

Chapter 5

ROUTE PLANNER

ii

CHAPTER OUTLINE ..1

5.1 Overview .. 3

5.2 Terminology .. 4

5.3 Key Concepts ... 7
5.3.1 Shortest path problem ...7
5.3.2 Dijkstra’s algorithm...7
5.3.3 Network layers..7

5.4 Major Data Inputs .. 8
5.4.1 Generating Single-Trip Requests ..9
5.4.2 Generating the Internal Network..10

5.4.2.1 Generating nodes and links in the Internal Network... 12
5.4.2.2 Generating travel time functions for each link in the Internal Network 15

5.5 Major Data Outputs ... 21

5.6 Module Interfaces ... 26
5.6.1 Inputs received from the Activity Generator Module ...26
5.6.2 Inputs received from the Traffic Microsimulator Module ..27
5.6.3 Outputs sent to the Traffic Microsimulator Module..27
5.6.4 Feedback to the Selector Module..28

5.7. Configuration Files.. 33

5.8 Algorithms ... 35
5.8.1 Time-Independent Shortest Path Problem (TISP) ...35

5.8.1.1 Practical Example for the Time-Independent Shortest Path Problem (TISP) 41
5.8.2 Time-Independent Label Constrained Shortest Path Problem (TILSP) ...46

5.8.2.2 Example of the Time-Independent Label Constrained Shortest Path Problem (TILSP) 48
5.8.3 Time-Dependent Label-Constrained Shortest Path Problem (TDLSP) ..54

5.9 Example of the Route Planner Module .. 57

APPENDIX A ... 64

1

ROUTE PLANNER

Chapter Outline

The preceding chapters have discussed the following:

• The generation of synthetic households from census data at the block group level or the
census tract level.

• The development of associated demographic characteristics (e.g., age, gender, income,
etc.) for each synthetic household.

• The placement of each synthetic household on a link in the transportation network.
• The assignment of vehicles to each household, including information regarding the vehicle

emission type and the initial vehicle location on the network.
• The assignment of a set of activities, their priority, travel mode, and vehicle preference for

each household member of the synthetic household for a 24-hour period.
• The determination of the location of each activity that takes place away from the

household, by activity type.

This chapter is concerned with the Route Planner, the third module in the TRANSIMS framework,
which develops a time-dependent label-constrained shortest path for each trip executed by a traveler
in the system. Figure-5.1 details the inputs and outputs of this module, along with its interactions
with the other relevant modules of TRANSIMS. There are several shortest path techniques that vary
by complexity, required data, computer processing time, and appropriate application. However,
most techniques require some combination of the following inputs:

• A network consisting of nodes and links.
• A travel time function on each link, which could be a time-independent or a time-

dependent function. Time-dependent functions account for time-of-day delays resulting
from actual travel conditions such as peak-hour congestion.

• A string of admissible mode labels that delineates the permissible travel mode sequences
that could be adopted by the user in traveling from the origin to the destination of the trip.

The technique adopted by TRANSIMS to identify a suitable travel route for any user is a variant of
Dijkstra’s procedure for finding shortest paths, which is suitably modified to accommodate time-
dependent travel times and label sequence constraints. The underlying problem is referred to as
Time-Dependent Label-Constrained Shortest Path Problem (TDLSP), and is unique to TRANSIMS
applications.

This section begins with an overview of the Route Planner Module, a definition of the terminology,
some key concepts, the major data inputs and outputs, various module interfaces, and values for the
relevant configuration files. Thereafter, three shortest path problems on networks are described,
along with the salient concepts of their solution. These problems are as follows:

1 Time-Independent Shortest Path Problem (TISP),
2 Time-Independent Label-Constrained Shortest Path Problem (TILSP), and
3 Time-Dependent Label-Constrained Shortest Path Problem (TDLSP).

2

Figure-5.1: TRANSIMS framework

INPUTS

POPULATION SYNTHESIZER
MODULE

CENSUS
 DATA

LAND-USE
DATA

TRANSPORTATION
NETWORK

VEHICLE
POPULATION

ITINERANT
TRAVELER
TRIP-TABLE

TRAVELER
ACTIVITY SURVEY

S
E

LE
C

TO
R

 M
O

D
U

LE
A

C
H

IE
V

E
S

 IN
TE

R
N

A
L

C
O

N
S

IS
TE

N
C

Y
 B

Y
 S

E
LE

C
TI

V
E

LY
FE

E
D

IN
G

 B
A

C
K

 IN
FO

R
M

A
TI

O
N

 T
O

 T
H

E
 O

TH
E

R
 M

O
D

U
LE

S

SYNTHETIC
HOUSEHOLD

VEHICLE IN A
HOUSEHOLD

SYNTHETIC
PERSONS IN A
HOUSEHOLD

TRAVEL ACTIVITY
LIST BY PERSON

FOR 24 Hrs.

ACTIVITY GENERATOR
MODULE

ROUTE PLANNER
MODULE

TRAFFIC MICROSIMULATOR
MODULE

EMISSIONS ESTIMATOR
MODULE

LOCATION OF
TRAVEL ACTIVITIES

LINK TRAVEL TIMES
TRAVELER ROUTE
PLAN FOR EACH

SINGLE TRIP

TRAVELER DATA
 - ID
 - TIME
 - LOCATION
 - ETC.

TRAVEL DATA
 - LINK TIMES
 - LINK DENSITIES
 - ETC.

VEHICLE DATA
 - VEHICLE ID
 - VEHICLE COUNTS
 - ETC.

EMISSIONS
INVENTORY

3

5.1 Overview

The Route Planner Module develops the route plans based on the demand represented in the
Activities data file. Each traveler, including itinerant travelers, truck drivers, and transit drivers, has
an individual travel plan. The overall travel plan consists of several single-trip requests*. Each
single-trip request is created from the activity file, traveler list, mode preference file, mode string*,
and vehicle file (see Figure-5.2).

The Route Planner computes a label-constrained, time-dependent shortest path for each single-trip
request. This is achieved by the Route Planner based on the construction of an Internal Network*,
given the TRANSIMS network*, along with link travel time functions as obtained via a feedback
from the Traffic Microsimulator Module.

Once the plans are generated for all the travelers, they are simultaneously fed into the Traffic
Microsimulator Module.

*Please see Section 5.2 for the terminology and for relevant definitions.

 Module

Figure-5.2: Data flow diagram of the TRANSIMS Route Planner

Microsimulation
Feedback

Internal
Planner
Network

Route Planner:
Shortest Paths

Travel
Plans

Activity File

Traveler List

Mode Preference
File

Vehicle File

Mode String

Single-Trip
Requests

Activity Generator Module

TRANSIMS
Network

4

Travel time function: 2t0 + 3

Given a starting
time t0 at node 1.

The arrival time at node 2 would be
t0 + the travel time function (3t0 + 3).

Travel mode: c

5.2 Terminology

 Single-trip request: A single-trip request mainly consists of a starting location (O), a
destination location (D), a starting time (t0), a maximum finish time (T), and a mode string.

 Transit: From the point of view of the Route Planner, a transit vehicle is considered to be any

vehicle that makes scheduled stops along a predetermined route, such as, buses, trains,
streetcar, etc.

 TRANSIMS network: The TRANSIMS network provides information about streets,

intersections, signals, parking, activity locations, and transit modes within a road
transportation network. This information is used to construct the Internal Planner Network.

 Internal Network: The Route Planner translates the TRANSIMS network into a working

form, the “Internal Network”, to facilitate the time-dependent, label-constrained routing
algorithm. The Internal Network consists of nodes, links, time-dependent travel time
function on each link, and the possible travel mode on each link. The travel time function on
each link is time-dependent, that is, the travel on a link may incur different travel times at
different times of the day. Information regarding the delays on the links is derived from the
Traffic Microsimulator output and provided via the Feedback File.

 Activity location: An activity location is a place where a traveler’s activities (such as work,

home, shopping) can take place.

 Node: This is a physical location in the TRANSIMS network, such as an intersection,
activity location, bus stop, etc.

 Link: This is a unidirectional connection between a pair of nodes. The example below
depicts a link between nodes 1 and 2. Every link has a travel time function, a travel mode,
and a layer associated with it. For a traveler going from node 1 to node 2 using travel mode
“c”(car), with a starting time t0 and a travel time obtained via a travel time function “2t0 +
3”, which depends on the time t0 at which the traveler enters the link at node 1, we can
represent this information as follows:

Suppose that the traveler arrives at node 1 at time 4. Then the travel time on this link to
node 2 is equal to 2(4) + 3 = 11. Hence, the traveler would arrive at node 2 at time 4 + 11 =
15.

 Travel time function: Each link in the Internal Network has a travel time associated with it.

Links on the street layer have a travel time for driving on that link. Links on the walk layer
have a travel time for walking on that link. Transit links have a travel time for the time

1 2

5

between boarding a transit vehicle at one stop and exiting the vehicle at the following stop.
Travel times can either be constant, such as walking times, or dependent on the time of day,
such as for driving times.

 Leg: A leg describes a traveler’s movement through the network. A leg must start and end

at an activity location, parking location, or transit stop. There could be only one link or
several links within this leg. For example, a trip “wbwcw” from office to home as shown in
the diagram below is comprised of six legs.

1. The first leg uses the walk mode from the office building to the bus stop. There is only

one link within this leg.
2. The second leg uses the bus mode to take the traveler from the origin bus stop to the

destination bus stop. There is only one link within this leg.
3. The third leg uses the walk mode from the bus stop to the parking lot. There is only one

link within this leg.
4. The fourth leg uses the car mode from the parking lot to the day care. This leg contains

three links as shown in diagram below. They are:

1) a link between parking lot and road # 1

2) a link between road # 1 and road # 2, and

3) a link between road # 2 and the day care.

5. The fifth leg uses the car mode from the day care to the home parking lot. There is only
one link within this leg, and

6. The sixth leg uses the walk mode from the home parking lot to home.

6

 Layer: A separate layer exists for each mode of travel. For example, a walk layer consists of
all the streets that can be walked along, and a transit layer is comprised of all possible transit
modes such as, rail, bus, etc.

 Stage s: Stage s is an analytical algorithmic description, which designates a step in the

procedure where we examine all the nodes that are reachable from the origin node in s steps.

Parking lot

4th leg

c
car car Day care Road #2Road #1 car

1st link 3rd link 2nd link

7

5.3 Key Concepts

5.3.1 Shortest path problem
In transportation planning, a traveler is always considered to choose a path that has the minimum
travel time from a specified starting location (O) to a specified destination location (D). The
shortest path problem lies at the heart of determining optimal flows in finding the shortest path in a
transportation network. Many researchers and practitioners have developed several methods and
algorithms for solving this problem. Although the problem itself is quite simple and widely studied,
new contributions keep appearing in the scientific literature. TRANSIMS implements Dijkstra’s
algorithm, one of the most widely used algorithms for solving shortest path problems having
nonnegative travel time functions.

5.3.2 Dijkstra’s algorithm
The network flow literature typically classifies approaches for solving shortest path problems into
two groups: label-setting and label-correcting procedures. Both approaches are iterative. The basic
label-setting algorithm for nonnegative travel time functions has become known as Dijkstra’s
algorithm because Dijkstra was among the first of several people to discover it independently.

5.3.3 Network layers
The Route Planner conceptually views the network as a set of interconnected, unimodal layers (see
Figure-5.3). A separate layer exists for each travel mode (walk, bike, car, bus, rail, trolley, etc.). At
certain designated locations in each layer (activity location, parking location, transit stop, etc.),
which become nodes in the Route Planner’s view of the network, a special link called a process link
connects one unimodal layer to another. These process links allow intermodal transitions to take
place from one layer to another. The layers themselves are constructed from the TRANSIMS
network. The travel time for each link in each layer is computed via a link travel time function,
which could be time-dependent, or time-independent.

Conceptually, layers are associated with travel modes. There are three major types of layers in the
network:

• A walk layer, which consists of all activity locations and all of the streets that can be walked
along. However, the parking locations and transit stops that belong to the other two types of
layers are only accessible from activity locations in the walk layer via process links.

• A street layer, which consists of all links between intersections. This also includes the
parking locations.

• A transit layer, which consists of separate layers for each type of transit vehicle (e.g., a bus
layer, a rail layer, etc.). This also includes transit stops and transit routes. Note that each bus
route in a bus system is a separate layer by itself.

Based on individual traveler preferences and constraints as specified by the activities data file, the
Route Planner plans for trips that consist of multiple modal legs (e.g., walk-car-walk, etc.). The
process of constructing multiple layers in which each layer can be encoded as a different unimodal

8

network allows for the efficient computation of trips that are constrained by specified modal
sequence requirements.

5.4 Major Data Inputs

Figure-5.3: A high-level depiction of the various layers used by the Route Planner

Walk Layer

Rail Layer

Bus Layer

Street Layer

Transit
Layer

Activity
Location

Parking
Lot

Bus
Stop

Rail
Stop

Process Link

Figure-5.4: The major input specifications for the Route Planner Module

Internal Network
• Nodes**
• Links**
• Travel time function***

Route Planner

Major Input

* obtained from the Activity Generator Module
** obtained from the TRANSIMS network
*** obtained from the Traffic Microsimulator

Single-Trip Request
• Starting location*
• Destination location*
• Starting time*
• Maximum finish time*
• Mode string*

9

The inputs for the Route Planner Module (as shown in Figure-5.4) are comprised of single-trip
requests, along with an Internal Network consisting of nodes and links, where a node is a
physical location in the TRANSIMS network such as an intersection, activity location, or bus stop,
and a link is a unidirectional connection between a pair of nodes.

5.4.1 Generating Single-Trip Requests
Single-trip requests for each traveler are generated from the TRANSIMS Activities file that is
obtained from the Activity Generator Module. The TRANSIMS Activities file (see more details in
Section 6.1: Input received from the Activity Generator Module) provides information regarding
the non-transportation and transportation activities for each traveler within a household. The Route
Planner creates the single-trip requests for each transportation activity, which is interspersed
between a pair of non-transportation activities.

Table-5.1 displays an example of the actual data contained in a TRANSIMS Activities file for a
household having an ID 13092. This information is obtained from the Activity Generator Module.
In this example, there are two people in the household. The first person has an ID 13300, and the
second person has an ID 13301. There are three non-transportation activities for each person, which
represent the time spent at home and at work. These two individuals have the same type of
activities, which relate to going from “home” to “work”, and back to “home” (this is coded in the
activity type (ACTTYP) column in Table-5.1, where 0 designates home, and 1 designates work).
Every activity must be performed because each activity has a 9 priority level. The starting time,
ending time, and duration for each activity varies as seen from the table. Although the “home”
activities correspond to the same location, which is a house having an ID 845654 (see the Location
column), the “work” activities are different. The first person goes to work at location ID 833503 via
a car (as seen in coded form in the Mode column, where 1 designates walk, and 2 designates car),
and where the car has an ID 13217 (this is specified in the vehicle ID (VEHid) column), while the
second person goes to work at location ID 853676 via a car having ID 13218. These two persons
travel alone to the “work” activities (this is recorded in the number of other participants in the
activity (N Others) column).

Table-5.1: Example of a TRANSIMS Activities file

HHID PERID ACTNO ACTTYP PRIORITY St Time End T Dur Tim Mode VEHid N Loc Location N Others OthersID
13092 13300

1st person
1 0

(home)
9 0-0 7.0833-

8.5833
7.0833-
8.5833

1 -1 1 845654
(home)

0 -

13092 13300 2 1
(work)

9 7.5833–
8.0833

14.75-
15.25

6.9167-
7.4167

2 13217 1 833503
(work1)

0 -

13092 13300 3 0
(home)

9 14.75-
16.25

24-24 7.75-9.25 2 13217 1 845654
(home)

0 -

13092 13301
2nd

person

1 0
(home)

9 0-0 8.25-9.75 8.25-9.75 1 -1 1 845654
(home)

0 -

13092 13301 2 1
(work)

9 9.1667-
9.6667

16.25-
16.75

6.8333-
7.333

2 13218 1 853676
(work2)

0 -

13092 13301 3 0
(home)

9 16.25-
17.75

24-24 6.25-7.75 2 13218 1 845654
(home)

0 -

10

From the information given above, Table-5.1 is translated into a format for single-trip requests for
each traveler in a household as shown in Table-5.2. The information regarding the single-trip
requests as shown in Table-5.2 is used as part of the primary input provided to the Route Planner,
aside from the Internal Network itself. Note that the non- transportation activities are also included
in Table-5.2 because TRANSIMS continuously records each kind of activity for each member in
the household over a period of 24 hours. These outputs for the non-transportation activities are
shown as part of the output for the Route Planner. However, the Route Planner runs the shortest
path procedure for composing the transportation activities only.

Table-5.2: Single-trip requests for each traveler corresponding to information from Table-5.1

Person
ID

Activity
Number

Starting
Location

Destination
Location

Starting Time
(seconds since

midnight)

Maximum
Travel Time

(second)

Mode String*

13300 1 845654
(Home)

845654
(Home)

0 - (non-transportaion
activity)

 2

845654
(Home)

833503
(Work)

30207** 3600*** wcw

 3 833503
(Work)

833503
(Work)

- - (non-transportaion
activity)

 4 833503
(Work)

845654
(Home)

55703 5400 wcw

 5 845654
(Home)

845654
(Home)

- - (non-transportaion
activity)

13301 1 845654
(Home)

845654
(Home)

0 - (non-transportaion
activity)

 2 845654
(Home)

853676
(Work)

32636 5100 wcw

 3 853676
(Work)

853676
(Work)

- - (non-transportaion
activity)

 4 853676
(Work)

845654
(Home)

59466 5400 wcw

 5 845654
(Home)

845654
(Home)

- - (non-transportaion
activity)

* Mode string is established by matching mode integer in Table-5. 2 to a mode preference file.
** Randomly selected from 7.0833 hours (25500 seconds) to 8.5833 hours (30900 seconds), which are obtained from

End T of ACTNO 1 in Table-5.1.
*** Obtained from (8.0833 – 7.0833)×3600 = 3600 seconds, which is a maximum difference of St Time of ACTNO2

minus the End T of ACTNO1 in Table-5.1.

5.4.2 Generating the Internal Network

The Internal Network is comprised of nodes and links, along with a specification of the travel time
function for each link. This section describes the two principal parts of this structure, which are:

5.4.2.1 Generating nodes and links in the Internal Network, and
5.4.2.2 Generating travel time functions for each of the links in the Internal Network.

11

The Route Planner uses information from the TRANSIMS network that records the basic
transportation network to create the nodes and links for the Internal Network. Table-5.3 displays
the required and optional files from the TRANSIMS network that the Route Planner uses to create
the nodes and links for the Internal Network.

Table-5.3: The required and optional files from the TRANSIMS network used by the Route Planner

File Description Key
NET_NODE_TABLE This file contains information of each node in the

TRANSIMS network, which are node ID, the x, y, and z-
coordinate of the node.

E

NET_LINK_TABLE This file contains information of each link, such as, link ID,
ID number of the node at the beginning (A) and ending (B) of
the link, number of lanes on the link heading toward to node
A and B, etc. Note that there could be only one lane or several
lanes within the link.

E

NET_POCKET_LANE_TABLE A pocket lane is the additional lane that starts and ends within
a permanent lane. This file contain information of the pocket
lane, such as, ID number of the pocket lane, ID number of the
node to which the pocket lane leads, ID number of the link on
which the pocket lane lies, etc.

M

NET_PARKING_TABLE This file contains information of the parking place, which lies
on a certain link, such as, ID number of the parking place, ID
number of the toward node, which vehicles are traveling to,
ID number of the link on which the parking place lies,
location of the parking place, etc.

M

NET_LANE_CONNECTIVITY_TABLE This file contains information of connection on each node,
which are ID number of the node, ID number of the incoming
and outgoing link, lane number of the incoming and outgoing
lane.

M*

NET_SPEED_TABLE This file contains information of speed limit, free-flow speed,
vehicle types to which speed apply, starting, and ending time
for the speeds on each link.

O*

NET_LANE_USE_TABLE This file contains information when a lane has restrictions for
certain vehicle types at certain times of the day.

O*

NET_TRANSITS_STOP_TABLE This file contains information of each transit stop, such as, ID
number of the stop, ID number of the node to which vehicles
are traveling, ID number of the link on which the stop occurs,
location of the stop, type of vehicle for the stop, etc.

O*

NET_TURN_PROHIBITION_TABLE This file contains information when a particular movement at
a node is prohibited at certain times of the day.

O*

NET_BARRIER_TABLE A barrier is a divider such as a curb or a grade separation that
prevents vehicles from moving between two adjacent lanes on
a link. This file contains information of each barrier, such as,
ID number of the barrier, ID number of the node to which
vehicles are traveling, starting position of the barrier, type of
the barrier, etc.

O*

Key: E = essential,
 M = needed, but can be generated automatically,
 O = optional, and
 * = not used by the current TRANSIMS release, but will be used eventually.

12

The Route Planner also uses other information from the Traffic Microsimulator Module, such as the
travel time or cost on each link of the network, to create the travel time function for each link. The
reason for creating a separate Internal Network for the Route Planner is to increase the efficiency of
the path-finding algorithm.

5.4.2.1 Generating nodes and links in the Internal Network
One of the main differences between the TRANSIMS network and the Internal Network is that the
links in the Internal Network are all unidirectional, whereas the links in the TRANSIMS network
could be bidirectional. Any bidirectional link in the TRANSIMS network is converted to a pair of
unidirectional links in the Internal Network, one in each direction.

Each link in the TRANSIMS network can have “accessories” (transit stops, activity locations,
parking locations) attached to it. These accessories are represented by new nodes in the Internal
Network. Each link containing an accessory is split into two links, one from the start node of the
link to the accessory node, and one from the accessory node to the end node of the link. An
example that illustrates this transformation is displayed in Figure-5.5. This example does not
include a transit layer. The transit layers are described in more detail later on. The left part of
Figure-5.5 shows a bidirectional street link in the TRANSIMS network between street nodes 1 and
2 having two accessories, namely, A: activity location, and P: parking lot for this activity location.
Generally, each activity location is attached to a corresponding parking location. The right part of
Figure-5.5 shows the constructed Internal Network for this example. Each node must be explicitly
connected to appropriate activity locations in the walk-network using process links. Note that there
is no need to place a walk-network connection between the street nodes 1 or 2 and a parking node.
There are two oppositely-directed unidirectional links on the walk layer because walking can
always be performed in both directions.

Figure-5.6 illustrates the layers of the Internal Network corresponding to Figure-5.5. This example
has two layers, which are the street layer and the walk layer. All activity locations are always
placed on the walk layer, while parking locations are placed on the street layer. Conceptually,
nodes 1 and 2 appear in two different layers, even though these appearances correspond to the same
nodes in TRANSIMS.

Figure-5.5: A transformation from the TRANSIMS network to the Internal Network

P

A Activity Location

Parking Location

2

Link in TRANSIMS Network

1

Converted Internal Network

Street Link

walk

Layers
 Street

 Walk

: Two-Way Street

1
2

P

A

13

Generally, the Internal Network contains a transit layer. This transit layer may be split into many
different transportation sub-layers, such as, bus route 1 layer, bus route 2 layer, rail 1 layer, rail 2
layer, etc. The information regarding the transit system comes from the TRANSIMS network’s
transit stop table, the transit route file, and the transit schedule file. Each transit stop must be
explicitly connected to appropriate activity locations in the walk network using process links.

Figure-5.7 depicts the TRANSIMS network representation of two streets with a bus stop and an
activity location on each street. There are two bus routes connecting the bus stops. The
corresponding Internal Network representation is displayed in Figure-5.8. Note that each bus stop in
Figure-5.7 splits into three nodes in Figure-5.8. For example, a bus stop BS1 in Figure-5.7 splits
into a node for the bus shelter for passengers (S1), a node for the bus-parking place for the bus route
1 (BS1R1), and a node for the bus-parking place for the bus route 2 (BS1R2). Figure-5.9 illustrates the
layers of the Internal Network corresponding to Figure-5.8.

Note that there are five different layers in this Internal Network as shown in Figure-5.9. The street
layer containing the intersection nodes, the walk layer containing the activity locations, the bus
layer containing the bus stations, and two bus route layers.

Figure-5.6: Layers of the Internal Network corresponding to Figure-5.5

Street Layer
P

A

21

 Walk Layer

Transit Layer

21

Key
 Intra-layer network links

 Process links (walk)

14

Layers
 Street
 Walk
 Bus Route 1
 Bus Route 2

Figure-5.8: The Internal Network representation corresponding to Figure-5.7

2

walk

1

S1

Bus Route 2

Bus Route 1

4 3

S2

A1 A2

BS1R2

BS2R1

BS1R1

BS2R2

street

Figure-5.7: TRANSIMS network representation of two streets with a bus stop and an activity

location on each street. There are two bus routes connecting the bus stops

Bus Stop

2

Street Link 1

walk

1

BS1

Activity Location

Bus Route 1

Bus Route 2

4

Street Link 2 3

A2

BS2 Bus Stop

Activity LocationA1

15

5.4.2.2 Generating travel time functions for each link in the Internal
Network

Each link in the Internal Network has a travel time associated with it. Links on the street layer have
a travel time for driving on each link. Links on the walk layer have a travel time for walking on
each link. Transit links have a travel time equal to the time elapsed between boarding a transit
vehicle at one stop and exiting the vehicle at the following stop. Travel times can either be constant,
such as walking times, or dependent on the time of day, such as driving times.

Initially, there is no feedback input from the Traffic Microsimulator Module. The free-flow speed
and the length of each link are therefore used to generate the travel times on the links by “dividing
the link length by the admissible speed”. The Route Planner then finds a shortest path for the
various single-trip requests using the given Internal Network representation. Once the plans are
generated for all the travelers, they are simultaneously fed into the Traffic Microsimulator Module
to initiate the first simulation run.

Figure-5.9: Layers of the Internal Network corresponding to Figure-5.8

Key
 Intra-layer network links

 Process links (walk)

Street Layer

Walk Layer

Bus Route 1 Layer

Bus Layer

Bus Route 2 Layer

21

A1

43

A2

21 43

S1 S2

BS1R1

BS2R1

BS2R2

BS1R2

16

The output from the simulation runs in the Traffic Microsimulator Module provides more accurate
information regarding the travel time functions on the links in the Internal Planner Network on a
time-dependent basis. These outputs are plotted on graphs that show the relationship between a
starting time and the travel time for each link, which is a time-dependent function. Figure-5.10
illustrates an example of a travel time function over a 24-hour interval for a link defined by a pair of
specific nodes (node R1 and node R2), assuming that this link is on a street layer (travel via a car).

After obtaining the output from the simulation runs in the Traffic Microsimulator Module, an
estimate for the travel time function for each link is determined. This travel time function represents
the average travel time experienced by the vehicles that traverse the link, averaged over a 15-
minute interval. The average travel time is obtained via a linear approximation through a Linear
Regression Analysis for the outputs over a 15-minute interval.

Linear Regression Analysis is a statistical method of fitting a line through data to minimize error.
With linear regression analysis, model coefficients can be determined to estimate the travel time
function for each link in the Internal Network.

In linear regression analysis involving one independent variable t (the starting time on that link),
and one dependent variable d (the travel time), the relationship that is used to fit n data points
(1)ni ≤≤ is of the following form, when a and b are model parameters that need to be estimated:

Figure-5.10: An example of a travel time function over a 24-hour interval for a specific link defined

by a pair of specific nodes (node R1 and node R2)

Travel time function for a link between node R1 and node R2

5.50

6.00

6.50

7.00

7.50

8.00

8.50

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00

Starting time, t

Tr
av

el
 ti

m
e

(m
in

.),
 d

Output from
the Traffic
Microsimulator
Module

17

 d = a + bt. (1)

Mathematical formulas for estimating a and b in Equation (1) using a simple linear regression are
as follows:

 b =
∑ ∑

∑ ∑

= −

= =

−

−

n

i

n

i
ii

n

i

n

i
iii

ttt

dtdt

1 1

2

1 1 (2)

 a = tbd − (3)

where,
n

t
t

n

i
i∑

== 1 (4)

and
n

d
d

n

i
i∑

== 1 (5)

As an example, consider a portion of Figure-5.10 during an interval of 8.00 a.m. to 8.15 a.m. The
corresponding graph is highlighted in Figure-5.11, and the data is shown in Table-5.4.

18

Figure-5.11: Travel time function over 7.00-9.00 a.m. interval corresponding to Figure-5.10

Table-5.4: Data of a travel time function over the interval 8.00 a.m.-8.15 a.m

Data
point, i

Starting time
(a.m.)

Converted starting
time into a decimal, ti

Travel time (minute),
di

tidi ti
2

1
2
3
4
5
6

8.00
8.04
8.09
8.12
8.13
8.14

8.00
8.07
8.15
8.20
8.22
8.23

7.91
7.89
8.04
8.07
8.09
8.10

63.28
64.37
65.53
66.17
66.47
66.69

64.00
65.07
66.42
67.24
67.51
67.79

∑

=

=
6

1i
it 48.87 ∑

=

=
6

1i
id 48.19 ∑

=

=
6

1i
ii dt 392.54 ∑

=

=
6

1

2

i
it 398.09

From the data given data in Table-5.4, we compute a linear approximation by using Equations (1)
to (5) as follows.

6
87.48

=t = 8.145

6
19.48

=d = 8.032

Delay function for a link between node R1 and node R2

6.70
6.85
7.00
7.15
7.30
7.45
7.60
7.75
7.90
8.05
8.20

7.30 7.60 7.90 8.20 8.50

Starting time
(a.m.), t

Output from the
Traffic
Microsimulator
Module

7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45 9.00 7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45 9.00

Travel time function for a link between node R1 and node R2 Travel time (min.), d

19

 b =
∑ ∑

∑ ∑

= −

= =

−

−

n

i

n

i
ii

n

i

n

i
iii

ttt

dtdt

1 1

2

1 1

 =
)87.48145.8(09.398
)19.48145.8(54.392

×−
×− =

04385.0
03245.0

 = 0.74

 a = tbd −
 = 8.032 – (0.74)× (8.145)
 = 2.

Thus, using d = a + bt, we get
 d = 2 + 0.74t.

A plot of the travel time function, d = 2 + 0.74t, is shown in Figure-5.12.

Figure-5.12: A plot of the approximation to the travel time function over the interval 8.00 a.m. – 8.15

a.m.

Travel time function for a link between node R1 and node R 2

6.70

6.85
7.00

7.15
7.30

7.45
7.60

7.75
7.90

8.05

8.20

7.30 7.60 7.90 8.20 8.50

Starting time
(a.m.), t

Travel time (min.), d Output from the
Traffic
Microsimulator
Module

7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45 9.00

Linear
approximation

d = 2+0.74t

20

If we recursively use linear regression analysis for all the other 15 minute-intervals, we obtain a
piecewise linear approximation for the travel time function over the interval 7.00 a.m. – 9.00 a.m.
(as shown in Figure-5.13).

Moreover, to enhance the effectiveness of the Microsimulator-Route Planner feedback, noise can be
added to the link travel times. The maximum amount of noise that can be added to the link as a
percentage of the link travel time can be specified. If the travel time for a link is d1 and the specified
noise percentage value is k, the reported travel time will be specified to fall in the interval (d1-kd1,
d1+kd1).

Figure-5.13: A plot of the approximation to the travel time function over the interval 7.00 a.m. – 9.00 a.m.

Delay function for a link between node R 1 and node R 2

6.70

6.85

7.00

7.15

7.30

7.45

7.60

7.75

7.90

8.05

8.20

7.30 7.60 7.90 8.20 8.50

Starting time
(a.m.), t

Tr
av

el
 ti

m
e(

m
in

.),
 d

Output from the
Traffic
Microsimulator
Module

7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45 9.00

Linear
approximations

21

5.5 Major Data Outputs

The major output of the Route Planner is the information about transportation activities for each
traveler, which comprises the route path (nodes, links, and travel modes), the travel time for each
link, and the total travel time (as shown in Figure-5.14). In addition, TRANSIMS displays the non-
transportation activities in the output as well, in order to maintain a record for every activity for
each member over the 24-hour horizon.

Generally, the outputs are formatted to show the relevant information for each leg on a trip. A leg
must start and end at an activity location, a parking location, or a transit stop (notice that there is a
special leg for the non-transportation activity that starts and ends at the same location). Figure-5.15
provides a simple illustration of the output for a traveler who has executed a trip from the “office”
to “home”. The Route Planner finds a shortest path that is comprised of three legs. Each leg (as
shown in Figure-5.15) has specific information attached to it.

 Figure-5.15: Sample route output from the Route Planner Module

Office Home
Parking

location at
office

Parking
location at

home

walk car

Leg #3Leg #1 Leg #2

Figure-5.14: The major outputs from the Route Planner Module

Route Planner

Major Outputs:
Travel Plans

• The route path
(nodes, links, and
travel modes)

• Travel time for
each link

• Total travel time

walk

22

The general format of this information for each leg is comprised of the following:

(Traveler ID) (Special attribute) (Trip ID) (Leg ID)
(Starting time) (Starting location ID) (Starting accessory type) (Ending location ID) (Ending
accessory type)
(Duration) (Stop time) (Monetary cost) (Generalized cost function) (Max time flag)
(Driver flag) (Travel mode)
(Number of tokens)
(Vehicle ID) (Number of passengers)
(Token ID)

Table-5.5 provides a more detailed description of this format.

Table-5.5: Description of the format output for the Route Planner Module

Name Description
Traveler ID Each person is given a unique ID in the population
Special
attribute

Available to the user to set as desired. If there is no special attribute, set as 0 (zero).

Trip ID Number of trips for the traveler: sequentially from 1.
Leg ID Number of legs within a trip: sequentially from 1.
Starting time The earliest time the simulation needs to examine this leg. This is generally the starting time

(estimated by the planner) for the leg. For a transit leg, however, this represents the arrival
time of the passenger at the transit stop, rather that the arrival time of the transit vehicle.

Starting
location ID

Denotes the network accessory ID of the starting location for this leg.

Starting
accessory type

Denotes the type of accessory of the corresponding location. This is necessary because the IDs
are not globally unique over the accessories. This entity should be one of:
1) activity location
2) parking
3) transit stop

Ending
location ID

Denotes the network accessory ID of the ending location for this leg.

Ending
accessory type

Denotes the type of accessory of the corresponding location. This is necessary because the IDs
are not globally unique over the accessories. This entity should be one of:

1) activity location
2) parking
3) transit stop

Duration

In conjunction with Stop time and Max time flag, this specifies how long this leg is expected
to take. This value is computed as seconds since midnight.

Stop time In conjunction with Stop time and Max time flag, this specifies an absolute ending time for
this leg. This value is computed as seconds since midnight.

Monetary cost In addition to travel time delay, process links can also have an associated monetary cost. This
can be used to account for parking fees and transit fares. Additionally, transit routes may have
zone to zone fares associated with them. Currently, the Route Planner does not use monetary
costs (marked as index number 1).

Generalized cost
function (GCF)

To more accurately model mode choice, the concept of a GCF has been developed. The GCF
allows other factors, besides travel time and monetary cost, to be taken into account when
determining a plan for a traveler. These other factors are included in the “cost” of a trip. The
importance of the monetary cost of a trip may be modified depending on a traveler’s income.
A greater penalty for traveling on congested links can be imposed by calculating the difference
between the actual travel time and the free speed delay. Note that transit transfers may impose
a higher cost than the actual delay involved. The GCF currently used is simply the travel time
(marked as 0).

23

Name Description
Max time flag If true (marked as 1), the end of this activity is best estimated as min{start time + duration,

stop time}. Otherwise, the maximum operator is used instead.
Driver flag This is true (marked as 1) if the traveler is driving a vehicle on this leg, zero otherwise.
Travel mode This must be one of:

0 = car
1 = transit
2 = pedestrian
3 = bicycle
4 = non-transportation activity

Number of
tokens

This is the number of routes within the leg if the travel occurs via the transit mode, or this
equals the number of visiting street nodes within the leg if the travel is by car.

Vehicle ID This indicates the vehicle ID if the travel is by car.
Number of
passengers

This is the number of other household members who might participate and use the same
transportation mode or activity (e.g., the same car).

Token ID This ID should be present only when the number of tokens is positive. It indicates the route ID
if the travel occurs by transit, or the street node ID if the travel is by car.

Figures 5.16 to 5.19 illustrate and explain various output examples from the Route Planner for the
household activities shown in Table-5.2 for traveler ID 13300.

13300 0 1 1

0 845654 1 845654 1

30270 30800 1 0 0

0 4

0

Traveler ID
13300.

A 0 (zero)
indicates that
there is no
special attribute.

This is trip 1,
leg 1 for this
traveler.

 The starting location
is a home ID 845654.

These are marked as 1
because the corresponding
locations (both 845654)
are activity locations.

The destination location is
also a home. The starting time

is 0 (midnight).

The activity
duration is 30270
seconds (8.4 hours).

The stop time is
30800 seconds
since midnight.

There is no
token number. Mode 4, a non-

transportation
activity
(staying at
home).

Driver flag, which is
marked as 0 because
the traveler is not
driving on this leg.

Max time flag that is marked
as 0. Hence, we use the
max{start time+duration,
stop time} as the end of this
activity, which is 30270.

Generalized
cost function is
absent.

The cost index
number is 1.
There is no other
monetary cost in
addition to the
travel time delay.

Figure-5.16: Example of an output for a non-transportation activity; “staying at home”

24

As mentioned above, the Route Planner also displays information in the output for non-
transportation activities in order to maintain a record for every activity for each member over 24-
hour horizon. Figure-5.16 illustrates the output for a non-transportation activity at home.

Figure-5.17 illustrates the output for a transportation activity; a walk trip from home to parking.

Figure-5.18 illustrates the output for a transportation activity; a trip from parking at home to
parking at the office. This trip uses a car as a vehicle, and is comprised of travel on five different
streets (the number of tokens is 5).

Figure-5.17: Example of an output for the “walk” mode (walk from home to the parking location)

13300 0 2 1

30270 845654 1 735654 2

10 30800 1 0 0

0 2

0

This is trip 2,
leg 1 for this
traveler.

The starting location is
a home ID 845654.

The destination
location is a car
parking ID 735654.

This is marked as 2
because the corresponding
location (7365654) is a
parking location.

The starting time is
30270 second since
midnight (8.25 a.m.).

The activity
duration is 10
seconds.

Mode 2: walk
from home to
the car
parking.

Driver flag, which
is marked as 0
because the
traveler is not
driving on this leg.

25

If the person identified by ID 13300 took a bus to work instead of a car, the output would appear
as follows:

13300 0 2 2

30280 735654 2 733503 2

451 30800 1 0 0

1 0

7

13217 0

55654 35653 45643
45642 35632

 The starting location is a
car parking ID 735654.

These are marked as 2
because the
corresponding locations
(735654 and 733503)
are parking.

The destination location is
another car parking
location having ID
773503.

The starting time is
31405 seconds since
midnight (8.43 a.m.).

The activity
duration is 451
seconds.

Mode 0, a car mode.

Driver flag, marked
as 1 because the
traveler is driving on
this leg.

Figure-5.18: Example of an output for the “car” mode

The number of
tokens is 7. There are
five visiting nodes
within this leg. The
corresponding node
IDs are 55654,
35653, 45643,
45642, and 35632,
respectively.

The traveler drives
a car ID 13217.

There is no passenger
using the same car on
this trip.

Figure-5.19: Example of an output for the “transit” mode (bus)

13300 0 2 2

31405 445660 3 443620 3

985 32400 1 0 0

0 1

1

46

This is trip 2,
leg 2 for this
traveler.

The starting location is a
 bus stop ID 445660.

These are marked as 3
because the
corresponding locations
(443620 and 443620)
are transit stops.

This leg ends at
another bus stop
ID 443620.

The starting time is
31405 seconds since
midnight (8.43 a.m.).

The activity
duration is 985
seconds.

Mode 1, a transit
mode (bus).

Driver flag, which is
marked as 0 because
the traveler is not
driving on this leg.

The number of
tokens is 1. There
is one bus route
within this leg,
which is a bus
route number 46.

26

5.6 Module Interfaces
An outline for the module interfaces involving the Route Planner Module is displayed in Figure-
5.20.

Figure-5.20: Flowchart of the module interfaces for the Route Planner Module

5.6.1 Inputs received from the Activity Generator Module

The input derived from the Activity Generator Module is the list of activities for each member of a
synthetic household, along with information about each traveler’s activity. This information is used to
generate the trip request for each traveler. Chapter 4 gives the detailed information about this file.

Route Planner Module

 - List of activities for each traveler
 - Information about each

 traveler's activities

Activity Generator Module

- Information about time-dependent
travel time functions

Traffic Microsimulator
Module

Traffic Microsimulator
Module

- Feedback information
 if no path is found-Travel plans for all travelers

Selector Module

27

5.6.2 Inputs received from the Traffic Microsimulator Module

The input from the Traffic Microsimulator Module comprises the information about time-dependent
travel time functions for all the links in the Internal Network. Table-5.6 lists all files received from
the Traffic Microsimulator Module that contain information about travel time functions.

Table-5.6: The list of files received from the Traffic Microsimulator Module that contains information
about travel time functions

File Description
ROUTER_LINK_DELAY_FILE Feedback file from which to read link delays/travel times. If the key

is not present or the file does not exist, the free speed delays are
used.

ROUTER_WALKING_SPEED Speed to use when computing travel times for walk links
(meters/second). Default 1.0.

ROUTER_BIKING_SPEED Speed to use when computing travel times for walk links traversed
by bicycle (meters/second).
Default 4.0.

ROUTER_GET_ON_TRANSIT_DELAY Delay/travel time encountered when boarding a transit vehicle.
Default 3 seconds.

ROUTER_GET_OFF_TRANSIT_DELAY Delay/travel time encountered when exiting a transit vehicle.
Default 4 seconds.

5.6.3 Outputs sent to the Traffic Microsimulator Module

Once the shortest travel plans are generated for all the travelers, they are simultaneously fed into the
Traffic Microsimulator Module as shown in Table-5.6. The following tables, Tables 5.7 to 5.11, list
the additional files sent to the Traffic Microsimulator Module to differentiate the traveler plans by
mode and whether the traveler is a car driver or a car passenger.

Table-5.7:The list of files for a car driver

File Description
Vehicle ID Each vehicle (with its ID) available in the simulation is listed in the vehicle database.
Number of Passengers The number of passengers, not including the driver, on this leg.
List of Node IDs The nodes (in order) through which the driver’s route will pass.
List of Passenger IDs The traveler ID of each passenger to be carried on this leg.

Table-5.8:The list of files for a car passenger

28

File Description
Vehicle ID Each vehicle (with its ID) available in the simulation is listed in the vehicle database.

Table-5.9: The list of files for a transit driver

File Description
Schedule Pairs Number of (stop ID, depart time) pairs.
Vehicle ID Each vehicle (with its ID) available in the simulation is listed in the vehicle database.
Route ID Route Ids are specified in the transit route file. Only one route ID is allowed per leg.
List of Node Ids The nodes (in order) through which the driver’s route will pass.
List of Schedule Pairs Each pair consists of a stop ID and a depart time. When a transit driver arrives at a

transit stop whose ID is given in this list, the driver will remain at that stop until the
departure time.

Table-5.10:The list of files for a transit passenger

File Description
Route ID Traveler will board any transit vehicle whose driver’s plan matches this Route ID.

Table-5.11:The list of files for a pedestrian

File Description
List of Node IDs The nodes (in order) through which the traveler’s route will pass.

For non-transportation activities, there are no files sent to the Traffic Microsimulator Module.

5.6.4 Feedback to the Selector Module

There are currently four types of anomalous activities recognized by the Route Planner: No Path,
Invalid Time, Invalid Shared Ride, and Invalid Shared Ride Time. Each activity for which an anomaly
is detected is fed back to the Selector Module to request new activity characteristics. The four
anomalous activities are described below.

1. No Path: A No Path anomaly takes places when a trip request cannot be satisfied because a
path from the source location to the destination location could not be found which obeys the
time and travel-mode constraints. Common reasons for this anomaly include no connectivity
between the source location and the destination location, and no transit vehicles running
after the start time. The No Path anomaly includes information about the source and
destination locations, the travel mode, and the start time of the transportation leg. When a
No Path anomaly is detected, no plan is generated, and the remaining activities for this
traveler are skipped. Table-5.13 provides the No Path files sent to the Selector Module.

2. Invalid Time: An Invalid Time anomaly occurs when the actual time used by the Route
Planner does not fit within the bounds specified by the activity. The start time, end time, and

29

duration are checked for consistency with respect to the ranges specified for the activity.
The Invalid Time anomaly includes information about the type of inconsistency, the lower
and upper bounds from the activity file, and the actual value used by the Route Planner.
When an Invalid Time anomaly is detected, a plan is generated for the anomalous activity
using the inconsistent times. Table-5.14 provides the Invalid Time files sent to the Selector
Module.

3. Invalid Shared Ride: An Invalid Shared Ride anomaly occurs when the driver’s activities
and passenger’s activities do not match up. Currently, only the condition where there are too
few driver’s activities for the number of passenger’s activities is detected. When this
anomaly is detected, no plan is generated for the passenger and the rest of the passenger’s
activities are not planned. The driver’s activities are planned as usual. No extra files are
output for this anomaly.

4. Invalid Shared Ride Time: An Invalid Shared Ride Time anomaly takes place when the
transportation leg for a passenger shared ride takes longer than the time between the two
adjacent activity legs. If the trip extends past the upper bound of the following activity’s
start time, but not past the following activity’s end time, an Invalid Shared Ride Time entry
is created in the anomalous activity file and the rest of the passengers’ trip requests are
planned as usual. If the trip extends past the end time of the following activity, an Invalid
Shared Ride Time entry is created in the anomalous activity file and no further trips are
planned for this traveler. The Invalid Shared Ride Time anomaly contains the arrival time of
the passenger-shared ride-trip, the upper bound of the start time of the following activity,
and the end time of the following activity. Table-5.15 provides the Invalid Shared Ride Time
files sent to the Selector Module.

Table-5.12 provides the common files used for each type of anomaly.

Table-5.12: Anomalous Activity File (Common Files)

File Description
HouseholdID ID of the anomalous household.
TravelerID ID of the anomalous traveler.
ActivityID ID of the anomalous activity.
TripID ID of the trip generated by this activity.
LegID ID of the first leg generated by this activity.
ProblemType Type of anomaly:

1-No Path,
2-Invalid Time,
3-Invalid Shared Ride, and
4-Invalid Shared Ride Time.

Number of data files Number of remaining files; varies by anomaly type.

Table-5.13:No Path Files

30

File Description
SourceLocation Source Location ID of the anomaly trip.
SourceType Source Location type of the anomaly trip. This entity should be one of:

1-activity location
2-parking
3-transit stop

DestinationLocation Destination Location ID of the anomaly trip.
DestinationType Destimation Location type of the anomaly trip. This entity should be one of:

1-activity location
2-parking
3-transit stop

Mode Travel mode of the anomaly trip.
StartTime Time the anomaly trip should start.

Table-5.14: Invalid Time Files

File Description
TimeType Type of the anomalous time:

0-Start,
1-End, and
2-Duration.

LowerBound Distribution of the lower bound.
UpperBound Distribution of the upper bound.
Actual The actual value used by the Route Planner.

Table-5.15: Invalid Shared Ride Time Files

File Description
Arrival Time Arrival time of the passenger-shared ride-trip.
Start Time Bound Upper bound of the starting time of the activity leg following the passenger-shared ride-

trip.
Stop Time The stop time of the activity leg following the passenger-shared ride-trip.

The following is the example of the anomalous activities recognized by the Route Planner and fed
back to the Selector Module. The example has five anomalous activities as shown in the first five
lines of the example. Each line is comprised of the code numbers denoting the characteristics of the
activity and its anomaly. These code numbers have the format and description as shown in Figure-
5.21a.

The simple descriptions of these anomalies, referred to as #WARNING…, are shown below in
figure-5.21. These correspond to the errors from the first five lines of the anomalies. They show
that the first four anomalies are the Invalid Time anomaly and the last one is the No Path anomaly.

31

1 101 2 2 1 2 4 0 12253 12853 12249

2 102 2 2 1 2 4 0 12176 12777 12145

2 102 3 4 1 2 4 0 23112 23711 23748

2 102 3 4 1 2 4 2 62688 63287 62652

8 108 3 -1 -1 1 6 1048 1 1053 1 wtw 46724

#WARNING (1) in [ROUTER]: Traveler 101’s activity choices infeasible: Start of activity at time
12249 but Start Time bound is (12253, 12853)

#WARNING (1) in [ROUTER]: Traveler 102’s activity choices infeasible: Start of activity at time
12145 but Start Time bound is (12176, 12777)

#WARNING (1) in [ROUTER]: Traveler 102’s activity choices infeasible: Start of activity at time
23748 but Start Time bound is (23112, 23711)

#WARNING (1) in [ROUTER]: Traveler 102’s activity choices infeasible: Duration of activity at
time 62652 but Start Time bound is (62688, 63287)

#WARNING (1) in [ROUTER]: No path found for activity 8 108 3 between 1048 (ActLoc) and
1053 (ActLoc), mode wtw departing 46724

Figure-5.21: Anomalous activities recognized by the Route Planner and fed back to the
Selector Module

32

The following is a description of the code numbers used in the example.

1 101 2 2 1 2 4 0 12253 12853 12249

2 102 2 2 1 2 4 0 12176 12777 12145

2 102 3 4 1 2 4 0 23112 23711 23748

2 102 3 4 1 2 4 2 62688 63287 62652

8 108 3 -1 -1 1 6 1048 1 1063 1 wtw 46724

Table14: Anomalous Activity File (Common Files).
File Description
HouseholdID ID of the anomalous household.
TravelerID ID of the anomalous traveler.
ActivityID ID of the anomalous activity.
TripID ID of the trip generated by this

activity.
LegID ID of the first leg generated by this

activity.
ProblemType Type of anomaly:

1-No Path,
2-Invalid Time,
3-Invalid Shared Ride, and
4-Invalid Shared Ride Time.

Number of data files Number of remaining files;
varies by anomaly type.

Table16: Invalid Time Files.
File Description
TimeType Type of the anomalous time:

0-Start,
1-End, and
2-Duration.

LowerBound The lower bound of the time.
UpperBound The upper bound of the time.
Actual The actual value used by

the Route Planner.

Table15:No Path Files.
File Description
SourceLocation Source Location ID of the anomaly trip.
SourceType Source Location type of the anomaly trip. This

entity should be one of:
1-activity location
2-parking
3-transit stop

DestinationLocation Destination Location ID of the anomaly trip.
DestinationType Destimation Location type of the anomaly trip.

This entity should be one of:
1-activity location
2-parking
3-transit stop

Mode Travel mode of the anomaly trip.
StartTime Time the anomaly trip should start.

Figure-5.21a: A description of the example for the Route Planner Anomaly outputs

33

5.7. Configuration Files

Table-5.16 lists all files used to run the Route Planner and their descriptions, including the default
values. Note that this table does not include files from the TRANSIMS network used to generate the
Internal Network. Please see Section 4.2 (Generating the Internal Network) for more information on
the files from the TRANSIMS network.

Table-5.16: The list of all the files used by the Route Planner

Configuration Key Description
ACTIVITY_FILE Path to a TRANSIMS activity file.

Required.
VEHICLE_FILE Path to a TRANSIMS vehicle file.

Required.
MODE_MAP_FILE Path to a mode file.

Required.
ROUTER_PROBLEM_FILE Path name to a file in which activities with anomalies as identified

by the Route Planner are written.
Required.

ROUTER_HOUSEHOLD_FILE Path to a file containing a list of integral IDs for householders to be
planned.

PLAN-FILE Name of the file where plans should be written. (Overwrites an
existing file.)
Required.

TRANSIT_ROUTE_FILE File containing routes of transit vehicles.
TRANSIT_SCHEDULE_FILE File containing schedules of transit vehicles.
ROUTER_INTERNAL_PLAN_SIZE Positive integer. Should be enough to accommodate the length (in

number of nodes) of the shortest path between any two nodes in the
network (and may need to be quite large when multimodal plans are
used).
Default 400.

ROUTER_MESSAGE_LEVEL Level of warning messages:
 - 2 (ERROR)
 - 1 (PRINT)
 0 (SEVERE WARNING)
 1 (WARNING)
Produces information about possible anomalies encountered by the
Route Planner.
Default 1.

LOG_ROUTING Turns on Route Planner logging. This produces information about
the status and progress of the Router.
Default 0.

LOG_ROUTER_DETAIL Turns on detailed Route Planner logging. Produces many messages.
Default 0.

ROUTER_DELAY_NOISE Percentage of noise to add to link travel times.
Default 0.

ROUTER_SEED Seed to use for random number generator. If key is set to 0, use
process ID.
Default 0.

ROUTER_WALKING_SPEED Speed to use when computing travel times for walk links
(meters/second). Default 1.0.

34

ROUTER_BIKING_SPEED Speed to use when computing travel times for walk links traversed
by bicycle (meters/second).
Default 4.0.

ROUTER_GET_ON_TRANSIT_DELAY Delay/travel time encountered when boarding a transit vehicle.
Default 3 seconds.

ROUTER_GET_OFF_TRANSIT_DELAY Delay/travel time encountered when exiting a transit vehicle.

Default 4 seconds.
ROUTER_FILTER_INCLUDE_VEHICLE Plan vehicle types to include in plan file.

Default is to include all vehicle types.
ROUTER_FILTER_EXCLUDE_VEHICLE Plan vehicle types not included in the plan file.

Default is to include no vehicle types. Only one of
INCLUDE_VEHICLE and EXCLUDE_VEHICLE can be specified.

ROUTER_FILTER_INCLUDE_MODE Plan modes to include in plan file.
Default is to include all modes.

ROUTER_FILTER_EXCLUDE_MODE Plan modes not included in plan file.
Default is to include no modes. Only one of INCLUDE_MODE
and EXCLUDE_ MODE may be specified.

ROUTER_LINK_DELAY_FILE Feedback file from which to read link delays/travel times. If the key
is not present or the file does not exist, the free speed delays are
used.

ROUTER_NUMBER_THREADS* Positive integer. Number of worker threads to be used. A value of 0
means no threads will be used.
Default 0.

ROUTER_OVERDO* Nonnegative float. If set to 0, no adjustment is made to the distance
estimates. If positive, the search for the shortest path to the origin
will be biased in the direction of a straight line to the destination.
This will produce non-optimal paths. The paths will still be
reasonable, but the heuristic may ignore relatively small congestions
on certain links, and this can sacrifice optimality.
Default 0.0.

ROUTER_CORR* Float between 0 and 1. The Route Planner will change the reported
length of a link to be equal to its Euclidean length whenever the ratio
of the two is less than this value. This is done in order to avoid
problems when the Sedgewick-Vitter heuristic is used.
Default 0.0.

ROUTER_ZERO_BACKD* Integer, 0 or 1.
Default 0.

*These files are used in the Heuristics algorithm for the Route Planner, which are not currently described in this section
because of lack of information.

35

5.8 Algorithms

The algorithm adopted for the Route Planner is a variant of Dijkstra’s procedure for finding shortest
paths, which is suitably modified to accommodate time-dependent delays/travel times, and label
sequence constraints. The underlying problem is referred to as the “Time-Dependent Label-
Constrained Shortest Path Problem (TDLSP)”. Before we consider the TDLSP, we first introduce
two other basic shortest path problems, namely, the “Time-Independent Shortest Path Problem
(TISP)” and the “Time-Independent Label-Constrained Shortest Path Problem (TILSP)”.

In the subsections identified below, we therefore discuss three types of problems:

5.8.1 Time-Independent Shortest Path Problem (TISP),
5.8.2 Time-Independent Label-Constrained Shortest Path Problem (TILSP), and
5.8.3 Time-Dependent Label-Constrained Shortest Path Problem (TDLSP).

Here we provide a simplified version of the workings of these algorithms. However, a more
rigorous and detailed explanation of these algorithms is presented in Appendix A.

5.8.1 Time-Independent Shortest Path Problem (TISP)
The TISP has a constant travel time* on each link within the given network. For example, a link
between node 1 and node 2 shown below has a travel time equal to 10 seconds, regardless of the
arrival time at node 1.

Figure-5.22: Constant Link Travel Time from Node 1 to Node 2.

*Note: Generally, a travel time could be replaced by a travel cost, so that the shortest path problem would
seek a minimum cost path. Currently, TRANSIMS considers a shortest path problem that minimizes only the
total travel time.

Suppose that we are given a network G having m nodes, n links, along with a travel time tij
associated with each link (i, j) in G, a starting node (the 1st node), a destination node (the mth node),
and a starting time (t1) at the origin node. The shortest path problem is to find a shortest (minimum
travel time) path from the starting node to the destination node in G by implicitly evaluating the
various routes between the starting node 1 and all the other m nodes for that starting time t1.

Consider the case when all tij ≥ 0. In this case, a very simple and efficient procedure, known as
Dijkstra’s algorithm, exists for finding a shortest path (from node 1 to node m). This method also
automatically yields the shortest path from node 1 to all of the other nodes as well.

1 210

36

Mathematical Terminology and Definitions

The time ti denotes an arrival time at node i. For example, t1 is the arrival/starting time at the origin
node 1, and tm is the arrival time at the destination node m, which represents the ending time of the
trip from node 1 to node m.

tij is a travel time between the node i and node j.

X is a set that contains node 1 (the starting node) and any other nodes in the network G for which
the shortest path has currently been determined, but not node m (the destination node).

SE is a scan-eligible set that contains nodes adjacent to the nodes in X. Note that there exists at
most a single link between any pair of nodes in X and SE.

Forward star of node p is the set of nodes that are adjacent to the node p and for which there exists
an arc from p to each of the nodes in this set. For example, as shown in the network below, nodes Q
and R belong to the forward star of the node p but the node S is not in the forward star of the node
p.

Figure-5.23: Forward Star of Node P.

(i, j) is a link between node i and node j.

(X, SE) = {(i, j): ∈∈ jXi , SE}, is the set of possible links from the nodes in X to the nodes in SE.
(This is called a cut-set.)

DOWN (⋅) label: if (i, j) is a link included in the current estimate of the shortest path, we set
DOWN (j) = i.

Figure-5. 24: An example of a simple network.

2

3

41
Starting node
with a starting
time t1

Destination
node

1

Travel
time

3

4

2

2

Q

R

Sp

37

In Figure-5.24, the network has four nodes. Node 1 is the starting node, and node 4 is the
destination node. Each link has a time-independent travel time. There are four possible sets X that
contain “node 1” and “any other nodes in the network (nodes 2 and 3) but not node 4”. The four
possible sets of this type are X = {1}, X = {1, 2}, X = {1, 3}, and X = {1, 2, 3}. Table-5.17 shows
the possible sets X, their corresponding scan-eligible sets SE, and the cut-sets (X, SE). (Note that
Dijkstra’s algorithm does not require this enumeration, and we only display this here for the sake of
illustration.)

Finally, in the (shortest) path from node 1 to 4, we have DOWN (4) =2, and
DOWN (2) =1.

Table-5.17: The possible sets X, their corresponding scan-eligible sets SE and the cut-sets (X, SE)

X SE (X, SE)
X = {1} {2, 3}

Note that node 4 is not included
because node 4 is not adjacent to
node 1 in this network.

{(1, 2), (1, 3)}

X = {1, 2} {3, 4} {(1, 3), (2, 3), (2, 4)}
X = {1, 3} {2, 4} {(1, 2), (3, 4)}
X = {1, 2, 3} {4} {(2, 4), (3, 4)}

Dijkstra’s Algorithm

INITIALIZATION STEP

1. Set a starting time t1 for the starting node (node 1) as desired.
2. Let SE initially contain only the starting node, SE = {1}, and let X be empty.
3. Label node 1 with its starting time t1, and label all the other nodes as infinity (∞).

MAIN ITERATIVE STEP

1. If SE is empty, then stop; the destination node is unreachable from the starting node. Otherwise,

pick the node p from SE that has the smallest label tp (break ties arbitrarily, but in favor of the
destination node). Remove this node from SE and add it to X.

2. If p equals the destination node m, then stop; the shortest path to node m is of length tm, and can
be traced by following the DOWN () labels backwards.

3. Else, scan the forward star of p. For each node q in this forward star of p, if tp + tpq is less than
the current label tq of node q, then re-set tq = tp + tpq, let DOWN (q) = p, and let SE = SE ∪ {q}.

4. Return to Step 1.

Note: At any stage of this algorithm, at the end of Step 3, SE contains all the nodes that are adjacent to the nodes
currently in X, and the label tj of any node j in SE equals the minimum over all i in X such that (i,j) belongs to the
cut-set (X, SE) of ti + tij.

1 2 4

38

The following example illustrates the above method for determining a simple shortest path for the
network shown in Figure-5.25.

INITIALIZATION STEP EXECUTIONS

1. Set a starting time at the starting node (node 1) as 8.00 a.m. (t1 = 8).
2. Let the set SE initially contain only the starting node (SE = {1}), and let X be empty (X = ∅).
3. Label node 1 with its starting time (t1 = 8), and label all other nodes as infinity (∞).

Go to the Main Step.

MAIN STEP EXECUTIONS

Step 1
Note that SE = {1}.
1. Pick the node p = node 1. Remove the node 1 from SE (SE = ∅) and add it to X (X = {1}).
2. Scan the forward star of p (node 1). Here, the nodes 2 and 3 are in the forward star of p (node 1).

For each node q in this forward star of p, check if tp + tpq is less than the current label of node q.

Table-5.18: Values of tp + tpq.

Starting node

(p)
Starting time

(tp)
Forward star

(q)
Current label of node q

(tq)
Travel time

(tpq)
starting time + travel time

(tp + tpq)
1 8.00 a.m. 2 ∞ 1 minute 8.01 a.m. (< ∞)
 3 ∞ 4 minutes 8.04 a.m. (< ∞)

3. From the table above, all values of tp + tpq are less than the current label of node q. Then set

 t2 = 8.01 a.m., DOWN(2) = 1,
 t3 = 8.04 a.m., DOWN(3) = 1, and let SE = ∅ ∪ {2,3} = {2, 3}.

2

3

41
Starting node with
a starting time t1
(8.00 a.m.).

Destination
node.

1

Travel time
(minutes).

3

4

2

2

Figure-5. 25: An example of a simple network.

39

Figure-5.26: Current Shortest Paths from Node 1 to Nodes 2, and 3.

Note that the red-colored links () show the current shortest paths from node 1 to nodes 2, and
3 at this step.

Step 2
Note that SE = {2, 3}.
1. Pick the node p from SE that has the smallest label tp. Hence, p = node 2. Remove the node 2

from SE (SE = {3}) and add it to X (X = {1, 2}).
2. Scan the forward star of p (node 2). Here, the nodes 3 and 4 are in the forward star of p (node 2).

For each node q in this forward star of p, check if tp + tpq is less than the current label of node q.
Table-5.19: Values of tp + tpq.

Starting node

(p)
Starting time

(tp)
Forward star

(q)
Current label of node q

(tq)
Travel time

(tpq)
starting time + travel time

(tp + tpq)
2 8.01 a.m. 3 8.04 a.m. 2 minutes 8.03 a.m. (<8.04 a.m.)
 4 ∞ 3 minutes 8.04 a.m. (< ∞)

3. From the table above, all values of tp + tpq are less than the current label of node q. Then set

 t3 = 8.03 a.m., DOWN(3) = 2,
 t4 = 8.04 a.m., DOWN(4) = 2, and let SE = {3} ∪ {3, 4} = {3, 4}.

Figure-5.27: Current Shortest Paths from Node 1 to Nodes 2, 3 and 4.

2

2

3

41

1 3

4

2

2

X = {1}
t1 = 8.00 a.m.

SE = {2, 3}
t2 = 8.01 a.m.
t3 = 8.04 a.m.

2

3

41

1 3

4 2

X = {1, 2}
t1 = 8.00 a.m.
t2 = 8.01 a.m. SE= {3, 4}

t3 = 8.03 a.m.
t4 = 8.04 a.m.

t4 = ∞ .

40

Note that the red-colored links () show the current shortest paths from node 1 to nodes 2, 3,
and 4 at this step.

Step 3
Note that SE = {3, 4}.
1. Pick the node p from SE that has the smallest label tp. Hence, p = node 3. Remove the node 3

from SE (SE = {4}) and add it to X (X = {1, 2, 3}).
2. Scan the forward star of p (node 3). Here, the node 4 is in the forward star of p (node 3). For

each node q in this forward star of p, check if tp + tpq is less than the current label of node q.
Table--5.20: Value of tp + tpq.

Starting node

(p)
Starting time

(tp)
Forward star

(q)
Current label of node q

(tq)
Travel time

(tpq)
starting time + travel time

(tp + tpq)
3 8.03 a.m. 4 8.04 a.m. 2 minutes 8.05 a.m. (>8.04 a.m.)

3. From the table above, tp + tpq is not less than the current label of node q. Hence, t4 and

DOWN(4) remain the same as in the previous step, which are:
 t4 = 8.04 a.m., DOWN(4) = 2. Moreover, SE = {4}.

Note that the set SE now contains only the node 4, which is the destination node. We therefore,
stop with the ending time = t4 = 8.04 a.m. Tracing backwards yields the shortest path
noting that we have DOWN (4) =2, and DOWN (2) =1.

Figure-5.28: Shortest Path from Node 1 to Node 4.

The following example illustrates a practical instance of the Time-Independent Shortest Path
Problem.

2

3

41
Starting node with
the starting time t1
(8.00 a.m.).

Destination
node with the
ending time t4
(8.04 a.m.).

1 3

4

2

2

Shortest path

1 2 4

41

5.8.1.1 Practical Example for the Time-Independent Shortest Path
Problem (TISP)
The example shown in Figure-5.29 is used to illustrate a solution of the Time-Independent Shortest
Path Problem (TISP) for a network that is represented in the format required by the TRANSIMS
Internal Network. The same example will be used for the other two problems with appropriately
modified data: the Time-Independent Label Constrained Shortest Path Problem (TILSP), and the
Time-Dependent Label-Constrained Shortest Path Problem (TDLSP).

Suppose that we are given a (simple) single-trip request, without label constraints (Table-5.21) for a
traveler designated ID 13300, involving a trip starting from “home” and going to “work”.

Table-5.21: Single-trip request for a traveler

Person

ID
Trip

Number
Starting
Location

Destination
Location

Starting Time
(seconds since midnight)

13300 1

845654
(Home)

833503
(Work)

28800 (8.00 a.m.).

Furthermore, suppose that we have constructed the Internal Network as shown in Figure-5.29,
having unidirectional links and associated constant travel times as shown therein. For example, a
walk link between node H (home) and node W (work) has a travel time of 10800 seconds and a
starting time of 28800 seconds since midnight. Hence, the ending time at W along this route equals
the starting time plus the walk time, which results in 39600 seconds since midnight.

Figure-5. 29: The Network for the illustrative example for TISP

H W

PH R2

S1

10800 (walking)

600 (car) 345 (car)179 (car)

5
(walking)

9
(walking)

70
(walking)

60
(walking)

1737

2821

Travel time

The starting
node with a
starting time
28800 seconds
since midnight.

The destination
node

BS2R2

BS2R1

S2

3 (walking)
(bus route 1)

(bus route 2)
3 (walking)

4 (walking)

4 (walking)

BS1R1

BS1R2

R1 Pw

42

From Figure-5.29, the starting location is node H (home), and the starting time is tH = 28800
seconds (since midnight). The destination location is node W (work location). If this traveler wants
to go to work by car, he/she must travel via node PH (car parking at home), then proceed to node R1
(via road 1), next to node R2 (via road 2), then to node PW (car parking at work), and finally walk to
the work place.

If the traveler prefers to go to work by bus, he/she must travel via node S1 (a bus shelter 1 for
passengers). This Internal Network has two bus routes. A traveler has to choose between bus route
1 and bus route 2. If they want to travel via bus route 1, they must get on the bus at node BS1R1
(bus-parking place 1 for bus route 1) and then get off the bus at node BS2R1 (bus parking place 2 for
bus route 1). If they prefes to travel via bus route 2, they must get on the bus at node BS1R2 (bus-
parking place 1 for bus route 2) and then get off the bus at node BS2R2 (bus-parking place 2 for bus
route 2). After traveling via one of the bus routes, they must pass node S2 (a bus shelter 2 for
passengers), and then walk to the work place.

INITIALIZATION STEP

1. Set a starting time at the starting node (node H) as 8.00 a.m. (tH = 28800 seconds since

midnight).
2. Let the set SE initially contain only the starting node (SE = {H}), and let X be empty (X = ∅).
3. Label node H with its starting time (tH = 28800), and label all other nodes as infinity (∞).

Go to the Main Step.

MAIN STEP EXECUTIONS

Step 1
Note that SE = {H}.
1. Pick the node p = node H. Remove the node H from SE (SE = ∅) and add it to X (X = {H}).
2. Scan the forward star of p (node H). Here, the nodes W, PH, and S1 are in the forward star of p

(node H). For each node q in this forward star of p, check if tp + tpq is less than the current label
of node q.

Table--5.22: Value of tp + tpq.

Starting node

(p)
Starting time

(tp)
Forward star

(q)
Current label of node q

(tq)
Travel time

(tpq)
starting time + travel time

(tp + tpq)
H 28800 W ∞ 10800 39600 (< ∞)
 PH ∞ 5 28805 (< ∞)
 S1 ∞ 60 28860 (< ∞)

3. From the table above, all values of tp + tpq are less than the corresponding current label of node q.

Hence, set
 tw = 39600, DOWN(W) = H,

HPt =28805, DOWN(PH) = H,
 tS1 = 28860, DOWN(S1) = H, and let SE = ∅ ∪ {W, PH, S1} = {W, PH, S1}.

43

Step 2
Note that SE = {W, PH, S1}.
1. Pick the node p from SE that has the smallest label tp. Hence, p = PH. Remove the node PH from

SE (SE = {W, S1}) and add it to X (X = {H, PH}).
2. Scan the forward star of p (node PH). Here, the node R1 is in the forward star of p (node PH).

For each node q in this forward star of p, check if tp + tpq is less than the current label of node q.
Table--5.23: Value of tp + tpq.

Starting node

(p)
Starting time

(tp)
Forward star

(q)
Current label of node q

(tq)
Travel time

(tpq)
starting time + travel time

(tp + tpq)
PH 28805 R1 ∞ 600 29405 (< ∞)

3. From the table above, tp + tpq is less than the current label of node q. Hence, set

 tR1 = 29405, DOWN(R1) = PH,
 and let SE = {W, S1} ∪ {R1} = {W, S1, R1}.

Step 3
Note that SE = {W, S1, R1}.
1. Pick the node p from SE that has the smallest label tp. Hence, p = S1. Remove the node S1 from

SE (SE = {W, R1}) and add it to X (X = {H, PH, S1}).
2. Scan the forward star of p (node S1). Here, the nodes BS1R1 and BS1R2 are in the forward star of

p (node S1). For each node q in this forward star of p, check if tp + tpq is less than the current
label of node q.

Table--5.24: Value of tp + tpq.

Starting node

(p)
Starting time

(tp)
Forward star

(q)
Current label of node q

(tq)
Travel time

(tpq)
starting time + travel time

(tp + tpq)
S1 28860 BS1R1 ∞ 3 28863 (< ∞)
 BS1R2 ∞ 3 28863 (< ∞)

3. From the table above, all values of tp + tpq are less than the corresponding current label of node q.

Hence, set

11RBSt = 28863, DOWN(BS1R1) = S1,

21RBSt = 28863, DOWN(BS1R2) = S1,
 and let SE = {W, R1} ∪ {BS1R1, BS1R2 }= {W, R1, BS1R1, BS1R2}.

Step 4
Note that SE = {W, R1, BS1R1, BS1R2}.
1. Pick the node p from SE that has the smallest label tp. The node BS1R1 and BS1R2 have the

smallest label. Let us select one of them, say, the node BS1R1. Hence, p = BS1R1. Remove the
node BS1R1 from SE (SE = {W, R1, BS1R2}) and add it to X (X = {H, PH, S1, BS1R1}).

44

2. Scan the forward star of p (node BS1R1). Here, the node BS2R1 is in the forward star of p (node
BS1R1). For each node q in this forward star of p, check if tp + tpq is less than the current label of
node q.

Table--5.25: Value of tp + tpq.

Starting node

(p)
Starting time

(tp)
Forward star

(q)
Current label of node q

(tq)
Travel time

(tpq)
starting time + travel time

(tp + tpq)
BS1R1 28863 BS2R1 ∞ 1737 30600 (< ∞)

3. From the table above, tp + tpq is less than the current label of node q. Hence, set

12RBSt = 30600, DOWN(BS2R1) = BS1R1,

 and let SE = {W, R1, BS1R2} ∪ {BS2R1}= {W, R1, BS1R2, BS2R1}.
Step 5
Note that SE = {W, R1, BS1R2, BS2R1}.
1. Pick the node p from SE that has the smallest label tp. Hence, p = BS1R2. Remove the node

BS1R2 from SE (SE = {W, R1, BS2R1}) and add it to X (X = {H, PH, S1, BS1R1, BS1R2}).
2. Scan the forward star of p (node BS1R2). Here, the node BS2R2 is in the forward star of p (node

BS1R2). For each node q in this forward star of p, check if tp + tpq is less than the current label of
node q.

Table--5.26: Value of tp + tpq.

Starting node

(p)
Starting time

(tp)
Forward star

(q)
Current label of node q

(tq)
Travel time

(tpq)
starting time + travel time

(tp + tpq)
BS1R2 28863 BS2R2 ∞ 2821 31684 (< ∞)

3. From the table above, tp + tpq is less than the current label of node q. Hence, set

22RBSt = 31684, DOWN(BS2R2) = BS1R2,

 and let SE = {W, R1, BS2R1} ∪ {BS2R2}= {W, R1, BS2R1, BS2R2}.

Step 6
Note that SE = {W, R1, BS2R1, BS2R2}.
1. Pick the node p from SE that has the smallest label tp. Hence, p = R1. Remove the node R1 from

SE (SE = {W, BS2R1, BS2R2}) and add it to X (X = {H, PH, S1, BS1R1, BS1R2, R1}).
2. Scan the forward star of p (node R1). Here, the node R2 is in the forward star of p (node R1).

For each node q in this forward star of p, check if tp + tpq is less than the current label of node q.
Table--5.27: Value of tp + tpq.

Starting node

(p)
Starting time

(tp)
Forward star

(q)
Current label of node q

(tq)
Travel time

(tpq)
starting time + travel time

(tp + tpq)
R1 29405 R2 ∞ 179 29584 (< ∞)

3. From the table above, tp + tpq is less than the current label of node q. Hence, set

 tR2 = 29584, DOWN(R2) = R1,
 and let SE = {W, BS2R1, BS2R2} ∪ {R2}= {W, BS2R1, BS2R2, R2}.

45

Step 7
Note that SE = {W, BS2R1, BS2R2, R2}.
4. Pick the node p from SE that has the smallest label tp. Hence, p = R2. Remove the node R2 from

SE (SE = {W, BS2R1, BS2R2}) and add it to X (X = {H, PH, S1, BS1R1, BS1R2, R1, R2}).
5. Scan the forward star of p (node R2). Here, the node PW is in the forward star of p (node R2).

For each node q in this forward star of p, check if tp + tpq is less than the current label of node q.

Table--5.28: Value of tp + tpq.

Starting node

(p)
Starting time

(tp)
Forward star

(q)
Current label of node q

(tq)
Travel time

(tpq)
starting time + travel time

(tp + tpq)
R2 29584 PW ∞ 345 29929 (< ∞)

6. From the table above, tp + tpq is less than the current label of node q. Hence, set

WPt = 29929, DOWN(PW) = R2,

 and let SE = {W, BS2R1, BS2R2} ∪ {PW}= {W, BS2R1, BS2R2, PW}.

Step 8
Note that SE = {W, BS2R1, BS2R2, PW}.
1. Pick the node p from SE that has the smallest label tp. Hence, p = PW. Remove the node PW from

SE (SE = {W, BS2R1, BS2R2}) and add it to X (X = {H, PH, S1, BS1R1, BS1R2, R1, R2, PW}).
2. Scan the forward star of p (node PW). Here, the node W is in the forward star of p (node PW).

For each node q in this forward star of p, check if tp + tpq is less than the current label of node q.
Table--5.29: Value of tp + tpq.

Starting node

(p)
Starting time

(tp)
Forward star

(q)
Current label of node q

(tq)
Travel time

(tpq)
starting time + travel time

(tp + tpq)
PW 29929 W 39600 9 29938 (<39600)

3. From the table above, tp + tpq is less than the current label of node q. Hence, set

 tW = 29939, DOWN(W) = PW,
 and let SE = {W, BS2R1, BS2R2} ∪ {W}= {W, BS2R1, BS2R2}.

Step 9
Note that SE = {W, BS2R1, BS2R2}.
Pick the node p from SE that has the smallest label tp. Hence, p = W, which is the destination node.
We therefore, stop with an ending time of 29938 seconds since midnight. Tracing backwards using the
DOWN (⋅) labels yields the shortest path H PH R1 R2 PW W (as shown in Figure-5.30).

 H W
10800 (walking)

5
(walking)

9
(walking)

The starting
node with a
starting time
of 28800
seconds since
midnight.

The destination node
with an ending time
of 29938 seconds
since midnight

46

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Next, we consider the case where each link is also ascribed a label taken from some collection of
symbols (such as letters).

5.8.2 Time-Independent Label Constrained Shortest Path Problem
(TILSP)

For the Route Planner, a lettered label is considered as a “travel mode” and a collection of labels is
considered as a “mode string”.

Step 1

Examine the admissible mode strings and then construct a corresponding transition graph GL. The
transition graph GL is a graph that shows all the possible sequences of the travel modes by which
we can reach the destination node from the starting node. Each node in GL represents an admissible
travel mode. We begin with a single node corresponding to a dummy label s0 representing Stage* 0.
Then Stage 1 reflects the first admissible travel mode corresponding to the given mode string.
Similarly, we designate the stepwise admissible modes for Stages 2, 3, ….

For example, if we have an admissible mode string wbwrw (walk-bus-walk-rail-walk) for a single
trip, where these labels indicate the admissible sequence of modes on the path of links, then the
corresponding graph GL would be as follows:

Figure-5.31: Transition Graph (GL) for Admissible Mode String wbwrw.

Figure-5. 30: The shortest path solution for the example

PH R2

S1

600 (car) 345 (car)179 (car)

70
(walking)

60
(walking)

1737

2821

BS2R2

BS2R1

S2

3 (walking)
(bus route 1)

(bus route 2)
3 (walking)

4 (walking)

4 (walking)
Shortest path.

w b w r w S0

R1 Pw

BS1R1

BS1R2

47

 w
 c
 5

7
c

w

 The Internal Network Graph GL

Stage 0 Stage 1 Stage 2 Stage 3

 10

 b
 10

8 w

9

105
w

 w

 w

 15
 18

Step 2

Using the graph GL and the Internal Network, we construct a combined graph G* on which the
actual shortest path problem will be solved. The graph G* shows all possible paths for the given
single-trip request starting from the origin node and ending at the destination node within the
admissible mode string. Beginning with Stage 0, the graph G* has a node designated as the two-
tuple (Starting node, s0). Recursively, we will determine nodes for each subsequent Stage s as {(i,
l): it is possible to come to node i at Stage s via an arc with travel mode l}, for each s = 1, …, S,
where S is the maximum possible number of stages before we either reach the destination or exceed
the maximum specified travel time limit. At the last Stage s = S, only nodes (i, l) with i equal to the
terminal node W are admissible, given that the trip does not exceed the maximum time limit
specified. (The latter is computed as the starting time plus the maximum travel time.) Each link that
connects a pair of nodes in graph G* has a constant travel time associated with it.

As an example, given an Internal Network as depicted below, and given a mode string {wcw}, we
can construct the transition graph GL as shown in figure-5.32.

Figure-5.32: Internal Network (left) and Transition Graph (GL) (right) for Mode String wcw.

H

W

3

2

1

w c w S0

4
5

48

7 8

9 5
 10

The graph G*

Stage 0 Stage 1 Stage 2 Stage 3

 105

8

 15

The graph G* would then be given as follows:

Figure-5.33: Combined Graph (G*) for Admissible Mode String wcw.

Step 3

In the graph G*, find a shortest path from the starting node (H, s0) to the destination node at Stage
S, using the earlier described Dijkstra’s TISP algorithm.

5.8.2.2 Example of the Time-Independent Label Constrained Shortest
Path Problem (TILSP)
Suppose that we are given a single-trip request shown in Table-5.30 for a traveler designated ID
13300, involving a trip starting from “home” and going to “work”. The admissible mode strings are
“w…wc…cw…w” or “w…wb…bw…w”. Note that in this context, as in TRANSIMS, the string
w…wc…cw…w, for example, represents a sequence of one or more walk links, followed by one or
more car links, and ending with one or more walk links.

Table-5.30: Single-trip requests for a traveler

Person
ID

Trip
Number

Starting
Location

Destination
Location

Starting Time
(seconds since midnight)

Maximum Travel Time
(second)

Mode
String

13300 1

845654
(Home)

833503
(Work)

28800 (8.00 a.m.). 3000 * wcw or
wbw

*Note: the maximum travel time is 3000 seconds hence the maximum finish time equals the starting time plus
the maximum travel time, which is 31800 seconds since midnight (8.50 a.m.).

H, s0

W, w

3, c

2, c

1, w

3, w

4, w

W, w

49

Furthermore, suppose that we have constructed the Internal Network as given in Figure-5.34,
having unidirectional links, along with associated constant travel times, and travel mode labels.
This example is the same instance described earlier for TISP, except that the links have mode-labels
associated with them such as w, c, and b, and the problem has an associated label string restriction.

50

 Figure 26: The Internal Network representation for the example for TILSP.

H W

PH R2

S1

10800

600 345 179

5 9

70 60
1737, bus route 1

2821, bus route 2

w w

w w

w

c c c

b

b

Travel Time

Travel mode

BS1R1

A starting
location

A destination
location

BS1R2

BS2R2

BS2R1

S2

3
w

4

w 3

w

4 w

Figure-5.34: Layers of the Internal Network for the example for TILSP

Key
 Intra-layer network links

 Process links (walk)

Street Layer

Walk Layer

Bus Route 1 Layer

Bus Layer

Bus Route 2 Layer

H W

PH R1

BS1R1

BS2R1

BS2R2

BS1R2

PwR2

S2 S1

10800

600 345 179

5
9

70

60

4 3

4 3

1737

2821

w w

ww

 ww

w

w

c c c

b

b

Travel Time

Travel mode

w

R1 Pw

51

Figure-5.34 depicts the layers of the Internal Network for this example. The starting location (H) and
the ending location (W) are placed on the walk layer. The street layer provides the street network.
Here, we have four street nodes (PH: car parking at home, R1: start of road 1, R2: start of road 2, and
PW: car parking at work). This Internal Network has two bus routes. The bus layer contains the two
bus shelters for the passengers (S1 and S2). The bus route 1 layer contains a bus route 1 network,
which has only one link in our example, from BS1R1 (a bus-parking place 1 for bus route 1) to BS2R1
(a bus-parking place 2 for bus route 1). The bus route 2 layer contains a bus route 2 network, which
also has only one link in our example, from BS1R2 (a bus-parking place 1 for bus route 2) to BS2R2 (a
bus-parking place 2 for bus route 2).

Step 1

Examining the admissible mode strings “w…wc…cw…w” and “w…wb…bw…w”, we can construct
a corresponding transition graph GL as follows. We begin with a single node corresponding to a
dummy label s0 representing Stage 0. Then, the next transition (Stage 1) is necessarily conducted
via a walk link. We might continue to walk over several subsequent stages or transition via a link
that represents a car travel or via a link that represents a bus travel. The remainder of GL shown
below has a similar interpretation.

Figure-5.35: Transition Graph (GL) for Admissible Mode Strings wcw and wbw.

A stage-wise partial blow-up of the graph GL is shown below.

S0

b

w

w

 c w

Stage 0
Graph GL

52

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 ……

……

……

……

……

……

……

……

 (end)

 (end)
 (end)

 (end)

Stage-wise expansion of graph GL

Stage 0 Stage 1 Stage 2 Stage 3 Stage 5 Stage4

5

60

600

3

3

179

2821

1737

345

4 70

9

4

Graph G*

Figure-5.36: Stage-wise Partial Blow-up of Transition Graph (GL) Above.

Step 2

Using the graph GL and the Internal Network shown in Figure-5.34, we can construct a combined
graph G* as described earlier. The actual shortest path problem will be solved on this graph G*.
Beginning with Stage 0, the graph G* has a node (H, s0). Recursively, we determine nodes for each
subsequent Stage s as shown below in order to construct G*.

Figure-5.37: Combined Graph (G*) Solving Shortest Path Problem.

S0 w

w

w

c

w

w

b

c

b

c

w

b

w

b

c

b

w

c

 H, s0 PH, w

S1, w BS1R1, w

R1, c

BS1R2, w

R2, c

BS2R2, b

BS2R1, b

Pw, c

S2, w

W, w

W, w

53

Stage 0 Stage 1 Stage 2

5

60

600

3

3

179

2821

1737

Stage 3

345

4

Stage 5 Stage4

70

9

4

The graph G* contains all possible admissible paths starting from the node (H, s0) and ending at
node (W, w) at Stage 5. We can see that there are three possible paths. The first path uses a wcccw-
mode string. The second path uses a wwbww-mode string. The third path also uses a wwbww-mode
string (on a different bus route). Note that the link from (H, s0) to (W, w) at Stage 1 has no feasible
continuation, and this node (W, w) at Stage 1 is not a legitimate terminal node (unless if the string
www…w is admissible).

The diagram below offers a specific sample explanation of a feature of the graph G*.

Figure-5.38: A specific sample explanation of a feature of the graph G*.

Step 3

In the graph G*, find the shortest path from the starting node (H, s0) to the destination node (W, w)
at Stage 5 using any standard shortest path algorithm. Here we use Dijkstra’s algorithm as in the
previous example. This yields a shortest path for the Time-Independent Label-Constrained Shortest
Path Problem (TILSP), which turns out to be the same as the solution for the previous example (as
shown in Figure-5.39).

 H, s0 PH, w

S1, w
BS1R1, w

R1, c

BS1R2, w

R2, c

BS2R2, b

BS2R1, b

Pw, c

S2, w

W, w

This link means that “starting from node BS1R2, which is reached
by walking, it is possible to come to node BS2R2 at stage 3 via a
link with the travel mode b (bus) and having the travel time 2821
seconds.

W, w

54

Figure-5.39: The shortest path solution for the example for TILSP

Next, we consider the case where the travel time on a link is dependent on the arrival time on that
link.

5.8.3 Time-Dependent Label-Constrained Shortest Path Problem
(TDLSP)

The algorithm adopted in this case is a variant of Dijkstra’s algorithm for finding shortest paths,
which is suitably modified to accommodate time-dependent travel times, and label sequence
constraints. TRANSIMS constructs G* as for Problem TILSP in this case, but instead of constant
travel times, the travel times on the links in G* are now designated as being time-dependent. The
modified form of Dijkstra’s algorithm using scan-eligible lists as discussed in Section 5.8.1 is then
used. We will describe a different (more effective) viewpoint of this procedure in which G* is not
actually constructed, but is only implicitly used. Here, each stage s will be comprised of further
augmented nodes of the type {(i, t, l): it is possible to come to node i at Stage s via an arc with label l
at time t}. Let Ns be the set of all possible nodes (i, t, l) at Stage s. The algorithmic process implicitly
considers all possible routes within the admissible internal network for the specified string of modes
as described below. If no path is found that obeys the mode constraints of the traveler (Path
Anomaly), or that satisfies the time bound constraint (Time Anomaly) or the Invalid Shared Ride Time
anomaly, then the traveler and the trip request are marked for a Path/Time/Shared Ride Time
Anomaly feedback to the Selector Module. Otherwise, a shortest route that satisfies the maximum
travel time and the label sequence constraints is determined as described below.

Figure 28: The shortest path solution for the example for TILSP.

H W

PH PwR2

S1

10800

600 345 179

5 9

70 60
1737, bus route 1

2821, bus route 2

w w

w w

w

c c c

b

b

BS1R1

The starting
location

The destination
location

BS1R2

BS2R2

BS2R1

S2

3
w

4

w 3

w

4 w

The shortest path.

R1

55

Step 1 (This is the same step discussed in the previous algorithm of Section 5.8.2.)

Examine the admissible mode strings and construct a corresponding transition graph GL. The
transition graph GL is a graph that shows all the possible sequences of the travel modes by which
we can reach the destination node from the starting node. Each node in GL represents an admissible
travel mode. We begin with a single node corresponding to a dummy label s0 representing Stage 0.
Then Stage 1 reflects the first admissible travel mode corresponding to the given mode string.
Similarly, we designate the stepwise admissible modes for Stages 2, 3, ….

Step 2

We now use the graph GL and the Internal Network to solve for the shortest path problem as
follows. In this implicit computation (where G* is implicitly used), each Stage s will have
augmented nodes of the type {(i, t, l): it is possible to come to node i at Stage s via an arc with label
l at time t}. We let Ns denote the set of all possible nodes (i, t, l) at Stage s. At the initial stage, we
have N0 = {(the starting node, the starting time, s0)}. Then, we examine the Internal Network and
the transition graph GL and accordingly determine the set N1 along with the predecessor labels
corresponding to the connections to the possible nodes in N0. This continues until the last stage
where the set NS contains the destination node. Note that the sequences of links must satisfy the
mode string, as ensured by examining GL in this construction process. Moreover, since we are not
interested in pursuing paths having a finish time that exceeds the maximum finish time (computed
from the information specified for the single-trip request), we trim off nodes for which the arrival
time exceeds the maximum finish time.

The following is an example that illustrates the basic concept of solving the TDLSP problem.
Consider the Internal Network shown below, where the time-dependent travel time functions are
given against the links along with the mode labels. Suppose that the admissible mode string is
specified as {w…wc…cw…w}. Then, we can construct the transition graph GL as depicted below.

56

2t+10

3t-7
t+5

15

8

9

 w
 c

t+5

3t-7
c

w

 Graph GL

Stage 0 Stage 1 Stage 2 Stage 3

 10

 b
 3t+10

8 w

9

105
w

 w

 w

 15
 18

Figure-5.40: Internal Network (left) and Transition Graph (GL) (right) for Mode String wcw.

The set Ns for the initial stage s = 0 is N0 = {(H, 8, s0)}.
The transitions from the set N0 to the set N1, yields

s =1 N0 = {(H, 8, s0)}

⎭
⎬
⎫

⎩
⎨
⎧

),113,3(
),18,1(
w

w = N1

 {(4, 23 ,w)}

Then at Stage 2, we consider admissible transitions from the set N1 in order to determine the set N2, as
follows:

s =2 N1 = { }),18,1(w
⎭
⎬
⎫

⎩
⎨
⎧

),65,3(
),41,2(

c
c

=N2

 This process continues for the remaining stage, s3 as follows:

s =3 N2 =
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

),113,3(
),65,3(
),41,2(

w
c
c

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

),121,(
),73,(
*),50,(

wW
wW
wW

 {(W, 50, w)}

Terminate with destination node = W, and with the node (W, 50, w) as the terminal node of the
shortest path. Tracing backwards yields the path H 1 2 W (as shown below), having a travel
mode wcw and an ending time of 50.

8

Obtained from the
(starting time) + (the
travel time) = (8+10)
= 18

H

W

3

2

1

4
5

S0 w c w

 8
 105
 15

 t+5

3t-7

which is infeasible to consider any further
because it is connected to a bus node.

57

 w
 c

t+5

3t-7
c

w

 Shortest Path

 10

 b
 3t+10

8 w

9

105
w

 w

 w

 15
 18

Figure-5.41: The Shortest Path.

An overall practical example in which TDLSP is embedded, is presented next below.

5.9 Example of the Route Planner Module

In this example we are using the same single-trip request provided in the earlier example (as shown
in Table-5.31) for the traveler designated ID 13300, with admissible mode string “w…wc…cw…w”
or “w…wb…bw…w”.

Table-5.31: Single-trip requests for a traveler

Person
ID

Trip
Number

Starting
Location

Destination
Location

Starting Time
(seconds since midnight)

Maximum Travel Time
(second)

Mode
String

13300 1

845654
(Home)

833503
(Work)

28800 (8.00 a.m.). 3000 * wcw or
wbw

*Note: the maximum travel time is 3000 seconds, hence, the maximum finish time equals the starting time
plus the maximum travel time, which is 31800 seconds since midnight (8.50 a.m.).

Also, we are using the same Internal Network as shown in Figure-5.39, except that the links have
time-dependent travel time functions dij(t), excluding the walk links, which are time-independent.

H

W

3

2

1

4
5

58

In Figure-5.40, the starting location of the trip is node H (home), and the destination location is node
W (work location). Figure-5.41 depicts the layers of the Internal Network, where the links have time-
dependent travel time functions.

H W

PH PW

S1

10800

Function #1 Function #1Function#1

5 9

70 60

w w

w w

w

c c c

Travel time

Travel mode

BS1R1

Starting
location

Destination
location

BS1R2

BS2R2

BS2R1

S2

3
w

4

w 3

w

4 w

Function # 3

Function # 2

Travel time function #1 for all links between node PH and node PW

6.70

6.91

7.12

7.33

7.54

7.75

7.96

8.17

7.30 7.60 7.90 8.20 8.50

Starting time
(a.m.), t

Tr
av

el
 ti

m
e(

m
in

.),
 d

Output from the
Traffic
Microsimulator
Module

Linear
approximations

Delay function #2 for a link in bus route 1

36.00

37.00

38.00

39.00

7.30 7.60 7.90 8.20 8.50

Starting time
(a.m.), t

Tr
av

el
 ti

m
e(

m
in

.),
 d

Output from the
Traffic
Microsimulator
Module

Linear
approximations

 6.45 7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45

Delay function #3 for a link in bus route 2

34.00

34.53

35.06

35.59

7.30 7.60 7.90 8.20 8.50

Starting time
(a.m.), t

Travel time(min.), d
Output from
the Traffic
Microsimulator
Module
Linear approximation

34.5

32.5

30.5

28.5

6.45 7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45

Travel time function#2 for a link in bus route
1

Travel time function#3 for a link in bus route 2

Figure-5.40: The Internal Network representation for the example for TDLSP

 6.45 7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45

36.00

b

 b

14.5
14.0

13.0

12.0

11.0

10.0

9.0

8.0

7.0

R1 R2

59

60

The same procedure is used in developing the graph GL in TDLSP as described earlier in TILSP
except that the links have travel time values dependent on the arrival time at the starting node of
that link. To avoid repetition of the procedure for determining graph GL, we skip directly to the
solution of the actual example.

Initialization:

 s = 0 N0 = {(H, 28800, s0)}
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

),28860,1(
),28805,(

),39600,(

wS
wP

wW

H = N1

Figure-5. 41: Layers of the Internal Network for the example for TDLSP

Key
 Intra-layer network links

 Process links (walk)

Street Layer

Walk Layer

Bus Route 1 Layer

Bus Layer

Bus Route 2 Layer

H W

PH

BS2R1

BS2R2

BS1R2

S2 S1

10800

5 9

70

60

4 3

4 3

w w

ww

 ww

w

w

c c c

 b

b

Travel time

Travel mode

w

Function # 1 Function # 1Function #

 Function # 3

Functio

BS1R1

R1 PwR2

 10800

60

5

60

3

3

900+0.05t

460+0.013t

460+0.013t

915+0.04t

s = 1 N1 =
⎭
⎬
⎫

⎩
⎨
⎧

),28860,1(
),28805,(

wS
wPH

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

),28863,1(
),28863,1(

),29639,(

2

1

1

wBS
wBS

cR

R

R = N2

=s = 2 N2 =
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

),28863,1(
),28863,1(

),29639,(

2

1

1

wBS
wBS

cR

R

R
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

),30933,2(
),31206,2(

),30484,(

2

1

2

bBs
bBS

cR

R

R

Figure-5.42: Travel Time Functions for All Links between Node PH and PW

Travel time function #1 for all links between node PH and node PW

6.70

6.91

7.12

7.33

7.54

7.75

7.96

8.17

7.30 7.60 7.90 8.20 8.50

Starting time
(a.m.), t

Tr
av

el
 ti

m
e(

m
in

.),
 d

Output from the
Traffic
Microsimulator
Module

Linear
approximations

14.5

14.0

13.0

12.0

11.0

10.0

9.0

8.0

7.0

(28800 29700 30600 seconds since midnight)

460+0.013t

Obtained from a travel time function for
the 8.00-8.15 a.m. interval because the
starting time is 28805 (8.08 a.m.).

Also obtained from a travel time function
for the 8.00-8.15 a.m. interval because
the starting time is 29639 (8.14 a.m.).

Delay function #3 for a link in

34.00

34.53

35.06

35.59

7.30 7.60 7.90 8.20 8.50

Output from the
Traffic
Microsimulato
rModule

Linear
approximation
s

34.5

32.5

30.5

28.5

6.45 7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45

Delay function #2 for a link

36.0 37.0

38.0

39.0

7.30 7.60 7.90 8.20 8.50

Output from
theTraffic
Microsimulat
orModul
e

Linear
approximation
s

 6.45 7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45

Obtained from a travel time function
for the 8.00-8.15 a.m. interval because
the starting time is 28863 (8.01a.m.).

Obtained from a travel time function
for the 8.00-8.15 a.m. interval because
the starting time is 28863 (8.01 a.m.).

900+0.05t 915+0.04t

PH

8.17

Travel time (min.), d

Travel time function#3 for a link in bus route 2Travel time function#2 for a link in bus route 1

Starting time
(a.m.), t.

Starting time
(a.m.), t.

Travel time
(min.), d.

Travel time
(min.), d.

6.45 7.00 7.15 7.30 7.45 8.00 8.15 8.30 8.45 (a.m.)

61

4

9

4

750-0.012t

70

Figure-5.43:Travel Time Function #1 for All Links between Node PH and PW

s = 3 N3 =
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

),30933,2(
),31206,2(

),30484,(

2

1

2

bBs
bBS

cR

R

R
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

),30937,2(
),31210,2(

),30868,(

wS
wS
cPw

 = N4

s = 4 N4 =
⎭
⎬
⎫

⎩
⎨
⎧

),30937,2(
),30868,(

wS
cPw

⎭
⎬
⎫

⎩
⎨
⎧

),31007,(
*),30877,(

wW
wW

 {(W, 30877, w)}

s = 5 Terminate with Destination node = W, and with the node (W, 30877, w) as the terminal
node of the shortest path. Note that there are no paths that exceed the maximum finish time (31800
seconds since midnight). Tracing backwards yields the path H PH R1 R2 Pw W (as shown
in Figure-5.44), having a travel mode wcccw and an ending time of t* = 30877 seconds since
midnight, or 8.35 a.m. The total travel time is (30877 – 28800) = 2077 seconds, which is less than the
maximum allowable travel time of 3000 seconds.

Obtained from a travel time function
for the 8.15-8.30 a.m. interval because
the starting time is 30484 (8.28 a.m.).

This is eliminated later because
we select min {31210, 30937}.

62

The shortest path has three legs:
• The first leg is a link between node H (home) to node PH (car parking at home).
• The second leg is comprised of the links between node PH and node R1 (road 1), between node

R1 and node R2 (road 2), and between node R2 and node Pw (car parking at work).
• The last leg is a link between node Pw and node W (work).

Figure-5.44: The shortest path solution for the example for TDLSP
.

Key
 Intra-layer network arcs

 Process links (walk)

 The shortest path

Street Layer

Walk Layer

Bus Route 1 Layer

Bus Layer

Bus Route 2 Layer

H W

PH R1

BS1R1

BS2R1

BS2R2

BS1R2

R2

S2 S1

10800

460+0.013t 750-0.012t

 5 9

70
 60

4 3

 4 3

 900+0.05t

915+0.04t

w w

ww

 ww

w

w

c

c c

b

b

w

460+0.013t cc
Pw

63

The output would be formatted as follows.

For the first leg
13300 0 1 1
28800 845654 1 735654 2
5 31800 1 0 0
0 2
0

For the second leg
13300 0 1 2
28805 735654 2 7335034 2
2063 31800 1 0 0
1 0
4
13217 0
55654 35653

For the third (final) leg
13300 0 1 3
30868 7335034 2 833503 1
9 31800 1 0 0
0 2
0

Home ID ID for car
parking at
home

Walk mode

ID for car
parking at
work

Car mode
Number of tokens.

Car ID 13217, and an
indicator (0) that there is no
other passenger joining this
trip. ID for

node 1.
ID for
node 2.

Work ID

64

APPENDIX A
Time-Dependent Label Constrained Shortest Path Problems (Route Planner Module)

(Adaptation and extension of Section 5.1 of Barrett, Jacob, and Marathe (1998) on regular expression constrained

shortest path problems, where the expressions are specified in terms of a nondeterministic finite automaton (NFA).)

1. Some Basic Definitions

The following are definitions of certain key computer science terminology used in the TRANSIMS documentation and

in Barrett et al. (1998). For the purpose of our discussion and development, the items 1, 2, 3, and 10 below suffice.

1. Alphabet ∑: collection of symbols (such as letters).

2. ∑*: collection of all possible finite strings of alphabets.

3. Language L ⊆ ∑*: collection of “words” or strings from ∑* that are acceptable according to some criteria or

rules.

4. Deterministic Finite Automaton (DFA): (Q, ∑, δ, qo , F), where

 Q = set of finite states for the system

 ∑ = finite input alphabet set

 qo ∈ Q = initial state

 F ⊆ Q = set of final possible states

 δ : Q × ∑ → Q : transition function that takes a (state, alphabet) combination, and accordingly, transforms

to some other (perhaps the same) state.

 Note: Sometimes δ : Q × ∑* → Q is used for more general purposes.

5. String x ∈ ∑* is Accepted by a Deterministic Finite Automaton M:

 This happens if δ(qo , x) = p for some p ∈ F , i.e., starting in the state qo , under the operations implied

by the string x, one will transition ultimately to a desired final state.

6. Language Accepted by a Deterministic Finite Automaton M: L(M)

 L(M) = {x ∈ ∑*: δ(qo, x) ∈ F}, i.e., this is the set of words x for which a transition from the initial state

to some final state is possible.

7. Regular Language L: A language for which there is some deterministic finite automaton M for which

L ≡ L(M) .

65

8. Regular Expressions: Class of regular languages, i.e., languages accepted by the collection of finite

automata.

9. Nondeterministic Finite Automaton (NFA): One in which the transition function is a point-to-set map, i.e.,

given a state q and a label or alphabet a, δ(q, a) might be a set of

 possible states to which a transition could occur. For example, in

2

1

3

 we would have

 δ(1, a) = {2,3}. Hence, in an NFA, we have

 δ : Q × ∑ → 2Q , the power set of Q (set of all subsets of Q).

 As before, we can generalize δ to

 δ : 2Q × ∑* → 2Q , where

δ(P, x) = δ(q, x)

q∈P
U .

Note: Any NFA can be represented by an equivalent DFA by allowing the states of the corresponding DFA to be sets

of the states defined for the NFA.

10. Graphs: Forward and Reverse Stars: We assume standard terminology for graphs (see Bazaraa, Jarvis,

Sherali (1990), for example). In particular, if G(N, A) is a graph having a node set N and an arc set A, then

the forward star FS(i) for any i ∈ N is defined as FS(i) = { j : (i, j) ∈ A} , and the reverse star RS(i)

for any i ∈ N is given by RS(i) : {j: (j, i) ∈ A}.

2. Time-Independent Label-Constrained Shortest Path Problem (TILSP)

Let us begin by considering the time-independent version of this problem. Suppose that we are given a

digraph G(N, A) where N and A are the sets of nodes and arcs of G, respectively. Let O ∈ N be the origin (or

starting) node, and let D ∈ N be the destination (or final) node. Without loss of generality, assume that the network

has been preprocessed such that RS(O) = ∅ and FS(D) = ∅ , where FS(⋅) and RS(⋅) respectively denote the

forward and reverse stars of any node (⋅) . Furthermore, assume that by successively scanning the sets FS(⋅) starting

at O we find all the nodes that are reachable from S, and by successively scanning the sets RS(⋅) starting at D we find

all the nodes that can reach D. Accordingly, we can then assume that N is comprised only of nodes in the intersection

of these two sets, with A being the associated connecting arcs. Note that this reduction is for algorithmic

convenience/efficiency, but not necessary for its operation/application.

a

a

66

In addition to the (constant) delays or travel times dpq specified on the arcs (p, q) ∈ A , suppose further that

each arc is also ascribed a label taken from some alphabet ∑, and that we are given a language L(R) (or simply L)

defined on a regular expression R. That is, the set L is comprised of words, or sequences of alphabets, that constitute

acceptable sequences of labels on any selected path P ∈℘ = {Paths in G from node O to node D}. Hence, if l (P)

denotes the word formed by the sequence of labels on the arcs in a path P ∈℘ , the Time-Independent Label-

Constrained Shortest Path Problem (TILSP) is to find a shortest path P* from O to D from among all paths in the set

 ℘ ∩ {P : l (P) ∈ L}.

We will first focus on the basic concepts, and subsequently, we will prescribe an efficient algorithm in which

the detailed steps and constructs described below are only implicitly conceptualized within the implementation.

Toward this end, consider the following example.

Example 1.

Given a graph G having arc delays dpq ∀ (p, q) ∈ A and labels as shown below, suppose that we are

required to find a shortest path (not necessarily simple) from node O = 1 to node D = 6 subject to the constraint that the

corresponding label sequence (word) should belong to the language L, where L is given by one of the following cases: (i)

L ≡ {abcd} , or (ii) L ≡ {abcd, abde}, or (iii) L ≡ {abcd, abe}.

Step 1. Let node O ≡ 1 be the state at Stage 0, and define states at Stage s to be nodes reachable from node 1 in s steps.

Hence, we have,

 Stages
 0 1 2 3 4 5 6

States
(nodes)

1

2
3

3
4
5

4
5
6

5
6

6

0

(Note: This need not be pre-generated; as mentioned above, this is only for conceptual purposes at this point, and the

relevant information will be utilized implicitly during the solution process developed in Section 3.)

2 4

3 5

6 ≡ D

2
3

1

5

1
3

2 4
e

d
2 c

c

d b

b
a

a
O ≡ 1

67

Step 2. Examining the admissible labels in L, construct a corresponding transition graph GL as follows. Begin with a

single node corresponding to a dummy label s0 at Stage 0. Then, recursively for stages s = 1,2,..., given the graph up

to Stage s–1, extend it to Stage s by performing the following constructions. Let the nodes of GL at Stage s correspond

to the possible distinct labels on the arcs via which we are permitted to reach a node/state in G at this Stage s. Next, if

the language L permits an arrival via a label ′ l arc in G at Stage s–1 followed by a traversal of an arc having a label λ

to a node in G at Stage s, then introduce the arc (′ l , l) in GL between the corresponding nodes ′ l and λ at stages s–1

and s, respectively, in GL . Note that we assume that the language L contains only acceptable words, i.e., strings that

define possible sequences by which we can reach node D from node O in that many steps. Furthermore, we assume

that GL exists such that all chains in GL are admissible with respect to L.

For the three cases of L specified above, we have the following corresponding transition graphs GL

Case (i)

Stages:

0

s0

1

a

2

b

3

c

4

d
GL

Case (ii)

Stages:

3

c

4

d

0

s0

1

a

2

b

d e

GL

Case (iii)

Stages:

3

c

4

d

0

s0

1

a

2

b

e Ø

GL

Note that as in Case (iii), if the permissible strings or words in L are of unequal lengths, we use a sequence of “empty”

label symbols to extend the shorter words, so that all words in L become of the same length. Let the number of stages S

to be considered equal the length of the maximum admissible string in L (S = 4 here).

Step 3. Using the graphs G and GL (conceptually), construct a graph G* having node (O, s0) at Stage 0, and having

the following nodes for each stage s, s = 1,...,S:

 {(i, l) : it is possible to come to node i at Stage s via an arc with label λ}

68

where we also have

(a) for Stage S, only nodes (i, l) with i equal to the terminal node D are admissible, and

(b) the node (i, ∅) is permitted only for i equal to the terminal node D. (In our example, node D = 6 is the terminal

node.)

Next, progressing along the stages in order s = 1,...,S, for each stage s ∈{1, ..., S}, consider each node (i, l)

belonging to this stage, and construct an arc from (′ i , ′ l) at Stage s–1 to this node (i, l) having a cost d ′ i i if (a) we

can come to node i from node ′ i in G with arc (′ i , i) in G having a label λ, and (b) the arc (′ l , l) exists in GL from

Stage s–1 to Stage s. (Note that if l ≡ ∅ , then we must have ′ i ≡ i ≡ D , and we take d ′ i i ≡ 0 .)

For the above three cases, the graph G* can be constructed as follows.

Case (i) G*:

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

 1, s 2, a 3, b 5, c 6, d

 3, a 4, b

0
2 2 1

3
5

3
2

Case (ii) G*:

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

 1, s 2, a 3, b 5, c 6, d

 3, a 4, b 4, d 6, e

0
2 2

2
3

3
3

4

1

1

Case (iii) G*:

69

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

 1, s 2, a 3, b 5, c 6, d

 3, a 4, b 6, e 6, ∅

0
2 2

1

5 3

3

2

1

0

Step 4. Find the shortest path from node (0, s0) to all the terminal nodes at Stage S using any standard SP algorithm.

Pick the shortest of these paths and trace the corresponding path and the labels using a backward pass (using the

DOWN or predecessor labels in the usual fashion).

Remark 1. Note the importance of asserting the existence of the graph GL without a duplication of nodes at each

stage in GL . For example, if L = {abce, adcf) for some graph G, then if we use the particular graph shown below as

GL , it would also imply the admissibility of the crossover strings abcf and adce in L.

0 1 2 3 4

s a b c e

 d f

0

Stages:

In order to avoid this inclusion of inadmissible strings, we would need to define a graph GL as follows:

0 1 2 3 4

s a b c e

 d c f

o 1

2

Stages:

where c1 and c2 are duplicates of the label c at Stage 3. Then, the node and arc definition process for G* above would

need to be modified to accommodate nodes of the type (i, l) with l = c1 or c2 at Stage 3, along with the

corresponding arc connections. For example, at Stage 4, we would consider connections of the following type.

′i , c1 ′i , c2i, e i, fand

Henceforth, we assume that the label and language definitions conform with the definition of a suitable graph GL for

which the paths in GL correspond to admissible words in L, and vice versa.

70

Figure 1 presents a flow-chart summarizing the essential steps of a rudimentary algorithm (including an efficient

construction of G*) for solving SLCSP.

Remark 2. As Barrett et al. point out, a label constrained SP can be nonsimple. (The problem of finding shortest

simple label constrained paths, if they exist, is NP-hard.) For example, consider the graph G given below, with L =

{(aaaaa)}, and with nodes 1 and 2 as the starting and terminal nodes O and D, respectively. The shortest label

constrained path is 1 → 2 → 3 → 4 → 1 → 2 , which is nonsimple.

1 2

4
3

1
a

1 a
a 1

a
1

This path, however, comes from the following shortest simple path in G*.

 0 1 2 3 4 5

s 2, a 3, a 4, a 1, a 2, a0
1 1 1 1 1

Stages:

G*

Note how nodes can repeat at different stages (e.g. node (2, a) appears at stages 1 and 5).

3. Time-Dependent Label-Constrained Shortest Path Problem (TDLSP)

In contrast with the former case of constant travel times, suppose now that the link delays are time-dependent functions.

Specifically, for each (p, q) ∈ A , suppose that we have a time-dependent link delay function dpq(t) that specifies

the travel time on link (p, q), given a starting time t at the corresponding tail node t. This function dpq might be a

general real valued function defined on a continuum of time over some horizon interval H (dpq : H ⊆ R → R) , or

it might be some discretized approximation from some experimental or simulation output analysis, being defined as

dpq : H ≡ {0, Δ, 2Δ, ..., KΔ} → {0, Δ, 2Δ, ..., ′ K Δ}

71

for some discretized time duration Δ and integer ′ K , and some suitably large integer K such that the characterization of

the delay function beyond the time KΔ is not of practical interest.

In either case, let us define

T = some upper bound on the length (total delay) of any acceptable path in the solution to the underlying problem.

Input: Graph G having arcs with specified delays and labels, a language L (admissible label sequence
list), a starting node O and a terminal node D.

Construct the label graph GL and determine the number of stages S as described in Step 2 (see Remark
1).

Initialize N0 = {(O, s0)}, and Ns = ∅ ∀ s = 1,..., S, where Ns represents the set of nodes of the
graph G* at Stage s, for s = 0, 1,...,S. Set s = 0.

For each (′ i , ′ l) ∈ Ns , perform the following:
• If ′ i ≡ D , and if (′ l , ∅) is an arc in GL from Stage s to Stage s+1, let
Ns+1 ← Ns+1 ∪ {(D, ∅)} , and add an arc from the node (′ i , ′ l) at Stage s to the node (D, ∅) at
Stage s+1 in G* having an associated length of 0.
• Else, scan FS(′ i) in G. (If s ≡ S − 1, scan only for i ≡ D ∈ FS(′ i) in the following.)
• For each node i ∈ FS(′ i) , if the label on the arc (′ i , i) in G is λ such that the arc (′ l , l) exists in GL
from Stage s to Stage s+1, then let Ns+1 ← Ns+1 ∪ {(i, l)}, and add the arc from the node (′ i , ′ l) at
Stage s to the node (i, l) at Stage s+1 in G* having an associated length of d ′ i i .

s ← s + 1

s = S

 Y

Find the SP in G* from (O, s0) to each node (D, l) in NS . Let this SP value be ν D,l . Find

 (D, l *) ∈ arg min { ν D,l : (D, l) ∈ NS} and trace the corresponding path in G*.

Output: SP from (O, s0) to (D, l *) of value ν D,l * .

Figure 1. Flow-Chart for a Rudimentary Procedure to Solve the TILSP Problem.

N

72

Note that we use this additional parameter T to control the degree of exploration of the network and to fathom or weed

out the examination of paths that do not have delays below this threshold T. Also, it is well known that there exists a

time-space static equivalent network representation for this problem. In this representation, each node is replicated as

{i, t} for all possible values of t ∈ H when we could be at node i. Furthermore, for each (i, j) ∈ A , given a possible

starting time t < T at node i, where t ∈ H , this representation would construct an arc {(i, t), (j, t + dij (t))}

having a fixed delay of dij (t) , such that t + dij(t) ≤ T , where note that t + dij(t) then also belongs to H by our

assumption.

Similar to the time-independent case, we also have labels associated with each arc taken from some alphabet set ∑, and

we are given a language L defined on regular expressions that is comprised of a set of acceptable words (sequence of

arc labels on acceptable paths). Suppose further that as before, we are given (or have constructed) the corresponding

graph GL . The Time-Dependent Label-Constrained Shortest Path Problem (TDLSP) then is to find a time-dependent

shortest path P* in G from O to D among all paths P from O to D (i.e., P ∈℘) for which l (P) ∈ L , where l (P) is

the sequence of alphabet labels on the path P.

The procedure we develop dynamically generates a reduced-size time-space network implicitly, using a minimal

number of time-based node replications, while simultaneously finding the TDLSP from O to D. This is done within the

framework of a dynamic programming routine that is similar in concept to the procedure of Figure 1. Figure 2

describes the proposed procedure. Here, time-expanded replicates (p, t, l) of each node p ∈ N are automatically

created only for specific, necessary values of times t, and labels λ based on possible visitation times and label

sequences.

In this process, we develop the node sets Ns for s = 0, 1,...,S as in Figure 1, but maintain an additional time component

for each node, along with the predecessor or DOWNs (⋅) list for each stage s in order to facilitate a back-tracing of the

generated paths. Moreover, since we are not interested in pursuing paths having total delays that exceed T, and all

delays are nonnegative, we trim off nodes for which the delay exceeds T.

Furthermore, as before, the nodes investigated for the final stage S correspond only to the terminal node D. Note that

termination might occur prior to stage S either because no time-dynamic label constrained path is realizable that has a

73

total delay less than or equal to the specified limit T, or within such a limit, the nodes at some earlier stage all

correspond to the terminal node D.

Remark 3. Observe that when we perform the operation Ns+1 ← Ns+1 ∪ {(i, t, l)}, if the node (i, t, l) already

exists in Ns+1, we revise its)(1 ⋅+sDOWN index as stated in the procedure; however, we could have left this index

the same. Hence, only some alternative equally attractive choice of a partial path and label sequence is being

maintained.

Remark 4. Note that the general procedure does not assume the first-in-first-out (FIFO) or consistency assumption

whereby for each link (p, q) ∈ A , if we enter the link at an earlier time then we would also exit the link at a relatively

earlier time (see Kaufman and Smith (1993)). However, when such an assumption holds true, we do not need to

maintain duplicate nodes of the type (i, t1, l) and (i, t2, l) for t1 < t2 at any stage; the latter node is dominated by

the former and can be dropped from consideration. Figure 2 states this modified rule in the main processing block. In

particular, note that for the time-independent case, we have dpq(t) ≡ dpq ∀ t ∈ H, ∀ (p, q) ∈ A . Hence, the

consistency assumption holds true, and the procedure of Figure 2 can be applied under this revision.

74

Input: Graph G (N, A) having arcs with specified time-dependent delay functions and labels,
a language L (admissible label sequence list), a starting node O and a terminal node D.

Construct the label graph GL and determine the number of stages S as in Section 2.

Initialize N0 = {(O, 0, s0)}, and Ns = ∅ ∀ s = 1, ..., S . Let s = 0.

For each (′ i , ′ t , ′ l) ∈ Ns in turn, perform the following.

• If ′ i ≡ D , and if (′ l , ∅) is an arc in GL from Stage s to Stage s + 1, let
 Ns+1 ← Ns+1 ∪ {(D, ′ t , ∅)} and put DOWNs+1(D, ′ t , ∅) = (′ i , ′ t , ′ l) .
• Else, scan FS(′ i) in G. (If s = S – 1, scan only for i ≡ D ∈ FS(′ i) in the following.)
 For each i ∈ FS(′ i) , if the label on the arc (′ i , i) in G is λ such that the arc (′ l , l) exists in GL
 from Stage s to Stage s + 1, then compute t = ′ t + d ′ i , i(′ t) . If t ≤ T , let Ns+1 ← Ns+1 ∪
 {(i, t, l)} , and put DOWNs+1(i, t, l) = (′ i , ′ t , ′ l) .

Modification under the consistency assumption: Whenever an (i, t, l) is generated for intro-duction into Ns+1, if
there already exists an (i, t , l) in Ns+1, let Ns+1 include the one of this pair that has the smaller time value, and store
the corresponding predecessor in the DOWNs+1(⋅) list.

s ← s + 1

 ∃(i, t, l) ∈ Ns s = S Ns = ∅
 with i ≠ D

Trace via DOWN lists Pick (D, t∗ , l ∗) ∈arg min{t :
for each (D, t, l) ∈ Ns (D, t, l) ∈ Ns}.
and discard those nodes
from Ns for which the Trace via DOWN(⋅)

corresponding label lists from (D, t∗ , l ∗) to
sequence is not in L. obtain the corresponding
 path in G.

 Output: Path in G
 Ns = ∅ from O to D having

 total delay t∗ .

Figure 2. Flow-Chart for the Algorithm to Solve the TDLSP Problem.

Output: The language has no
acceptable words, or there does
not exist a path having total delay ≤ T.

Y

N

N
Y

N Y N Y

75

Example 2 (Inconsistent or Non-FIFO Delays)

Consider the following graph G with delay functions and arc labels as shown.

1

2

4

3

a

a

b

c

b

2
1

7–2t
2

1

Note that all the links have time-independent delays, except for link (3, 4) for which d34(t) = 7 − 2t . Hence, if we

arrive at node 3 at time t = 2, it would put us at node 4 at time 2 + 3 = 5, while arriving at node 3 at a later time t = 3,

would put us at node 4 at time 3 + 1 = 4, i.e., earlier than in the former case. Suppose also that the specified language is

L = {abc, ac}, so that the non-label constrained shortest path 1 → 2 → 4 is infeasible. Let us also assume that

T ≥ 5, and note that S = 3. The graph GL is given as follows.

0 1 2 3

s a b c

 c φ

0

Stages:

GL

The algorithm of Figure 2 would proceed as follows, where the arrows depict the corresponding DOWN(⋅)

relationships established at each stage.

Initialization: N0 = {(1, 0, s0)}, where O ≡ 1, and Ns = ∅ for s = 1,2,3.

s = 0: N0 = {(1, 0, s0)}
(2, 2, a)

(3, 2, a)

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪
= N1

76

s = 1: N1 =
(2, 2, a)

(3, 2, a)

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪

(4, 3, b)

(3, 3, b)

(4, 5, c)

⎧

⎨
⎪ ⎪

⎩
⎪
⎪

⎫

⎬
⎪ ⎪

⎭
⎪
⎪

= N2

s = 2: N2 =

(4, 3, b)

(3, 3, b)

(4, 5, c)

⎧

⎨
⎪ ⎪

⎩
⎪
⎪

⎫

⎬
⎪ ⎪

⎭
⎪
⎪

(4, 4, c)

(4, 5, ∅)

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪
= N3

s = 3:

With D ≡ 4 , we identify (D, t∗ , l ∗) as (4,4,c). Tracing via DOWN(⋅) produces the following path (in reverse

order).

 0 1 2 3

1,0,s 2,2,a 3,3,b 4,4,c0

Stages:

Hence, the path 1 → 2 → 3 → 4 having a label sequence abc and total delay of t∗ = 4 solves the given TDLSP

problem.

Remark 5. Note that if we had specified T = 4, then the node (4, 5, c) ∈ N2 would have been suppressed at Stage s

= 1, and so, N3 would only have inherited (4,4,c) at Stage s = 2. Alternatively, with T = 3, N2 would again have

dropped (4,5,c) at s = 1, while we would have obtained N3 = ∅ at s = 2. The procedure would have terminated with

an infeasibility indication. Decreasing T further would have yielded an infeasibility indication at an earlier stage.

77

Example 3. (Consistent or FIFO Delays):

For the sake of illustrating the application of Figure 2 to solve a time-independent label constrained shortest path

problem, consider Example 1 under the language specification of Case (ii), and assume that T = 9. The value of S is 4,

and the graph GL is shown below.

Stages: 0 1 2 3 4

s0 a b

c d

d e

GL

The procedure of Figure 2 would proceed as follows, noting the modification stated under the consistency assumption.

Initialization: N0 = {(1, 0, s0)}, where O ≡ 1, and Ns = ∅ for s = 1,...,4.

s = 0: N0 = {(1, 0, s0)}
(2, 2, a)

(3, 5, a)

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪
= N1

s = 1: N1 =
(2, 2, a)

(3, 5, a)

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪

(3, 4, b)

(4, 5, b)

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪
= N2

s = 2: N2 =
(3, 4, b)

(4, 5, b)

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪

(5, 5, c)

(4, 8, d)

(5, 7, c) ← eliminate

⎧

⎨
⎪ ⎪

⎩
⎪
⎪

⎫

⎬
⎪ ⎪

⎭
⎪
⎪

= N3

s = 3: N3 =
(5, 5, c)

(4, 8, d)

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪

(6,8, d)

(6, 9, e)

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪
= N4

s = 4: Terminate with (D, t∗ , l ∗) = (6,8,d). Tracing backwards using the DOWN(⋅) list yields

78

 Stages: 0 1 2 3 4

 1,0,s 2,2,a 3,4,b 5,5,c 6,8,d0

This yields the optimal TDLSP 1 → 2 → 3 → 5 → 6 in G, with the label sequence abcd, and having a total delay

equal to t∗ = 8.

Remark 6 (Choice of T and Curtailing Computations). If we know some feasible path to the TDLSP problem, then

using its delay as the value of T, we can reduce the extent of computations performed. This motivates the use of a

quick heuristic to derive an initial feasible solution. Furthermore, in large-scale applications, we could partition the

graph into sections depending on the choice of O and D, and require the nodes within each section to be visited by a

certain time. Alternatively, we can specify a threshold value Ts for each stage s, and maintain only those

 (i, t, l) ∈ Ns for which t ≤ Ts ∀ s = 1, ..., S . By suitably choosing a progression of Ts -values, we can curtail the

computational effort, although this might mean a loss in finding an exact optimum.

We close this section by establishing the complexity of the procedure in Figure 2.

Proposition 1. Given a graph G(N,A), and given the graph GL corresponding to the language L, let

r = maximum admissible word length in L (longest simple path in GL)

m = maximum number of nodes at any stage in GL .

Then under the consistency assumption, the procedure of Figure 2 is of polynomial-time complexity O(rm3 | A |) .

Proof. The number of stages performed is O(r). For each stage s, any node i of G appears in (i, t, l) ∈ Ns at most m

times. Scanning the forward star of i and checking the at most m 2 arcs in GL from stage s to stage s + 1 for each such

repetition of i takes O(| FS(i) | m 3)time. Summing this over all possible nodes of G appearing at stage s gives a

total complexity of O(m3 | A |) per stage. Hence, the overall process is of complexity O(rm3 | A |) , and this

completes the proof.

79

Remark 7. In the case of non-FIFO link delays, if τ is the maximum number of distinct values of times for which it is

possible to visit any node within the interval [0, T] (for integer valued delay functions, we can take τ ≡ T), then the

complexity of the algorithm of Figure 2 is pseudopolynomial of order O(τrm3 | A |).

4. Time-Dynamic Chained Activity Route Planner

The key utility of the foregoing approach arises in the following context. Consider a certain traveler starting at a home

location at a certain time (t = 0), and wishing to go to the office via label strings constituting a language of the type L =

{(w...w, d ...d, r...r, w...w), (w...w, d ...d, b...b, w...w)} where w, d, r, and b respectively represent walking,

driving, rail (taking trains), and taking buses. The words can be of various lengths, so long as they are admissible with

respect to the overall multi-modal transit network. This latter network can be conceptualized as a layered network as

shown in Figure 3, where the starting node O is represented by the home location and the terminal node D is

represented by the office location node D on the walking network, and where there exist various process arcs (shown

dotted) between appropriate possible and desirable location connections from one layer to another.

Terminal
(office)
node D

Node O:
Home at
starting

time

Walking network

Driving
network

Rail network

Bus network

: Process arcs

: intra-layer network
 arcs

Figure 3: Layered Multi-Modal Network.

We can now apply the algorithm of Figure 2 to this network under time-independent or time-dependent conditions, and

in the latter case, under a non-FIFO or FIFO (consistency) assumption. For example, given a node (iw , t, walk) at some

stage s, representing that we have reached location i at time t while walking (in the walking network), we might have

80

possible connecting arcs of the following type leading to states in stage s + 1, where iw and id respectively represent

location i in the walking and driving networks.

′iw, ′t , walk

iw, t, walk
id , t, process arc from w → d

Similarly, in the drive network, we might have the following types of connections from one stage to the next.

id , t, drive

′id , ′t , drive

ir , t, process arc d → r

ib , t, process arc d → b

The key element here is an efficient implementation of the procedure of Figure 2, using suitable node-set reduction

schemes as described in Remark 6.

Remark 8. Note that the algorithm discussed thus far assumes that the time delay functions dij (t) are known for each

link (i, j) in each of the layered networks. Such information might be gleaned experimentally or via a dynamic traffic

assignment simulation process executed using some OD trip matrices. These delay values for each link can be stored in

look-up tables (e.g. as estimated travel times on an hourly or half-hourly basis) or be input as analytical statistically

determined functions. We can also assume that the FIFO or consistency condition holds, which is true for most

practical cases.

81

REFERENCES

1. Mokhtar S. Bazaraa, Hanif D. Sherali, and John J. Jarvis. Linear Programming and Network Flows, Second
Edition. John Wiley and Sons, New York, NY (1990).

2. Ravindra K. Ahuja, Thimas L. Magnanti, and James B. Orlin. Network Flows Theory, Algorithms, and

Applications. Prentice Hall, New Jersey (1993).

3. Frederick S. Hillier, and Gerald J. Lieberman. Introduction to Operations Research, Fourth Edition. Holden-
Day, CA (1986).

4. John R. Canada, William G. Sullivan, and John A. White. Capital Investment Analysis for Engineering and

Management, Second Edition. Prentice Hall, New Jersey (1996).

5. Hanif D. Sherali. Time-Dependent Label Constrained Shortest Path Problems (Route Planner Module). Notes.
Virginia Polytechnic Institute and State University, Blacksburg, VA (2000).

6. Hanif D. Sherali. On the Equivalence between Some Shortest Path Algorithms. Operations Research Letters.

Vol. 10 (1991) 61-65.

7. Hanif D. Sherali, Kaan Ozbay, and Shivaram Subramanian. The Time-Dependent Shortest Pair of Disjoint
Paths Problem: Complexity, Models, and Algorithms. Networks. Vol. 31 (1998), 259-272.

8. Los Alamos National Laboratory. TRansportation ANalysis SIMulation System (TRANSIMS) Version:

TRANSIMS-LANL-1.0. NM (1999).

9. Los Alamos National Laboratory. TRansportation ANalysis SIMulation System (TRANSIMS) Version:
TRANSIMS-LANL-1.1. NM (2000).

10. Kai Nagel, Riko Jacob, and Marathe Madhav. A Computational Study of Routing Algorithms for Reslistic

Transportation Networks. TRANSIMS Report Series. NM (1998).

11. Giorgio Gallo, and Stefano Pallottina. Shortest Path Algorithms. Annals of Operations Research. Vol. 13
(1988), 3-79.

12. Shivaram Subramanian. Routing Algorithms for Dynamic, Intelligent Transportation Networks. Master’s

Thesis. Virginia Polytechnic Institute and State University, Blacksburg, VA (1997).

13. Chris Barrett, Riko Jacob, and Marathe Madhav. Formal Language Constrained Path Problems. Los Alamos
National Laboratory, NM (1997), 234-243.

14. Ariel Orda, and Raphael Rom. Shortest-Path and Minimum-Delay Algorithms in Networks with Time-

Dependent Edge-Length. Journal of the Association for Computing Machinery. Vol. 37 (1990), 607-625.

	CHAPTER OUTLINE
	5.1 Overview
	5.2 Terminology
	5.3 Key Concepts
	5.3.1 Shortest path problem
	5.3.2 Dijkstra’s algorithm
	5.3.3 Network layers

	5.4 Major Data Inputs
	5.4.1 Generating Single-Trip Requests
	5.4.2 Generating the Internal Network
	5.4.2.1 Generating nodes and links in the Internal Network.
	5.4.2.2 Generating travel time functions for each link in the Internal Network

	5.5 Major Data Outputs
	5.6 Module Interfaces
	5.6.1 Inputs received from the Activity Generator Module
	5.6.2 Inputs received from the Traffic Microsimulator Module
	5.6.3 Outputs sent to the Traffic Microsimulator Module
	5.6.4 Feedback to the Selector Module

	5.7. Configuration Files
	5.8 Algorithms
	5.8.1 Time-Independent Shortest Path Problem (TISP)
	5.8.1.1 Practical Example for the Time-Independent Shortest Path Problem (TISP)

	5.8.2 Time-Independent Label Constrained Shortest Path Problem (TILSP)
	5.8.2.2 Example of the Time-Independent Label Constrained Shortest Path Problem (TILSP)

	5.8.3 Time-Dependent Label-Constrained Shortest Path Problem (TDLSP)

	5.9 Example of the Route Planner Module
	APPENDIX A

