

PHENIX Beam Use Proposal for Run-7 and Beyond

W.A. Zajc for the PHENIX Collaboration

(this talk available at http://www.phenix.bnl.gov/phenix/WWW/publish/zajc/sp/presentations/RBUP06/)

12-Sept-06

2

 Status **Collaboration Experiment Physics** Run-6 achievements Proposal □ Inputs Request **Discussion** Issues

PHENIX has an excellent track record of

Performing major installations and/or upgrades in each shutdown

while

Maintaining scientific productivity

 See Back-up slides for complete chronology

 (Most material there provided courtesy of Ed O'Brien, PHENIX Operations Manager)

12-Sept-06

Run-1 to Run-6 Capsule History

Year	Species	s ^{1/2} [GeV]	∫Ldt	N _{Tot}	p-p Equivalent	Data Size
2000	Au+Au	130	1 μb ⁻¹	10M	0.04 pb ⁻¹	3 TB
2001/2002	Au+Au	200	24 µb ⁻¹	170M	1.0 pb ⁻¹	10 TB
	p+p	200	0.15 pb ⁻¹	3.7G	0.15 pb ⁻¹	20 TB
2002/2003	d+Au	200	2.74 nb ⁻¹	5.5G	1.1 pb ⁻¹	46 TB
	p+p	200	0.35 pb ⁻¹	6.6G	0.35 pb ⁻¹	35 TB
2003/2004	Au+Au	200	241 µb ⁻¹	1.5G	10.0 pb ⁻¹	270 TB
	Au+Au	62	9 μb ⁻¹	58M	0.36 pb ⁻¹	10 TB
2004/2005	Cu+Cu	200	3 nb ⁻¹	8.6G	11.9 pb ⁻¹	1 73 TB
	Cu+Cu	62 ().19 nb ⁻¹	0.6G	0.8 pb ⁻¹	48 TB
	Cu+Cu	22.5	2.7 μb ⁻¹	9M	0.01 pb ⁻¹	1 TB
	p+p	200	3.8 pb ⁻¹	85B	3.8 pb ⁻¹	270 TB
2006	p+p	200	10.7 pb ⁻¹	230B	10.7 pb ⁻¹	310 TB
	p+p	62	0.1 pb ⁻¹	28B	0.1 pb ⁻¹	25 TB
	Year 2000 2001/2002 20002/2003 20003/2004 20004/2005 20004	YearSpecies2000Au+Au2001/2002Au+Aup+pd+Au2002/2003d+Aup+pAu+Au2003/2004p+pAu+AuAu+Au2004/2005Cu+Cu p+p2006p+p p+p	YearSpecies $s^{1/2}$ [GeV]2000Au+Au1302001/2002Au+Au200p+p2002002/2003d+Au200p+p2002003/2004Au+Au200Au+Au2002004/2005Cu+Cu220Cu+Cu22.562p+p2002006p+p200	YearSpecies $s^{1/2}$ [GeV] \int Ldt2000Au+Au130 $1 \ \mu b^{-1}$ 2001/2002Au+Au200 $24 \ \mu b^{-1}$ p+p200 $0.15 \ p b^{-1}$ 2002/2003d+Au200 $2.74 \ n b^{-1}$ 2003/2004Au+Au200 $2.74 \ n b^{-1}$ 2003/2004Au+Au200 $241 \ \mu b^{-1}$ 2004/2005Cu+Cu200 $3 \ n b^{-1}$ 2006p+p200 $3.8 \ p b^{-1}$ 2006p+p200 $10.7 \ p b^{-1}$ 2006p+p200 $10.7 \ p b^{-1}$	YearSpecies $s^{1/2}$ [GeV]JLdt N_{Tot} 2000Au+Au1301 µb ⁻¹ 10M2001/2002Au+Au20024 µb ⁻¹ 170Mp+p2000.15 pb ⁻¹ 3.7G2002/2003d+Au2002.74 nb ⁻¹ 5.5Gp+p2000.35 pb ⁻¹ 6.6G2003/2004Au+Au200241 µb ⁻¹ 1.5G2004/2005Cu+Cu2003 nb ⁻¹ 8.6GCu+Cu2003 nb ⁻¹ 8.6G2006p+p20010.7 pb ⁻¹ 9M2006p+p20010.7 pb ⁻¹ 230B2006p+p20010.7 pb ⁻¹ 230B	YearSpecies $s^{1/2}$ [GeV]JLdt N_{Tot} $p-p$ Equivalent2000Au+Au1301 µb ⁻¹ 10M 0.04 µb ⁻¹ 2001/2002Au+Au200 24 µb ⁻¹ 170M 1.0 µb ⁻¹ $p+p$ 200 0.15 µb ⁻¹ $3.7G$ 0.15 µb ⁻¹ 2002/2003d+Au200 2.74 µb ⁻¹ $5.5G$ 1.1 µb ⁻¹ $p+p$ 200 0.35 µb ⁻¹ $6.6G$ 0.35 µb ⁻¹ 2003/2004Au+Au200 241 µb ⁻¹ $5.5G$ 10.0 µb ⁻¹ 2004/2005Cu+Cu 200 3 µb ⁻¹ $58M$ 0.36 µb ⁻¹ 2006P+p200 3 µb ⁻¹ $8.6G$ 11.9 µb ⁻¹ 2006P+p 200 3 µb ⁻¹ $8.6G$ 11.9 µb ⁻¹ 2006P+p 200 10.7 µb ⁻¹ $230B$ 10.7 µb ⁻¹ 2006P+p 200 10.7 µb ⁻¹ $230B$ 10.7 µb ⁻¹

6

• Plot courtesy of Tom Throwe (RCF)

Raw Data Collected in RHIC Runs

PHENIX Data Production

- PHENIX making effective use of collaboration resources to stay ahead of the incoming data:
 - □ Run-5
 - ◆ Cu+Cu 200 GeV at RCF
 - May to August, 2006, 1.7G events in 4 months
 - Cu+Cu 62.4 GeV at PHENIX 1008 farm
 - Feb to March , 2006 0.6G events in 2 months
 - Cu+Cu 22.5 GeV at PHENIX 1008 farm
 - A few days to process 9M events
 - p+p 200 GeV at PHENIX CC-J in Japan
 - In final clean-up phase, essentially complete
 - All pp data (270 TB) shipped via network to CC-J during Run-5
 - Level-2 stream produced in quasi-real time at ORNL
 - □ **Run-6**

12-Sept-06

- p+p 62 GeV at PHENIX 1008 farm
 - Complete
- p+p 200 GeV at PHENIX 1008 farm
 - Production for transverse polarization underway
- p+p 200 GeV at PHENIX CC-J in Japan
 - Production for longitudinal polarization about to start
- Level-2 stream produced in quasi-real time at Vanderbilt
- Simulation at Vanderbilt, LLNL, New Mexico (all results archived at RCF)

Production for all PHENIX data-sets completed by start of Run-7

Publication Summary

- Since 2001:
 - □ 31 PRL's
 - 11 Phys. Rev. C
 - 3 Phys. Rev. D
 - I Phys. Lett. B
 - I Nucl. Phys. A (White Paper)
- ~ 3500 citations

Most-cited paper from RHIC:

Suppression of hadrons with large transverse momentum in central Au+Au collisions at √s_{NN}= 130 GeV",
 <u>K. Adcox *et al.*</u>, Phys.Rev.Lett. 88:022301 (2002),
 <u>nucl-ex/0109003</u>

• 12 other papers with > 100 citations

Collaboration, 2006

University of São Paulo, São Paulo, Brazil Academia Sinica, Taipei 11529, China China Institute of Atomic Energy (CIAE), Beijing, P. R. China Peking University, Beijing, P. R. China Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 12116 Prague, Czech Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Brehova Republic Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prac University of Jyvaskyla, P.O.Box 35, FI-40014 Jyvaskyla, Finland Laboratoire de Physique Corpusculaire (LPC). Universite de Clermont-Ferrand, F-63170 Aubi France Dapnia, CEA Saclay, Bat. 703, F-91191 Gif-sur-Yvette, France IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406 Orsay, France Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128 F SUBATECH, Ecòle des Mines at Nantes, F-44307 Nantes, France University of Muenster, Muenster, Germany KFKI Research Institute for Particle and Nuclear Physics at the Hungard Gountries; 68 Institutions; 550 Participants * **Budapest, Hungary** Abilene Christian University, Abilene, Texas, USA Debrecen University, Debrecen, Hungary Brookhaven National Laboratory (BNL), Chemistry Dept., Upton, NY 11973, USA Eövös Loránd University (ELTE), Budapest, Hungary Brookhaven National Laboratory (BNL), Collider Accelerator Dept., Upton, NY 11973, USA Banaras Hindu University, Banaras, India Brookhaven National Laboratory (BNL), Physics Dept., Upton, NY 11973, USA Bhabha Atomic Research Centre (BARC), Bombay, India University of California - Riverside (UCR), Riverside, CA 92521, USA Weizmann Institute, Rehovot 76100, Israel University of Colorado, Boulder, CO, USA Center for Nuclear Study (CNS-Tokyo), University of Tokyo, Tanashi, Tokyo 188, Japan Columbia University, Nevis Laboratories, Irvington, NY 10533, USA Hiroshima University, Higashi-Hiroshima 739, Japan KEK - High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan Florida Institute of Technology, Melbourne, FL 32901, USA Florida State University (FSU), Tallahassee, FL 32306, USA Kyoto University, Kyoto, Japan Georgia State University (GSU), Atlanta, GA 30303, USA Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki, Japan University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan Iowa State University (ISU) and Ames Laboratory, Ames, IA 50011, USA **RIKEN – BNL Research Center, Japan, located at BNL** Los Alamos National Laboratory (LANL), Los Alamos, NM 87545, USA Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan University of Maryland, College Park, MD 20742, USA University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi Ibaraki-ken 305-8577, Japan Department of Physics, University of Massachusetts, Amherst, MA 01003-9337, USA Waseda University, Tokyo, Japan Old Dominion University, Norfolk, VA 23529, USA Cyclotron Application Laboratory, KAERI, Seoul, South Korea University of New Mexico, Albuquerque, New Mexico, USA Ewha Womans University, Seoul, Korea New Mexico State University, Las Cruces, New Mexico, USA Kangnung National University, Kangnung 210-702, South Korea Department of Chemistry, State University of New York at Stony Brook (USB), Stony Brook, NY Korea University, Seoul 136-701, Korea USA Myong Ji University, Yongin City 449-728, Korea Department of Physics and Astronomy, State University of New York at Stony Brook (USB), Sto System Electronics Laboratory, Seoul National University, Seoul, South Korea Brook, NY 11794, USA Yonsei University, Seoul 120-749, Korea Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA IHEP (Protvino), State Research Center of Russian Federation, Protvino 142281, Russia University of Tennessee (UT), Knoxville, TN 37996, USA Joint Institute for Nuclear Research (JINR-Dubna), Dubna, Russia Vanderbilt University, Nashville, TN 37235, USA Kurchatov Institute, Moscow, Russia *as of July 2006 PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region 188300, Russia Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Vorob'evy Gory, Moscow 119992, Russia and growing Saint-Petersburg State Polytechnical Univiversity, Politechnicheskayastr, 29, St. Petersburg 195251, Russia

Lund University, Lund, Sweden

10

□ Wide-ranging participation in

- ♦ Data analysis
- Shift support (~300 individuals in Run-6 !)
- Upgrades program

Continued growth:

Year	Institutions	Nations	Participants
2001	53	11	420
2003	57	12	460
2005	62	13	550

Recent Additions

- Jyvaskyla University (Finland)
- University of Maryland
- Ehwa Women's University (Korea)
- Muhlenberg College

(Partial) Listing of Awards¹¹

- Presidential Early Career Awards for Scientists and Engineers
 - V. Cianciolo (ORNL)
 - S. Mioduszewski (BNL)
- Outstanding Junior Investigator (DOE)
 - J. Nagle (Colorado)
 - J. Velkovska (Vanderbilt)
- Sloan Fellowship

※ENIX

- J. Nagle (Colorado)
- RHIC/AGS Thesis Award
 - J. Burward-Hoy (Stony Brook)
 - H. Sato (Kyoto)
 - **C. Klein-Boesing (Muenster)**
 - A. Sickles (Stony Brook)
- Sambamurti Award
 - J. Mitchell (BNL)
 - S. Mioduszewski (BNL)
- Gertrude Goldhaber Memorial Award
 - A. Sickles (SUNY-Stony Brook)
- Luise Meyer-Schutzmeister Memorial Award
 - C. Aidala (Columbia)
- "Best Young Researcher", Westfaelische Wilhelms-University of Muenster
 - K. Reygers (Muenster)
- Intel Science Talent Finalist
 - **B. Huang (Longwood High School; Advisor: Prof. T. Hemmick, SUNY-Stony Brook)**
- Fulbright
 - Alumni Initiative Award, T. Csorgo (KFKI)
 - Visiting Student Research Award, M. Csanad (ELTE)
 - Visiting Student Research Award, R. Vertesi (Debrecen)
 - Senior Researcher/Lecturer, B. Cole (Columbia)
- JPS Distinguished Young Researcher
 - **T. Chujo (Vanderbilt)**

Schedule

12-Sept-06

New Additions for Run-6

Radiation tests of strip-pixel samples

PH⋇ENIX

13

Muon Piston Calorimeter (MPC) □ 192 PbW0₄ crystals □ APD read out w. EmCal FEM's

Run-6 Accumulations

Days since March 5

12-Sept-06

Run-6: Figure of Merit

15

12-Sept-06

H℁ENIX

Run-6 Data Quality

• Level 2 filter: $\Box \pi^0 \rightarrow \gamma \gamma$, $\Box \eta^0 \rightarrow \gamma \gamma$

- Clear η peak seen out to ~20 GeV/c
- Obtained in quasi real-time production on Vanderbilt farm

Run Request

RUN	SPECIES	√snn (GeV)	PHYSICS WEEKS	∫ L dt (recorded)	p+p Equivalent
7	p+p	200	10	32 pb ⁻¹	32 pb ⁻¹
	Au+Au	200	15	1.1 nb ⁻¹	44 pb⁻¹
8	d+Au	200	15	58 nb ⁻¹	23 pb ⁻¹
	p+p	200	10	52 pb⁻¹	52 pb⁻¹
9	Au+Au	TBD	25-M		
	p+p	500	М		
10	U+U?	200	25-N		
	p+p	500	Ν		

Also: Section 5.1.3 of Proposal: "endorse potential C-A D requests for further development of 500 GeV polarized proton running."

Input to the Run Request

- PHENIX Physics Goals
- PHENIX Upgrades Schedule
- Collider-Accelerator Dept. Guidance
- External Constraints
 - Competitive measurements
 - Funding agency/community expectations
 - Consequences of Run-6 funding challenge

 Our present Beam Use Proposal is the logical adjustment to the loss of Au+Au running in Run-6

PH

EN

- □ From last year:
- Our desire to accumulate a factor of 10 increase in Au+Au data with an upgraded PHENIX remains unchanged
- Our commitment to annual development of polarization and luminosity remains unchanged

Table 2: The PHENIX Beam Use Proposal for Runs 6-10.

Run Request Summary Table

RUN	SPECIES	$\sqrt{s_{NN}}$	PHYSICS	$\int \mathcal{L} dt$	p+p
		$({\rm GeV})$	WEEKS	(recorded)	Equivalent
6	Au+Au	200	13	1 nb ⁻¹	40 pb ⁻¹
	p+p	200	4	7 pb^{-1}	7 pb^{-1}
	p+p	62.4	2	0.6 pb^{-1}	0.6 pb^{-1}
	p+p	22.5	0.5	4 nb^{-1}	4 nb^{-1}
	p+p	500	1	NA	NA
7	d+Au	200	10	28 nb ⁻¹	11 pb ⁻¹
	p+p	200	15	57 pb^{-1}	57 pb^{-1}
8	Au+Au	200	15	$1.5 \ {\rm nb^{-1}}$	60 pb^{-1}
	p+p	200	10	52 pb^{-1}	52 pb^{-1}
9	TBD	200	10		
	p+p	200	5	22 pb^{-1}	22 pb^{-1}
	p+p	500	10		
10	U+U?	200	15		
	p+p	500	10		

Our desire for timely development of 500 GeV running remains unchanged

• This plan developed after careful consideration of alternative proposals

PHENIX Physics Goals

- Extend the quantitative investigation of the new state of matter formed in RHIC collisions.
- Extend the quantitative investigation of cold nuclear matter effects in heavy nuclei
- Extend the measurement of spin structure functions in polarized proton collisions
- "Extend" ≡
 - Sensitivity in rare channels
 - Exploration of new channels via upgrades
- Undertake this program in a way that
 - maintains roughly comparable sensitivities in p+p, d+A, A+A year-by-year in same detector configuration
 takes advantage of ongoing upgrades program
- The proposed program implements these goals

Reaction Plane Detector

- Goal: to improve resolution on reaction plane
 - Factor of 2 in resolution equivalent to increasing statistics by factor of 4
 - **Essential, e.g., for v_2(J/\Psi)**
- Now installed for Run-7
 - 48 Scintillator paddles with lead converter at 1<|η|<3 for reaction plane measurement
 - In future: trigger counter for low-energy running

AGEL + TOF-W

- From PHENIX Decadal Plan: "An aerogel and time-of-flight system to provide complete $\pi/K/p$ separation for momenta up to ~10 GeV/c."
- Status
 - Aerogel
 - completely installed
 - first physics results now available
 - TOF-W ('Time-Of-Flight-West')
 - Prototypes tested in Run-5
 - System installed in current shutdov
 - Partial funding: J. Velkovska (Vanderbilt) OJ

12-Sept-06

Upgrades Schedule (I)

Upgrades Schedule (II)

- Most relevant to our request:
- There is an interplay between
 - The current availability of the HBD (Runs 7, 8, 9)
 - The planned installation of the Si-VTX (Run-10)
- Accordingly:
 - We have developed a proposal that
 - Insures exposure of the HBD to (at least) 200 GeV p+p, Au+Au and d+Au
 - In a sequence designed to maximize success of this program of measurements
 - That retains option of exploring lower-energy collisions in Run-9
 - This program provides earliest possible access to the physics of low-mass dileptons in Au+Au collisions at RHIC energies
 - While maintaining progress towards our goals in other channels and other systems in Runs 7, 8 and 9.

Physics from the HBD

- The spectrum of low-mass e+e- pairs is sensitive to
 - □ Thermal radiation from plasma: $\gamma^* \rightarrow e+e-$
 - Medium modifications of vector mesons
 - ♦ Broadening
 - ♦ Mass shifts
 - Predicted by chiral symmetry restoration
 - Observed via
 (ρ,ω,φ) → e+e-
 - Open charm
 - In some sense a "background"
 - From semi-leptonic decays of D's.

R. Rapp nucl-th/0204003

Current Electron Capabilities

PHENIX has *superb* capabilities to

́еніх

- Identify electrons
 - Tracking, RICH, EmCal

Identify signal electrons

- Very low material budget in aperture
- "Converter" runs used to measure/check/verify/extend assumptions of "cocktail" subtraction

Provides outstanding measurements of "non-photonic" electrons

■ "Measurement of high-p_T Single Electrons from Heavy-Flavor Decays in p+p Collisions at √s = 200 GeV", submitted to PRL, Preprint: <u>hep-ex/0609010</u>

Agreement within errors with FONLL pQCD

Current Di-Electron Capabilities

Again, *superb* electron identification

ENIX

- Also: *Superb* control on subtraction of combinatoric background
 - Four different methods agree within 0.3%
 - But, systematic errors dominated by subtraction of *huge* combinatoric background
- Results in only a modest proof-of-principle, even when using full Run-4 Au+Au data set:
- The HBD will improve our S/B by a factor of ~100

It's Been There All Along

 The need for the HBD to investigate these physics channels was clearly anticipated in the PHENIX <u>Conceptual</u> <u>Design Report</u>:

ENIX

"A method of identifying and tracking both members of such a pair before curling up in the field would greatly enhance our ability to suppress this background and improve our study of low mass dielectrons The proposed upgrade is a hadron-blind tracker based on Cherenkov signals"

the case…

PHENIX Conceptual Design Report

An Experiment to be Performed at the Brookhaven National Laboratory Relativistic Heavy Ion Collidier

29 January, 1993

Spokesperson:

Project Director:

Deputy Project Director:

Project Engineer:

Shoji Nagamiya, Columbia University Samuel H. Aronson, Brookhaven National Laboratory Glenn R. Young, Oak Ridge National Laboratory Leo Paffrath, Brookhaven National Laboratory

PH^{*}ENIX From Last Year's PAC Presentation

• In spite of the challenge of Run-6...

- We preserved this
- And will maintain this schedule

PH*ENIX Hadron-Blind Detector (HBD)³²

- "A hadron-blind detector to detect and track electrons near the vertex."
- Dalitz rejection via opening angle
 - Identify electrons in field free region
 - Veto signal electrons with partner
- HBD: a novel detector concept:
 - windowless CF₄ Cherenkov detector
 - □ 50 cm radiator length
 - Csl reflective photocathode
 - □ Triple GEM with pad readout
- Construction/prototype(!)
 /installation 2005/2006
- Funding: DOE + \$250K (NSF) + \$100K (Weizmann) + \$57K (SUNY-SB)

partner positron needed for reje

PHXENIX The HBD Becomes Real³³

Upgrades Schedule (I)

34

12-Sept-06

Run-7 Request (Au+Au)

- 15 weeks Au+Au at $\sqrt{s_{NN}}$ = 200 GeV
 - Consistent with our (deferred) request from last year for an order-of-magnitude increase in Au+Au integrated luminosity over a 2-3 year period.
 - Run-4 Au+Au: 241 μb⁻¹ recorded
 - Run-7 Au+Au: 1100 μb⁻¹ recorded
 - Will provide new physics
 - ♦ Low mass electron pairs
 - ♦ V₂ (J/Ψ)
 - V₂ (γ)
 - Will extend existing physics
 - ♦ PID range for high p_T particles and jet pairs (TOF-W)
 - ♦ V₂(e)
 - ♦ Jet tomography, away-side shape
 - ♦ (List extends well of this slide)
 - Provided we begin the Au+Au run with an operating and fully-commissioned HBD.

(RXNP)

Run-7 Request (p+p)

- 10 weeks p+p at √s = 200 GeV
 - Consistent with our interest in maintaining progress towards spin goals via yearly periods of polarized proton running.
- Breakdown:
 - 2.5 weeks transverse to constrain gluon Sivers function via A_N measurements for single and di-hadrons
 - ♦ Run-6: 2.7 pb⁻¹ recorded
 - ♦ Run-7: 6.0 pb⁻¹ recorded
 - □ 7.5 weeks longitudinal to constrain ∆G through A_{LL} for inclusive hadron production
 - ♦ Run-6: 7.5 pb⁻¹ recorded
 - ♦ Run-7: 20 pb⁻¹ recorded
- Factors of 2-3 improvement over Run-6, with additional detectors (MPC-South *and* MPC-North)

Boer and Wogelsang, hep-ph/0312320

Run-7 Request (Order)

37

 The new physics program made possible by the HBD is focused on heavy ion collisions

Combinatoric background/signal ~ multiplicity

- The "massless" aperture of PHENIX for all electron physics is being replaced by an "active mass"
 It's crucial for the Au+Au run to have that mass "active", that is, fully commissioned
- It is therefore essential that the HBD be fully operative at the start of the Au+Au run

These considerations lead us to request starting Run-7 with polarized protons

Run-7 Order

Exacerbating factors

 It is not yet clear of various improvements for p+p running will be available at run start

- New quadrupole configuration in AGS
- New sextapole configuration in RHIC
- ♦ h=120 RF
- The proton running will not be able to take advantage of AGS optimization for protons "behind" Au+Au stores in RHIC
- Ameliorating factors
 - □ We have just completed a "long" very successful p+p run
 - The start-up appears likely to be further delayed
 - The requested sequence maximizes probability for success in a compelling and unexplored sector at RHIC
 - Physics impact
 - ◆ Programmatic impact: NSAC performance measure for 2010: "Measure e⁺e⁻ production in the mass range $500 \le m_{e^+e^-} \le 1000$ MeV/c² in $\sqrt{s_{NN}}$ = 200 GeV collisions. "

HXENIX NSAC Performance Measures

- RHIC program of sufficient breadth that it encompasses two broad categories in the <u>NSAC Performance Measures</u>:
 - Physics of High Density and Hot Hadronic Matter:
 - $\sqrt{2005}$ Measure J/ ψ production in Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.
 - √2005 Measure flow and spectra of multiply-strange baryons in Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.
 - ✓2007 Measure high transverse momentum jet systematics vs. √s_{NN} up to 200 GeV and vs. system size up to Au+Au.
 - 2009 Perform realistic three-dimensional numerical simulations to describe the medium and the conditions required by the collective flow measured at RHIC
 - \checkmark 2010 Measure the energy and system size dependence of J/ ψ production over the range of ions and energies available at RHIC.
 - ✓ 2010 Measure e⁺e⁻ production in the mass range $500 \le m_{e^+e^-} \le 1000 \text{ MeV/c}^2$ in $\sqrt{s_{NN}}$ = 200 GeV collisions.
 - 2010 Complete realistic calculations of jet production in a high density medium for comparison with experiment.
 - $\sqrt{2012}$ Determine gluon densities at low x in cold nuclei via p+Au or d+Au collisions

□ Hadronic Physics

- 2008 Make measurements of spin carried by the glue in the proton with polarized proton-proton collisions at center of mass energy √s = 200 GeV.
 2013 Measure flavor-identified q and q contributions to the spin of the proton
 - via the longitudinal-spin asymmetry of W production.

Run-8 Request

- 15 weeks of d+Au at $\sqrt{s_{NN}}$ = 200 GeV
 - Given expected advances in integrated p+p luminosity, existing Run-3 d+Au data set becomes limiting factor in making precision statements about (small) nuclear modifications.
 - ◆ Run-3: 2.7 nb⁻¹
 - ◆ Run-8: 58 nb⁻¹
- 10 weeks of polarized p+p at \sqrt{s} = 200 GeV
 - Longitudinal polarization
 - Factor of ~7 improvement in integrated luminosity
 - ◆ Run-6: 7.5 pb-¹
 - ◆ Run-8: 52 pb⁻¹

□ Assumed polarization of 70%

order-of-magnitude improvement in figure of merit

- 25 M weeks of Au+Au at $\sqrt{s_{NN}}$ = ? GeV
 - Painfully aware of difficulties in long-term projections
 - Equally aware of
 - Need for integrated planning with upgrades schedule
 - Physics potential for low-energy running at RHIC
 - Allocation of full versus low-energy running will be contingent upon (then-analyzed) Run-7 Au+Au data at 200 GeV
- M weeks of polarized p+p at \sqrt{s} = 500 GeV
 - This too a contingent request
 - Based upon
 - Cumulative value of Runs 3-8 integrated luminosity for polarized protons at 200 GeV
 - Progress towards 500 GeV commissioning
 - Upgrades schedule

PH*ENIX Future (Compelling) Physics

y-jet, jet tomography, heavy quark spectroscopy							
γ -jet, CGC, jet tomography, heavy quark spectroscopy							
y-jet, CGC, jet tomography, heavy quark physics							
⁷⁻ Jet, COC, jet tomography, neavy quark physics							
Quark spin structure W-physics							
New subsystems, higher luminosity, higher data rates							

HXENIX The Upgraded PHENIX Detector

Charged Particle Tracking:

Drift Chamber Pad Chamber Time Expansion Chamber/TRD Cathode Strip Chambers(Mu Tracking) Forward Muon Trigger Detector Si Vertex Tracking Detector- Barrel (Pixel + Strips) Si Vertex Endcap (mini-strips)

Particle ID:

Time of Flight Ring Imaging Cerenkov Counter TEC/TRD Muon ID (PDT's) Aerogel Cerenkov Counter Multi-Resistive Plate Chamber Time of Flight Hadron Blind Detector

Calorimetry:

Pb Scintillator Pb Glass Nose Cone Calorimeter Muon Piston Calorimeter

Event Characterization:

Beam-Beam Counter Zero Degree Calorimeter/Shower Max Detector Reaction Plane Detector Forward Calorimeter Data Acquisition: DAO Upgrade

(i) π⁰ and direct γ with combination of all electromagnetic calorimeters
 (ii) heavy flavor with precision vertex tracking with silicon detectors combine (i)&(ii) for jet tomography with γ-jet

(iii) low mass dilepton measurements with HBD + PHENIX central arms

12-Sept-06

Schedule

- For Run-7 and beyond, various PHENIX upgrades become (or are already) available:
 - Hadron Blind Detector

 - Muon trigger
 - Nose Cone Calorimeter
- These greatly extend our physics reach, and make re-visiting various canonical systems very attractive
- NSAC guidance: *"Invest in near-term detector upgrades of the two large experiments, PHENIX and STAR, to take full advantage of the existing accelerator capabilities."*

NSAC Performance Measures

Heavy Ion:

ENIX

PH ENIX We Can't Go On Meeting Like This

- Recent PAC dates
 - □ 05-Nov-05
 - □ 12-Sep-06
 - (This my 9th presentation to the PAC on behalf of PHENIX)
- My comments on these late dates (and the resulting impasse between the collaborations):
 - Ollie: "Well, here's another nice mess you've gotten me into."
 - We have met the enemy, and he is us

- Integrate the PAC meeting with the C-A D retreat
 - Typically held 2-3 weeks after end of run
 - Complete analysis of run performance of all accelerator systems
 - Presentations on data-taking performance and associated interface issues by Run Coordinator from each collaboration
- This would obviously provide maximal
 Understanding of shutdown issues, schedule
 - affecting both C-A D and collaborations
 - □ Time for reaction to PAC guidance
- Would further propose more "discussion centered" rather than "presentation centered" approach as appropriate for a retreat

- PHENIX successes in Runs 1-6 have paralleled the (*extraordinary!*) successes of the accelerator
- Ongoing, productive enterprise engaged in timely publication of an extraordinarily broad spectrum of results (Au+Au, p+p, d+Au)
- Proposed upgrades will
 - Open new channels for investigation
 - Extend investigation of rare processes to address fundamental questions in heavy ion physics
 - Extend demonstrated spin physics capabilities to higher p_T and to new channels

Plans provide for a program of continued discovery and extended precision for the next decade

In Closing

PH^{*}ENIX

- The matter created at RHIC is spectacularly different from that at the SPS
 - Full development of (perfect fluid) hydrodynamic flow
 - Jet quenching
 - □ Modification of away-side jet shape
- It is essential that we investigate as yet unexplored channels (low-mass pairs, virtual photons) to further characterize this matter
- *While* maintaining steady progress towards understanding the proton spin
- While increasing the precision in studies of cold nuclear matter effects
- The proposed program from PHENIX is a coherent, time-ordered approach towards systematically achieving these goals.

PH*ENIX RHIC Luminosity Run-6 vs. Run-5

- Note: All estimates absolute minimum times
- Note again: All estimates absolute minimum times
- Plan:
 - □ Assume electronics will be available well before run
 - Complete prior to beam
 - noise studies
 - pedestal studies
 - integration into PHENIX DAQ
 - ♦ (eventually) also zero suppression
 - Initial set-up:
 - ♦ detector timing and HV adjustment of 24 modules for operation at gain of 10⁴

Min 2d

Min 6d

56

- detailed calibration at the pad level
 - based on the test beam we will need at least 1d data taking with B=0 and forward bias + at least 2 d for data analysis
 - Repeat with Same reversed bias This should provide a quantitative determination of the figure of merit N_0 as well as the separation between single and double electron hits
- studies
 - +- field configuration; full, 0.95, 0.90 compensating
 - data taking and analysis

Min 4d

 Absolute minimum cumulative time is 2 weeks, could easily be twice this

PHENIX Students (I)

			Completion			Second	Other	
Given Name	Family Name	Thesis Topic	Date	Institution	Adviser	Adviser	Institution	PWG
Andrew	Adare	Jet Physics in 200 GeV Cu+Cu Collisions		University of Colorado	Nagle			Photon/Hard
Christine	Aidala	Measurement of A _N and A _{LL} through Neutral and Charged Pions	2005	Columbia University	Cole			Spin
Hisham	Albataineh	Measurment of A _N for transverse single-spin from 62.4GeV and 200GeV		New Mexico State University	Papavassiliou	Liu		Spin
Ahmed	Al-Jamel	J/psi production properties from polarized proton-proton collisions at 200 GeV		New Mexico State University	Papavassiliou			Spin
Raul	Armendariz	Run-4 Au-Au		New Mexico State University	Pate			Heavy/Light
Stofan	Patho	Momentum Fluctuations and Production of Neutral Mesons in	2002	Liniversity of Muenster	Santo			Photon/Hard
Stelan	Dattie	Longitudinal Double spin asymmetry of Photon Production	2002		Santo			FIIOLOII/FIAIG
Robert	Bennett	in Polarized Protons at 200 GeV		SUNY-Stony Brook (Physics)	Deshpande			Spin
		Longitudinal Double Spin Asymmetry of pi0 Production			_			
Kieran	Boyle	in Polarized Protons at 200 GeV	0000	SUNY-Stony Brook (Physics)	Deshpande			Spin Disatan (I Jawa)
Henner	Buesching	AZIMULINAI PHOLON CONFIGUIONS IN OILIA-LEIAUNISUC D+A, PD+PD and Au+Au Reactions	2002	University of Muerister	Santo			Photon/Hard
		Transverse Momentum Distributions of Hadrons Produced in Au+Au Collisions at 130 GeV						
Jane	Burward-Hoy	Measured by the PHENIX experiment at RHIC BNL	2001	SUNY-Stony Brook (Physics)	Jacak			Global/Hadron
Sergey	Butsyk	Charm production in 200-GeV p+p collisions	2005	SUNY-Stony Brook (Physics)				
Sarah Xavior	Campbell	Low mass di-electrons from Cu+Cu Collisions		SURATECH	Hemmick			Heavy/Light
Mickey	Chiu	Angular Correlations in High n- Particle Production in Au-Au Collisons at RHIC	2004		Zaic	Nadle	Colorado	Photon/Hard
Christopher	Cleven	Heavy Elavor Production and the Reaction Plane in Heavy Ion Collisions at RHIC	2004	Georgia State University	He	INAGIC	00101200	Heavy/Light
	0.01011	Production de J/Psi dans les collisions proton-proton et deuton-or						rioury, zight
Yann	Cobigo	à 200 GeV dans le centre de masse nucléon-nucléon	2004	Dapnia/Saclay	Gosset			Heavy/Light
		Extraction of jet properties from two-particle azimuthal correlations						
Paul	Constantin	in pp and AuAu collisions at √s _{NN} = 200 GeV	2004	Iowa State University	Lajoie			Photon/Hard
Kushal	Das da Cilva	J/Psi Production Measured via e+e- decays in Au-Au Collisions at RHIC		Florida State University	Frawley	Deseti	Laura Chata	Heavy/Light
Cesar Luiz	0a SIIVa Dahms	Study of Vector Mesons with the PHENIX Detector Measurement of Photons via Conversion Pairs with the PHENIX Experiment at PHIC	2005	University of Sao Paulo SUNX-Stony Brook (Physics)	Dietzsch	Rosati	Iowa State	Heavy/Light (Master's Thesis)
Alan	Dion	Heavy Flavor Production (via e-mu?)	2003	SUNY-Stony Brook (Physics)	Averbeck			Heavy/Light
Lesley	D'Orazio			University of Maryland	Mignery			
Rickard	du Rietz	Deuteron and anti-deuteron production in $\sqrt{s_{NN}}$ =200 GeV AuAu Collisions at RHIC	2002	Lund University	Gustafsson			Heavy/Light
Karim	El Chenawi	A High Resolution Tracking System for High Energy Heavy-Ion Experiments	1998	Lund University	Gustafsson			(Master's Thesis)
		Nuclear Modification Factor in Semi-leptonic Heavy Flavor decays						
Jamil Tatia	Egdemir	In 200 GeV Au+Au Collisions		SUNY-Stony Brook (Physics)	Averbeck			Heavy/Light Photon/Hard
Talla	Ligenitore	Space-time evolution of hot and dense matter probed by Bose-Einstein correlation		Columbia Oniversity	0010			Thoton/Thard
Akitomo	Enokizono	in Au+Au collisions at √s _{NN} = 200 GeV	2004	Hiroshima University	Sugitate			Global/Hadron
		Measurement of Charged Particle Multiplicity with the Multiplicity and Vertex Detector						
Tahsina	Ferdousi	at the PHENIX Detector at RHIC	<u>2002</u>	UC-Riverside	Seto			(Master's Thesis)
	_	Direct Photon Shine: Direct Photon and π° Production						
Justin	Frantz	<u>in √s_{NN} = 200 GeV Au-Au Collisions</u>	2004	Columbia University	Cole	Nagle	Colorado	Photon/Hard
Yoshi	Fukao	Double spin asymmetry in pi0 production in p+p collisions Etude de la production de charme euvert et de Drell Van dans les collisions p+p		Kyoto University	Saito			Spin
Sebastien	Gadrat	avec PHENIX à RHIC	2005	Clermont-Ferrand	Roche			Heavy/Light
Irakli	Garishvili	Open Charm in Cu+Cu at 200 GeV		University of Tennessee	Read	Sorensen		Heavy/Light
		Single Muon Production and Implications for Charm in						
Andrew	Glenn	√sNN = 200 GeV Au+Au Collisions	2005	University of Tennessee	Sorensen	Read		Dhatan (Lland
Nathan	Grau	Jet correlations from p+p, d+Au and Au+Au collisions	2005	IOWA State University	Uglivie Hamagaki			Photon/Hard
Takashi	Hachiva			Hiroshima University	Sugitate			rieavy/Light
Ahmed	Hadj Henni	Direct Photons in p+p Collisions at 200 GeV		SUBATECH	Delagrange			Photon/Hard
Ali	Hanks			Columbia University	Cole			Photon/Hard
Eva	Haslum	Event-by-event fluctuations in relativistic heavy-ion collisions		Lund University	Gustafsson	Oskarsson		Global/Hadron
Robert	Hobbs	from Two Particle Azimuthal Correlations at PHENIX in Run3nn	2006	Liniversity of New Mexico	Fields			Spin
Wolf	Holzmann		2006	SUNY-Stony Brook (Chemistry)	Lacey			Photon/Hard
		The PHENIX Muon Spectrometer and J/psi Production in √s=200 GeV_						
Andrew	Hoover	proton-proton collisions at RHIC	2003	New Mexico State University	Pate			Heavy/Light
Takuma	Horaguchi	Direct photon production in polarized proton-proton collisions at PHENIX		Lipiversity of Technology	Shibata	Soronson		Spin Heavy/Light
TadaAki	Isobe	Direct Photon and pi0 Production in 200 GeV Au+Au Collisions		CNS-Tokyo	Hamagaki	Sorensen		Photon/Hard
Michael	Issah			SUNY-Stony Brook (Chemistry)	Lacey			Photon/Hard
Wooyoung	Jang			University of Korea				
Jiangyong	Jia	High-pT Charged Hadron Suppression in Au-Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV	2003	SUNY-Stony Brook (Physics)	Drees			Photon/Hard
Jiamin	Jin	Direct photon Jet Physics in 200GeV/c Au+Au Collisions		Columbia University	Cole			Photon/Hard
Soichiro	Kametani	Measurement of J/Psi Production in the e+e- Channel in d+Au collisions at √s _{NN} = 200GeV		CNS-Tokyo	Hamagaki			Heavy/Light
Nobuyuki	Kamihara	J/Psi formation and decay in polarized proton-proton collisions at PHENIX		Tokyo Institute of Technology	Shibata			Spin

PHENIX PHENIX Students (II)

			Completion			Second	Other	
Given Name	Family Name	Thesis Topic	Date	Institution	Adviser	Adviser	Institution	PWG
		PHENIX Event Characterization Using Charged Particle Multiplicities						
Young Gook	Kim	measured with the MVD		Yonsei University	Kang			Global/Hadron
Dong Jo	Kim	J/Ψ Production in d+Au and p+p Collisions as √s=200 GeV	2004	Yonsei University	Kang			Heavy/Light
		Study of Identified Hadron Spectra and Yields at Mid-rapidity in \snn = 200 GeV						
Akio	Kiyomichi	Au+Au Collisions	2005	University of Tsukuba	Miake			Global/Hadron
Christian	Klein-Bösing	Production of Neutral Pions and Direct Photons in Ultra-Relativistic Au+Au Collisions	2005	University of Muenster	Santo			Photon/Hard
Ryota	Kohara	J/psi Suppression Mechanism		Hiroshima University	Sugitate			Heavy/Light
Dmitri	Kotchetgov	Study of chiral symmetry restoration in relativistic heavy-ion collisions at RHIC		UC-Riverside	Seto			
Alexander	Kozlov	(Electron Pairs)		Weizmann Institute	Tserruya			Heavy/Light
MinJung	Kweon	J/Psi Production in Au+Au Collision at RHIC	2005	Korea University	Hong			Heavy/Light
Yue Shi	Lai			Columbia University	Cole			Photon/Hard
KwangBok Hiroobi	Lee	Elliptic Eleve of Identified Hadrono in Aur Au and Cur Cu Colligions at DHIC		Korea University	Hong	Fourmi		Heavy/Light
Hiroshi Folioo	Masul	Elliptic Flow of identified Hadrons in Au+Au and Cu+Cu Collisions at RHIC	2004	SUNX Stopy Brook (Physics)	Nilake	Esumi		Global/Hadron
relice	Matatrilas	Identified Particle Production in p+p and 0+Au Collisions at RHIC Energies	2004	SUNT-SIONY BIOOK (Physics)	Hemmick			
Takachi	Matsumoto	in $\sqrt{s_m} = 200 \text{ GeV}$ Au+Au reactions at RHIC		CNS Tokyo	Hamagaki			Heavy/Light
Alexander	Milou		2002	Moizmann Institute	Тапауакі			Clabal/Hadran
Alexander	Morroalo	Particle production in neavy ion collisions at RFIC energies	2002		Pariah			Giobal/Hauron Spin
Mohammed	Muniruzzman	> Asymmetry through Charged Pions	2003		Seto			Spin Heavy/Light
Tomoaki	Nakamura		2000	Hiroshima University	Sugitate			ricavy/Light
Jason	Newby	J/Psi Production in Heavy lons at RHIC using PHENIX muon arms	2003	University of Tennessee	Sorensen	Read		Heavy/Light
Paul	Nilsson	Experimental studies of particle production in ultra-relativistic heavy ion collisions	2001	Lund University	Oskarsson	Gustafsson		Global/Hadron
Susumu	Oda	Measurement of Vector Mesons in the e+e- Channel in Cu+Cu Collisions		CNS-Tokyo	Hamagaki			Heavy/Light
Ken	Ovama	Pizero production in Au+Au Collisions at √s _{NN} = 130 GeV	2002	CNS-Tokyo	Hamagaki			Photon/Hard
WooJin	Park	Open Charm Production in Au-Au Collisions at RHIC		University of Korea	Hong			Heavy/Light
Hua	Pei			Iowa State University	Ogilvie			Photon/Hard
Hai	Qu	Quarkonium Polarization Measurement at RHIC		Georgia State University	Не			Heavy/Light
		Study of Initial and Final State Effects in Ultrarelativistic Heavy Ion Collisions						
Anuj	Purwar	Using Hadronic Probes	<u>2004</u>	SUNY-Stony Brook (Physics)	Hemmick			Global/Hadron
Andry	Rakotozafindrabe	J/Ψ Production in Cu+Cu Collisions		Laboratoire Leprince-Ringuet	Fleuret			Heavy/Light
		Measurement of the spectral shape of light mesons produced					SUNY-Stony Brook	
Yuriy	Riabov	in relativistic ion collisions through hadron decay modes		PNPI	Samsonov	Milov	(Physics)	Heavy/Light
Eric	Richardson			University of Maryland	Mignery			.
Sarah	Rosendahl	Resonance studies in Heavy Ion collisions at RHIC	-	Lund University	Nystrand	Stenlund		Global/Hadron
Sang Su	Ryu	Fluctuations in the Charged Particle Multiplicity Distributions		Yonsei University	Kang	[Heavy/Light
Shingo Hiroki	Sakai	Azimuthal anisotropy of heavy havor electrons in Au+Au collisions at 200 GeV	2002	University of Tsukuba	Ivilake	Esumi		Heavy/Light
Baldo	Sahlmueller	Spectra of pi0's, eta's and direct photons in 200 GeV Au+Au Collisions	2003	Liniversity of Muenster	Wessels			Photon/Hard
Jaasanh	Soolo	Cross section and $A_{\rm e}$ for a production in polarized p+p collisions at 200 GeV			Kinnov	Nagla		Chin
Jueseph	Seele				Killiney	INAGIE		Эріп
Anne	Sickles	in AutAu, dtAu and ptp Colligions at PHIC	2005	SLINV Stony Brook (Physics)	lacak			Photon/Hard
David	Silvermyr	Aspects of Hadron Production in High-Energy Heavy-Ion Collisions	2003	Lund University	Stenlund	Gustafsson		Global/Hadron
Catherine	Silvestre	J/Psi Production in Au+Au Collision at RHIC	2001	Saclay (CEA)	Pereira	Gonin		Heavy/Light
		A scalable analytic model for single event upsets in radiation-hardened						i i i ji i igin
Steven	Skutnik	field programmable gate arrays in the PHENIX interaction region	2005	Iowa State University	Lajoie			(Master's Thesis)
Mikhail	Stepanov	Charm production in 200-GeV polarized p-p collisions		New Mexico State University	Papavassiliou			Spin
Peter	Tarjan			Debrecen University	David			Photon/Hard
		Single Transverse-spin asymmetry in forward neutron production in						
Manabu	Togawa	p+p collisions at 200 GeV and 410 GeV		Kyoto University	Saito			Spin
Hisayuki	Torii	Midrapidity Neutral-Pion Production in Proton-Proton Collisions at √s = 200GeV	<u>2003</u>	Kyoto University	Imai			Photon/Hard
V/i Nihom	Trom	Etude de la production du J/psi dans les collisions or-or a 200 GeV par paire de nucléons	2000	Laboratoira Lanciaca Diagont	Draniar	Flouret		Hoove/Light
VI-Nnam	Tram	dans rexperience PHENIX	2006	Laboratoire Leprince-Ringuet	Drapier	Fleuret		Heavy/Light
Tuji Thomas	Svensson	Tracking Chambers with 2 Dimensional Readout for the DHENIX Experiment at DHIC	1000		Ockareson	Steplund		
Henrik	Tydesio		2004		Oskarsson	Sterilund		Global/Hadron
Fric	Vazquez		2004	Columbia University	Cole			Photon/Hard
Matthew	Wysocki	Quarkonia in AutAu and CutCu Collisions at 200 GeV		University of Colorado	Nagle			Heavy/Light
Oliver	Zaudtke	Pi0- and direct photon spectra from 200 GeV Au-Au and po-data		University of Muenster	Wessels	Revoers		Photon/Hard
0	Luuuno	Note and an exception opposite from 200 Cov Ad Add and pp-date				. tojgorð		·····
Chup	Zhang	in Deuteren (Celd Cellinings at John - 200 Ce)/	2004		Zoio	Negle	Colorada	Hoove/Light
Viaonong	Znang	III Deuteron+Gold Collisions at vsiviv = 200 GeV	2004		Zajc	ivagie	Colorado	Heavy/Light
Aldopeny	Zong			nowa State University	Rusali			neavy/Light

The PHENIX Detector

- Detector Redundancy
- Fine Granularity, Mass Resolution
- High Data Rate
- Good Particle ID
- Limited Acceptance

Charged Particle Tracking:

Drift Chamber Pad Chamber Time Expansion Chamber/TRD Cathode Strip Chambers(Mu Tracking)

Particle ID:

Time of Flight Ring Imaging Cerenkov Counter TEC/TRD Muon ID (PDT's) Aerogel Cerenkov Counter

Calorimetry:

Pb Scintillator Pb Glass

Event Characterization:

Multiplicity Vertex Detector (Si Strip,Pad) Beam-Beam Counter Zero Degree Calorimeter/Shower Max Detector Forward Calorimeter

12-Sept-06

Run-1 Configuration

- Two central arms
 - Mechanically
 ~complete
 - Roughly half of aperture instrumented
- Global detectors
 - Zero-degree Calorimeters (ZDCs)
 - Beam-Beam Counters (BBCs)
 - Multiplicity and Vertex Detector (MVD, engineering run)

Run-1 Publications

- "Centrality dependence of charged particle multiplicity in Au-Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", PRL 86 (2001) 3500
- "Measurement of the midrapidity transverse energy distribution from $\sqrt{s_{NN}}$ = 130 GeV Au-Au collisions at RHIC", PRL 87 (2001) 052301
- "Suppression of hadrons with large transverse momentum in central Au-Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", <u>PRL 88, 022301 (2002)</u>.
- "Centrality dependence of $\pi^{+/-}$, K^{+/-}, p and pbar production at RHIC," <u>PRL 88, 242301 (2002).</u>
- "Transverse mass dependence of the two-pion correlation for Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", PRL 88, 192302 (2002)
- "Measurement of single electrons and implications for charm production in Au+Au collisions at √s_{NN} = 130 GeV", PRL 88, 192303 (2002)
- "Net Charge Fluctuations in Au+Au Interactions at √s_{NN} = 130 GeV," PRL. 89, 082301 (2002)
- "Event-by event fluctuations in Mean p_T and mean e_T in sqrt(s_NN) = 130GeV Au+Au Collisions" Phys. Rev. C66, 024901 (2002)
- "Flow Measurements via Two-particle Azimuthal Correlations in Au + Au Collisions at $\sqrt{s_{NN}}$ = 130 GeV" , <u>PRL 89, 212301 (2002)</u>
- "Measurement of the lambda and lambda^bar particles in Au+Au Collisions at $\sqrt{s_{NN}}$ =130 GeV", <u>PRL 89, 092302 (2002)</u>
- "Centrality Dependence of the High pT Charged Hadron Suppression in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV", <u>Phys. Lett. B561, 82 (2003)</u>
 - "Single Identified Hadron Spectra from √s_{NN} = 130 GeV Au+Au Collisions", to appear in Physical Review C, nucl-ex/0307010

From Run-1 to Run-2

Work in 2001 Shutdown

- Construction, installation and commissioning of South Muon Spectrometer
- Install and commission PC2, PC3 in West carriage
- Install and commission 5 sectors EMCal electronics
- Install and commission 2 sectors TEC electronics
- Commissioning and operation of MVD (Silicon Vertex)
- Commissioning and operation of PHENIX Event Builder
- Commissioning and operation of PHENIX Level2 Trigger
- Completion of RICH electronics
- Major servicing of Drift Chamber East

PHENIX Detector - Second Year Physics Run Phenix Detector - Second Year Phenix Detector

12-Sept-06

Run-2 Publications

- "Suppressed π^0 Production at Large Transverse Momentum in Central Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV", <u>Phys. Rev. Lett. 91, 072301 (2003)</u>
- "Scaling Properties of Proton and Anti-proton Production in $\sqrt{s_{NN}}$ = 200 GeV Au+Au Collisions", <u>Phys. Rev. Lett 91, 172301 (2003)</u>.
- "J/ Ψ Production in Au-Au Collisions at $\sqrt{s_{NN}}$ =200 GeV at the Relativistic Heavy Ion Collider", <u>Phys. Rev. C 69, 014901 (2004)</u>.
- "Elliptic Flow of Identified Hadrons in Au+Au Collisions at √s_{NN} = 200 GeV", <u>Phys.Rev.Lett. 91 (2003) 182301</u>
- "Midrapidity Neutral Pion Production in Proton-Proton Collisions at \sqrt{s} = 200 GeV", <u>Phys. Rev. Lett. 91, 241803 (2003)</u>
- "Identified Charged Particle Spectra and Yields in Au-Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV", <u>Phys. Rev. C 69, 034909 (2004)</u>
- "J/ Ψ production from proton-proton collisions at \sqrt{s} = 200 GeV", <u>Phys. Rev. Lett. 92, 051802 (2004)</u>
- "High-pt Charged Hadron Suppression in Au+Au Collisions at √s_{NN} = 200 Gev", Phys. Rev. C 69, 034910 (2004)
- "Measurement of Non-Random Event-by-Event Average Transverse Momentum Fluctuations in √s_{NN} =200 GeV Au+Au Collisions", S.S. Adler et al., <u>Phys. Rev. Lett. 93, 092301 (2004)</u>,
- "Bose-Einstein Correlations of Charged Pion Pairs in Au+Au Collisions at $\sqrt{s_{NN}}$ =200 GeV" to appear in PRL, nucl-ex/0401003
- "Deuteron and anti-deuteron production in Au+Au collisions at \sqrt{s} = 200 GeV", submitted to PRL June 1, 2004, Preprint: <u>nucl-ex/0406004</u>
- "Identified Leading Particle Correlations in Au+Au and d+Au collisions at √s_{NN} =200 GeV" , submitted to PRL Aug. 7, 2004, <u>nucl-ex/0408007</u>

Also contains Run-3 d+Au data

Work in 2002 Shutdown

- MuTrk South Spectrometer removal, service and reinstallation
- MuTrk North Spectrometer prep, installation & commissioning
- MuID shielding installation in MuID cutout N&S
- Installation of TRD radiator packs in Time Expansion Chamber
- Install Central Magnet inner coils
- Replace temporary access scaffold with permanent access system
- Modify Central Magnet nosecones
- Install new BBC rack. Move electronics and recable
- Addition of Two Forward Calorimeter for d-A running
- Upgrade to PHENIX safety systems
- Installation of all electronics for Muon North spectrometer arm muTracking + MuID
- Installation of 2 additional planes of electronics for Time Expansion Chamber
- Upgrades to LVL1 Trigger system (NTC, ZDC, EMCal/RICH, MuID)

PHENIX baseline detector was declared COMPLETE at the beginning of Run-3

Run-3 PHENIX

Run-3 and Beyond

Run-3 Publications

- "Absence of Suppression in Particle Production at Large Transverse Momentum in $\sqrt{s_{NN}} = 200 \text{ GeV d+Au Collisions}$ ", PRL 91, 072303 (2003)
 - PID-ed particles (π⁰'s) out to the highest p_T's PHENIX's unique contribution to June '03 "press event"
- "Double Helicity Asymmetry in Inclusive Mid-Rapidity neutral pion Production for Polarized p+p Collisions at sqrt(s)=200 GeV "
 <u>Phys. Rev. Lett. 93, 202002 (2004)</u>

[©] First measurement of A_{LL} at RHIC.

 "Nuclear Modification Factors for Hadrons At Forward and Backward Rapidities in Deuteron-Gold Collisions at √sNN = 200 GeV" <u>Phys. Rev. Lett. 94, 082302</u>

Clever extension of PHENIX hadron capabilities to the muon arms

Work in 2003 Shutdown

- Reinstall Photon Shields
- Muon N&S Servicing
- Complete and commission TRD Xenon system
- West Carriage platforms for Aerogel
- Installation of Aerogel ½ sector
- Complete Inner Coil buswork
- Magnet mapping with Inner Coil
- New MuTracking Gas System
- New IR air conditioning
- Improve IR Rack cooling water
- Improve shielding in the tunnel for Muon Arms
- General Detector Maintenance
- Electronics Maintenance
- Improve TEC LV situation
- Replace Drift Chamber East dc/dc converters
- Fab MuID N LL1 boards
- Finish configuration of gigabit Ethernet EvB switch
- More LVL2 code development
- Fix Pad Chamber Multi-event buffering
- Change Databases (Objy to PostgreSQL)
- Complete installation of TEC/TRD electronics
- Complete ERT/MuID S LL1

12-Septeron Fab Smart Partitioner Modules for MuTracking

Run-4 PHENIX

Work in 2004 Shutdown

- General maintenance on PHENIX subsystems
- ✓ 2nd ½ of Aerogel Sector completed and installed
- ✓ Drift Chamber E Window repair
- **V** DC W dc-dc converter replacement
- ✓ Magnet mapping
- Lots of Gas system work
- Extra Tunnel Shielding for Muon Arms
- **V** Fix Multi-event buffering (MuTracker, EMCal)
- Improve FEM Data Formatting (MuTracking, EMCal)
- LL1 trigger work (MuID, ERT)
- EvB improvements (convert to LINUX)
- Implement 4X data buffering capability in 1008 (32 TB)
- ✓ TOF-W prototype installed in West Arm
- ✓ New Scalers for pp running

Work in 2005 Shutdown

- New Aerogel ½-sector completed and installed
- Multi-event buffering for MuTracking, EMCal implemented
- Event Builder converted to Linux , plus other improvements.
- With DAQ & EvB improvements expect 5+ kHz event recording rate (Data rate max 1 GB/s uncompressed).
- 32 TB additional buffering capacity in 1008.
 - Increase bufferboxes from 4 to 6
- New maps of the magnetic field
- Tests of TOF-West prototype
- Gas system improvements for MuID, TRD
- Additional tunnel shielding for Muon Arms
- LL1 working for MuID and ERT
- Improvements to PHENIX Safety system
- New Scalers available for pp run

Work in 2006 Shutdown

- General maintenance on PHENIX subsystems
- Install accesses to bridge rack platform on central magnet flux return
- Prepare new electronics racks for bridge platform
- Install and commission Time of Flight-West(TOF-W) Detector
- Install and commission Reaction Plane(RXNP) Detector
- Install and commission Hadron Blind Detector (HBD)
- Install and commission Muon Piston Calorimeter-N (MPC-N)
- Add recirculation to HBD gas system
- Prepare HBD, TOF-W, RXNP, MPC-N racks for detector electronics
- Remove, maintain and reinstall BBC
- Drift Chamber- W repair
- Muon Piston Calorimeter-South maintenance
- Upgrades to Safety Systems (480 VAC trip)
- Improve central region detector access
- Prepare General IR infrastructure for future upgrades

