichever approach is taken, there is considerable development outlined above which will need to be undertaken. Only the key differences are outlined below.

Improve STEP

The STEP Generic and Integrated Resources would need considerable change. These changes would need to:

move from a product data focus to an enterprise data focus,

move from a data exchange focus, to a data exchange and sharing focus,

move from being part conceptual model and part a set of templates, to a fully instantiable conceptual model,

move from identifying the context, to the context being the role some things play relative to others.

A separate paper is being prepared by Julian Fowler to identify the extent of the changes necessary.

The advantage of taking this approach is that all the work is carried forward. The disadvantage is that considerable change, and hence cost, would be required by those who had already implemented STEP. On the other hand considerable change seems to be necessary at present anyway.

Introduce a Companion Standard to STEP

This route involves introducing a companion standard to STEP that deals specifically with data sharing and data integration, including integrating STEP with other standards.

The advantage here is not being constrained by what has gone before, and equally not requiring change to what has gone before. The disadvantage is that if it is not STEP, then STEP will have to be accommodated too.

Next Steps

Identify projects that want to establish a data sharing and data integration standard.

Initiate a New Work Item to provide a focus for work on satisfying requirements for data integration and data sharing as a project under WG10.

Establish which strategy is best for achieving data integration and data sharing, extending STEP or developing a companion standard.

Develop, and standardise where appropriate, a methodology and architecture for data integration and data sharing standards.

�
Annex A: An Ontologically driven data model

Introduction

The data model given below is based on work done by EPISTLE (European Process Industries STEP Technical Liaison Executive). It aims to provide the minimum number of entity types to enable any information to be held as data. In order to achieve this, the data model is designed to be driven by ontologies that define the specific semantics of the information held. The semantics of the ontologies used are then an integral part of the overall definition of the meaning of the data.

This annex contains:

a data model documented as a number of EXPRESS-G diagrams, with

a text description of the diagrams,

a formal EXPRESS model together with definitions of the entity types,

an example Part 21 file.

EXPRESS G Diagrams

Below are the EXPRESS-G diagrams of the data model, together with descriptive text. Formal definitions are given in a later section together with the EXPRESS specification.

�

Figure � SEQ Figure * ARABIC �17�: Things, Activities, and Associations.

Everything is a thing, whether it is real or imagined, an activity or a physical object. In particular some things are activities or associations (but not both). An activity is something happening, such as the transfer of an object from one place to another.

On the other hand an association is something passive, and is what something has to do with another (including possibly itself). An association will have been brought about as the result of an activity. For example, ownership is an association between an object and its owner. The usual way in which an ownership association comes about, is as the result of a sale activity. When the object is again sold, then the ownership association is terminated.

One particular type of association is an involvement. An involvement is what something has to do with an activity or association, as indicated above by the happening select type.

�

Figure � SEQ Figure * ARABIC �18�: Cause and Effect.

An event-effect is a change in state of existence of some thing. It can either be a begin effect, or an end effect. A begin effect indicates that some thing has had the change of state of coming from not existing, to existing. An end effect is when some thing has changed its state from existing, to not existing. For reasons I don’t fully understand, all other changes of state result from the begin effect or end effect of some other object.

An event effect will be caused by an activity. However, the activity may not be known about, or you may not care about it. For example, you know that I have been born, and so the event effect that states I have come into existence can be recorded, but that does not mean you know, or care about, details of my birth.

On the other hand, the cause may be indirect. Here, one event effect causes another, but eventually an activity is involved. So if I die before my wife, the event effect of my ceasing to exist can be recorded, and this in turn causes my marriage to my wife to terminate. It will often be the case that when an object ceases to exist, so will many of its associations.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �19�: Some basic associations.

There are a small number of subtypes of thing, beyond the basics above, which are necessary to describe the things of interest to us. These are shown in Figure A.3.

A class has a basis for inclusion and exclusion, and classification is an association that indicates that some thing is a member of a class. It should be noted that here class is neither used to be the extension of the membership of the class, nor as a template for members of a class.

Class and classification is one of the basic ways in which we refer to things, and manage the world around us. With class and classification we can divide the world into lumps that we can deal with together, and that behave in similar ways. Through classification hierarchies, and associations between them, we can build up ontologies of our general knowledge of the world around us. These can be held as data, or made explicit through subtype trees from the entity types already defined.

A characteristic is something observable, however, it is not the result of an observation. Characteristics include properties, states, time, and space. Examples are the thickness of paint on a particular pipe, that a particular pipe is painted. Note that a characteristic is not the result of the measurement of a characteristic, with a unit of measure, but what it was that was measured. A possession association indicates that a thing possesses a characteristic.

Information content is the meaning that can be derived from a pattern or the arrangement of something physical. It is what we use to describe things with. A description association indicates that a thing is described by an information content.

Note that everything here is a subtype of thing, as a result, for example, a class can be classified, a characteristic can possess characteristics, and an information content can be described.

�

Figure � SEQ Figure * ARABIC �20�: The basics of holding data.

This bit of data model provides the structures to actually hold data. You will have noted that so far there has only been one data type. Here are all of the ones EXPRESS supports for use in a data model, so here as different subtypes of information content we have the means to hold information, rather than just relate it, which is what the rest of the model does.

Note that not all information contents are one of these subtypes. Information content is not abstract.

EXPRESS

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �21�: EXPRESS-G used to generate the EXPRESS.

The EXPRESS below was generated using FirstSTEP XG/21 from the EXPRESS-G model above. It has not been compiled.

cause

A select indicating the cause of an event-effect.

EXPRESS specification:

*)

TYPE cause = SELECT

	(event-effect,

	 activity);

END_TYPE;

(*

happening

A select of an activity or association, these being that which things can be involved in.

EXPRESS specification:

*)

TYPE happening = SELECT

	(activity,

	 association);

END_TYPE;

(*

activity

Something happening.

	NOTE 1 - The distinction between an activity and an association is that an association is passive, where as an activity is active. Thus, storage is a passive association between something and what it is stored in, whilst a transfer is an activity because something is being moved from one place to another.

EXPRESS specification:

*)

ENTITY activity

	SUBTYPE OF (thing);

END_ENTITY;

(*

association

What one thing has to do with another.

EXPRESS specification:

*)

ENTITY association

	SUPERTYPE OF (ONEOF(involvement,classification,description,possession))

	SUBTYPE OF (thing);

END_ENTITY;

(*

begin_effect

Indicates that something has come into existence.

EXPRESS specification:

*)

ENTITY begin_effect

	SUBTYPE OF (event-effect);

END_ENTITY;

(*

binary_value

An information content that is a binary value.

EXPRESS specification:

*)

ENTITY binary_value

	SUBTYPE OF (information_content);

	value : BINARY;

END_ENTITY;

(*

Attribute definitions:

value:	The attribute of BINARY datatype that contains the binary value.

boolean_value

An information content that is a boolean value.

EXPRESS specification:

*)

ENTITY boolean_value

	SUBTYPE OF (information_content);

	value : BOOLEAN;

END_ENTITY;

(*

Attribute definitions:

value:	The attribute of BOOLEAN datatype that contains the boolean value.

characteristic

Something observable that may be used as a basis to describe something. This includes properties, time, space, and states.

	NOTE 1 - The distinction between a class and a characteristic is that a characteristic has a point value, whilst a class has a characteristic range within which a characteristic of an object must fall in order to be considered a member of the class.

A characteristic is the property something possesses, rather than a description of a property. I.e. it is the degree of hotness in this room, rather than “20 DegC”.

EXPRESS specification:

*)

ENTITY characteristic

	SUBTYPE OF (thing);

END_ENTITY;

(*

class

A thing that is a type of thing. A Class has an actual or implied basis for inclusion or exclusion from the class. The class is not the extension of the membership, and is not a template for making instances of the class.

EXPRESS specification:

*)

ENTITY class

	SUBTYPE OF (thing);

END_ENTITY;

(*

classification

An association that indicates that a thing is classified as being a member of a class.

EXPRESS specification:

*)

ENTITY classification

	SUBTYPE OF (association);

	classifiable : thing;

	classifier : class;

END_ENTITY;

(*

Attribute definitions:

classifiable:	A pointer to the thing being classified.

classifier:	A pointer to the class for the classification.

description

An association that indicates a thing is described by an information content.

EXPRESS specification:

*)

ENTITY description

	SUBTYPE OF (association);

	descriptor : information_content;

	described : thing;

END_ENTITY;

(*

Attribute definitions:

descriptor:	A pointer to the information content that is the descriptor in the description association.

described:	A pointer to the thing that is described through the description association.

end_effect

Indicates that something has ceased to exist.

EXPRESS specification:

*)

ENTITY end_effect

	SUBTYPE OF (event-effect);

END_ENTITY;

(*

event-effect

A change in state of existence.

EXPRESS specification:

*)

ENTITY event-effect

	SUPERTYPE OF (ONEOF(begin_effect,end_effect))

	SUBTYPE OF (thing);

	affected : thing;

	cause : OPTIONAL cause;

END_ENTITY;

(*

Attribute definitions:

affected:	Points to the thing that is affected by the event-effect.

cause:	Points to the activity or other event-effect that is the cause of the event-effect.

information_content

A type of thing that is the meaning that can be derived from the arrangement or properties of material (e.g. ink on paper, bits in computer memory, etc.)

EXPRESS specification:

*)

ENTITY information_content

	SUPERTYPE OF (ONEOF(binary_value,logical_value,boolean_value, real_value,integer_value,number_value,text))

	SUBTYPE OF (thing);

END_ENTITY;

(*

integer_value

An information content that is an integer number.

EXPRESS specification:

*)

ENTITY integer_value

	SUBTYPE OF (information_content);

	value : INTEGER;

END_ENTITY;

(*

Attribute definitions:

value:	The attribute of INTEGER datatype that contains the integer.

involvement

A type of association that indicates the role played by a thing in an association or activity.

EXPRESS specification:

*)

ENTITY involvement

	SUBTYPE OF (association);

	happening : happening;

	involved : thing;

END_ENTITY;

(*

Attribute definitions:

happening:	A pointer to the activity or association that has the involvement.

involved:	A pointer to the thing that has the involvement with an activity or association.

logical_value

An information content that is a logical value

EXPRESS specification:

*)

ENTITY logical_value

	SUBTYPE OF (information_content);

	value : LOGICAL;

END_ENTITY;

(*

Attribute definitions:

value:	The attribute of LOGICAL datatype that contains the logical value.

number_value

An information content that is numeric, either integer or real.

EXPRESS specification:

*)

ENTITY number_value

	SUBTYPE OF (information_content);

	value : NUMBER;

END_ENTITY;

(*

Attribute definitions:

value:	The attribute of NUMBER datatype that contains the number.

possession

An association that indicates a thing possesses a characteristic.

EXPRESS specification:

*)

ENTITY possession

	SUBTYPE OF (association);

	possessor : thing;

	possessed : characteristic;

END_ENTITY;

(*

Attribute definitions:

possessor:	A pointer to the thing that is the possessor in the possession association.

possessed:	A pointer to the characteristic that is possessed in the possession association.

real_value

An information content that is a real value.

EXPRESS specification:

*)

ENTITY real_value

	SUBTYPE OF (information_content);

	value : REAL;

END_ENTITY;

(*

Attribute definitions:

value:	The attribute of REAL datatype that contains the real number.

text

An information content that consists of a string of characters.

EXPRESS specification:

*)

ENTITY text

	SUBTYPE OF (information_content);

	value : STRING;

END_ENTITY;

(*

Attribute definitions:

value:	The attribute of STRING datatype that contains the text.

thing

Anything that exists, real or imagined.

EXPRESS specification:

*)

ENTITY thing

	SUPERTYPE OF (ONEOF(activity,association,event-effect,class,characteristic,information_content));

END_ENTITY;

(*

�
Annex B: A Part 21 File.

This Annex is a part 21 file for the example used to illustrate mapping, using the model in Annex A.

HEADER;

FILE_DESCRIPTION(,);

FILE_NAME(,,,,,,);

FILE_SCHEMA();

ENDSEC;

DATA;

#1 =text('batch');

#2 =text('Product Type');

#4 =text('Kerosene');

#5 =text('Primary');

#6 =thing();

#7 =class();

#8 =class();

#9 =class();

#10 =class();

#11 =description(#1,#7);

#12 =description(#2,#8);

#13 =description(#4,#9);

#14 =description(#5,#10);

#15 =classification(#6,#7);

#16 =classification(#6,#9);

#17 =classification(#9,#10);

#18 =begin_effect(#15,$);

#19 =begin_effect(#16,$);

#20 =begin_effect(#17,$);

#21 =begin_effect(#11,$);

#22 =begin_effect(#12,$);

#23 =begin_effect(#13,$);

#24 =begin_effect(#14,$);

#25 =begin_effect(#7,$);

#26 =begin_effect(#8,$);

#27 =begin_effect(#9,$);

#28 =begin_effect(#10,$);

#29 =begin_effect(#1,$);

#30 =begin_effect(#1,$);

#31 =begin_effect(#2,$);

#32 =begin_effect(#4,$);

#33 =begin_effect(#5,$);

#34 =begin_effect(#6,$);

ENDSEC;

