Implications of Climate Change for Drought and Wildffire

Dr. Faith Ann Heinsch
Numerical Terradynamic
Simulation Group
University of Montana

Wildland Fire Leadership Council
Red Lodge, Montana

June 20, 2007

WEATHER: Meteorological conditions of the next Day - Month

CLIMATE: Long term conditions of the Meteorology over Years - Decades

Great ocean conveyor belt

Global mean temper Warmest 12 years: 1998,2005,2003,2002,2004,2006, 2001,1997,1995,1999,1990,2000

Drought is increasing most places

PDI = Potential Destructiveness Index
Emanuel, Nature 4 August 2005

Arctic sea ice gets thinner

Shepard Glacier - Glacier National Park

OBSERVED BIOSPHERIC RESPONSES

Change in Terrestrial NPP from 1982 to 1999.

Nemani et al., Science June $6^{\text {th }} 2003$

Fires in Montana/Idaho in August 2000 monitored from the EOS/MODIS satellite

Wildfires accelerate 1970-2003

with early snow melt, longer, drier summers
Change in Average Moisture Deficit

$$
\begin{array}{llll}
-90 & -45 & 0 & 45 \\
\hline
\end{array}
$$

percent change scaled by forest area

200,000 ha 100,000 ha

Western US Forest Wildfires and Spring-Summer Temperature

Timing of Spring Snowmelt

Fire Season Length

WILDLAND ACRES BURNED 2006

Relative trend in Apr 1 snow water equivalent, 1950-2000

Trends in timing of spring snowmelt (1948-2000)

Courtesy of Mike Dettinger, Iris Stewart, Dan Cayan

Pest Epidemics
Wildfire
Forest Mortality
Low Streamflows
Reduced Nutrient Cycling
Lower NPP
Biodiversity?
Invasives?
Higher LAI, ET, NPP Higher Streamflows
Streambank Erosion Insect-borne diseases Human Health Improved wildlife habitat? Biodiversity?
(a) South Saskatchewan River at Medicine Hat

Flows North to Arctic O.

> DECLINING RIVER FLOWS Columbia and Missouri Basins

Flows West to Pacific O.

Flows SE to Gulf Year

Rood et al. J.Hydrology 2005

Naturalized Columbia River Streamflow, The Dalles, OR

Figure 2. Mountain pine beetle infestations (all severity classes) from 1998 to 2002 (a), and the distribution of climatic suitability classes derived from 1971-2000 climate normals [30-year monthly means and extreme minima and maxima (b)] for the mountain pine beetle in BC. "Very low" CSCs are habitats with climatic conditions unsuitable for mountain pine beetle, whereas "extreme" CSCs are those considered climatically optimal.

Carroll et al 2004

Spruce forest (S. Alaska) Extended warm period, insects, spruce die, fuels accumulate, large fires, species conversion?

Yellow cedar (SE Alaska)

 Extended warm period, insects, yellow cedar stressed or die.
Disturbance

Fires
Insect \& Fire
Insect
McKenzie 2005

Jemez Mtns 2002

Jemez Mtns 2004

Western North America DEC-FEB \{2040-2069\}

Both Seasons $3^{\circ} \mathrm{C}$ warmer, BUT

Winter - wetter

Summer - drier

IPCC AR4 GCMs

Western North America JUN-AUG \{2040-2069\}

Temperature Change (${ }^{\circ} \mathrm{C}$)

THE S.W. RUNNING CRYSTAL BALL Northern Rocky Mountains: THE NEXT 50 YEARS
EXPECTED CLIMATE TRENDS

- Shorter, milder winters
- Earlier snowmelt
- Longer growing seasons
- Decreasing summer streamflows
- More drought and fire danger
- Precipitation???

